男人天堂日韩,中文字幕18页,天天伊人网,成人性生交大片免费视频

數(shù)學(xué)教案-直線的傾斜角和斜率

時(shí)間:2021-11-26 11:20:03 教案 我要投稿

數(shù)學(xué)教案-直線的傾斜角和斜率

  作為一名教職工,就難以避免地要準(zhǔn)備教案,編寫教案有利于我們準(zhǔn)確把握教材的重點(diǎn)與難點(diǎn),進(jìn)而選擇恰當(dāng)?shù)慕虒W(xué)方法。那么什么樣的教案才是好的呢?以下是小編幫大家整理的數(shù)學(xué)教案-直線的傾斜角和斜率,供大家參考借鑒,希望可以幫助到有需要的朋友。

數(shù)學(xué)教案-直線的傾斜角和斜率

  教學(xué)目標(biāo)

 。1)了解直線方程的概念.

  (2)正確理解直線傾斜角和斜率概念.理解每條直線的傾斜角是唯一的,但不是每條直線都存在斜率.

  (3)理解公式的推導(dǎo)過(guò)程,掌握過(guò)兩點(diǎn)的直線的斜率公式.

 。4)通過(guò)直線傾斜角概念的引入和直線傾斜角與斜率關(guān)系的揭示,培養(yǎng)學(xué)生觀察、探索能力,運(yùn)用數(shù)學(xué)語(yǔ)言表達(dá)能力,數(shù)學(xué)交流與評(píng)價(jià)能力.

 。5)通過(guò)斜率概念的建立和斜率公式的推導(dǎo),幫助學(xué)生進(jìn)一步理解數(shù)形結(jié)合思想,培養(yǎng)學(xué)生樹立辯證統(tǒng)一的觀點(diǎn),培養(yǎng)學(xué)生形成嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度和求簡(jiǎn)的數(shù)學(xué)精神.

  教學(xué)建議

  1.教材分析

 。1)知識(shí)結(jié)構(gòu)

  本節(jié)內(nèi)容首先根據(jù)一次函數(shù)與其圖像——直線的關(guān)系導(dǎo)出直線方程的概念;其次為進(jìn)一步研究直線,建立了直線傾斜角的概念,進(jìn)而建立直線斜率的概念,從而實(shí)現(xiàn)了直線的方向或者說(shuō)直線的傾斜角這一直線的幾何屬性向直線的斜率這一代數(shù)屬性的轉(zhuǎn)變;最后推導(dǎo)出經(jīng)過(guò)兩點(diǎn)的直線的斜率公式.這些充分體現(xiàn)了解析幾何的思想方法.

 。2)重點(diǎn)、難點(diǎn)分析

 、俦竟(jié)的重點(diǎn)是斜率的概念和斜率公式.直線的斜率是后繼內(nèi)容展開的主線,無(wú)論是建立直線的方程,還是研究?jī)蓷l直線的位置關(guān)系,以及討論直線與二次曲線的位置關(guān)系,直線的斜率都發(fā)揮著重要作用.因此,正確理解斜率概念,熟練掌握斜率公式是學(xué)好這一章的關(guān)鍵.

 、诒竟(jié)的難點(diǎn)是對(duì)斜率概念的理解.學(xué)生對(duì)于用直線的傾斜角來(lái)刻畫直線的方向并不難接受,但是,為什么要定義直線的斜率,為什么把斜率定義為傾斜角的正切兩個(gè)問題卻并不容易接受.

  2.教法建議

  (1)本節(jié)課的教學(xué)任務(wù)有三大項(xiàng):傾斜角的概念、斜率的概念和斜率公式.學(xué)生思維也對(duì)應(yīng)三個(