函數(shù)概念的教案參考
函數(shù)概念的教案參考
各位領(lǐng)導(dǎo)老師大家好,今天我說課的內(nèi)容是函數(shù)的近代定義也就是函數(shù)的第一課時內(nèi)容。
一、教材分析
1、教材的地位和作用:
函數(shù)是數(shù)學(xué)中最主要的概念之一,而函數(shù)概念貫穿在中學(xué)數(shù)學(xué)的始終,概念是數(shù)學(xué)的基礎(chǔ),概念性強是函數(shù)理論的一個顯著特點,只有對概念作到深刻理解,才能正確靈活地加以應(yīng)用。本課中學(xué)生對函數(shù)概念理解的程度會直接影響數(shù)學(xué)其它知識的學(xué)習(xí),所以函數(shù)的第一課時非常的重要。
2、教學(xué)目標(biāo)及確立的依據(jù):
教學(xué)目標(biāo):
(1)教學(xué)知識目標(biāo):了解對應(yīng)和映射概念、理解函數(shù)的近代定義、函數(shù)三要素,以及對函數(shù)抽象符號的理解。
。2)能力訓(xùn)練目標(biāo):通過教學(xué)培養(yǎng)學(xué)生的抽象概括能力、邏輯思維能力。
。3)德育滲透目標(biāo):使學(xué)生懂得一切事物都是在不斷變化、相互聯(lián)系和相互制約的辯證唯物主義觀點。
教學(xué)目標(biāo)確立的依據(jù):
函數(shù)是數(shù)學(xué)中最主要的概念之一,而函數(shù)概念貫穿整個中學(xué)數(shù)學(xué),如:數(shù)、式、方程、函數(shù)、排列組合、數(shù)列極限等都是以函數(shù)為中心的代數(shù)。加強函數(shù)教學(xué)可幫助學(xué)生學(xué)好其他的數(shù)學(xué)內(nèi)容。而掌握好函數(shù)的概念是學(xué)好函數(shù)的基石。
3、教學(xué)重點難點及確立的依據(jù):
教學(xué)重點:映射的概念,函數(shù)的近代概念、函數(shù)的三要素及函數(shù)符號的理解。
教學(xué)難點:映射的概念,函數(shù)近代概念,及函數(shù)符號的理解。
重點難點確立的依據(jù):
映射的概念和函數(shù)的近代定義抽象性都比較強,要求學(xué)生的理性認(rèn)識的能力也比較高,對于剛剛升入高中不久的學(xué)生來說不易理解。而且由于函數(shù)在高考中可以以低、中、高擋題出現(xiàn),所以近年來高考有一種“函數(shù)熱”的趨勢,所以本節(jié)的重點難點必然落在映射的概念和函數(shù)的近代定義及函數(shù)符號的理解與運用上。
二、教材的處理:
將映射的定義及類比手法的運用作為本課突破難點的關(guān)鍵。 函數(shù)的定義,是以集合、映射的觀點給出,這與初中教材變量值與對應(yīng)觀點給出不一樣了,從而給本身就很抽象的函數(shù)概念的理解帶來更大的困難。為解決這難點,主要是從實際出發(fā)調(diào)動學(xué)生的學(xué)習(xí)熱情與參與意識,運用引導(dǎo)對比的手法,啟發(fā)引導(dǎo)學(xué)生進(jìn)行有目的的反復(fù)比較幾個概念的異同,使學(xué)生真正對函數(shù)的概念有很準(zhǔn)確的認(rèn)識。
三、教學(xué)方法和學(xué)法
教學(xué)方法:講授為主,學(xué)生自主預(yù)習(xí)為輔。
依據(jù)是:因為以新的觀點認(rèn)識函數(shù)概念及函數(shù)符號與運用時,更重要的是必須給學(xué)生講清楚概念及注意事項,并通過師生的共同討論來幫助學(xué)生深刻理解,這樣才能使函數(shù)的概念及符號的運用在學(xué)生的思想和知識結(jié)構(gòu)中打上深刻的烙印,為學(xué)生能學(xué)好后面的知識打下堅實的基礎(chǔ)。
學(xué)法:四、教學(xué)程序
一、課程導(dǎo)入
通過舉以下一個通俗的例子引出通過某個對應(yīng)法則可以將兩個非空集合聯(lián)系在一起。
例1:把高一(12)班和高一(11)全體同學(xué)分別看成是兩個集合,問,通過“找好朋友”這個對應(yīng)法則是否能將這兩個集合的某些元素聯(lián)系在一起?
二、 新課講授:
(1) 接著再通過幻燈片給出六組學(xué)生熟悉的數(shù)集的對應(yīng)關(guān)系引導(dǎo)學(xué)生總結(jié)歸納它們的共同性質(zhì)(一對一,多對一),進(jìn)而給出映射的概念,表示符號f:A→B,及原像和像的定義。強調(diào)指出非空集合A到非空集合B的映射包括三部分即非空集合A、B和A到B的對應(yīng)法則 f。進(jìn)一步引導(dǎo)學(xué)生總結(jié)判斷一個從A到B的對應(yīng)是否為映射的關(guān)鍵是看A中的任意一個元素通過對應(yīng)法則f在B中是否有唯一確定的元素與之對應(yīng)。
。2)鞏固練習(xí)課本52頁第八題。
此練習(xí)能讓學(xué)生更深刻的認(rèn)識到映射可以“一對多,多對一”但不能是“一對多”。
例1。給出學(xué)生初中學(xué)過的函數(shù)的傳統(tǒng)定義和幾個簡單的一次、二次函數(shù),通過畫圖表示這些函數(shù)的對應(yīng)關(guān)系,引導(dǎo)學(xué)生發(fā)現(xiàn)它們是特殊的映射進(jìn)而給出函數(shù)的近代定義(設(shè)A、B是兩個非空集合,如果按照某種對應(yīng)法則f,使得A中的任何一個元素在集合B中都有唯一的元素與之對應(yīng)則這樣的對應(yīng)叫做集合A到集合B的映射,它包括非空集合A和B以及從A到B的對應(yīng)法則f),并說明把函f:A→B記為y=f(x),其中自變量x的取值范圍A叫做函數(shù)的定義域,與x的值相對應(yīng)的y(或f(x))值叫做函數(shù)值,函數(shù)值的集合{f(x):x∈A}叫做函數(shù)的值域。
并把函數(shù)的近代定義與映射定義比較使學(xué)生認(rèn)識到函數(shù)與映射的區(qū)別與聯(lián)系。(函數(shù)是非空數(shù)集到非空數(shù)集的映射)。
再以讓學(xué)生判斷的方式給出以下關(guān)于函數(shù)近代定義的注意事項:
2。函數(shù)是非空數(shù)集到非空數(shù)集的映射。
3。f表示對應(yīng)關(guān)系,在不同的函數(shù)中f的具體含義不一樣。
4。f(x)是一個符號,不表示f與x的乘積,而表示x經(jīng)過f作用后的結(jié)果。
5。集合A中的數(shù)的任意性,集合B中數(shù)的唯一性。
6。“f:A→B”表示一個函數(shù)有三要素:法則f(是核心),定義域A(要優(yōu)先),值域C(上函數(shù)值的集合且C∈B)。
三、講解例題
例1。問y=1(x∈A)是不是函數(shù)?
解:y=1可以化為y=0*X+1
畫圖可以知道從x的取值范圍到y(tǒng)的取值范圍的對應(yīng)是“多對一”是從非空數(shù)集到非空數(shù)集的映射,所以它是函數(shù)。
[注]:引導(dǎo)學(xué)生從集合,映射的觀點認(rèn)識函數(shù)的定義。
四、課時小結(jié):
1。映射的定義。
2。函數(shù)的近代定義。
3。函數(shù)的三要素及符號的正確理解和應(yīng)用。
4。函數(shù)近代定義的五大注意點。
五、課后作業(yè)及板書設(shè)計
書本P51 習(xí)題2。1的1、2寫在書上3、4、5上交。
預(yù)習(xí)函數(shù)三要素的定義域,并能求簡單函數(shù)的定義域。
函數(shù)(一)
一、映射:2。函數(shù)近代定義:例題練習(xí)
二、函數(shù)的定義[注]1—5
1。函數(shù)傳統(tǒng)定義三、作業(yè):
【函數(shù)概念的教案參考】相關(guān)文章:
《函數(shù)的概念》教案(通用7篇)04-30
《函數(shù)的概念》導(dǎo)學(xué)案07-04
集合與函數(shù)概念總結(jié)07-14
高一數(shù)學(xué)教案《指數(shù)函數(shù)和對數(shù)函數(shù)》06-02
《跳水》參考教案06-01
雷雨教案參考06-01
《uw》教案參考06-01
《鳥語》教案參考精選06-01
愛迪生的教案參考06-02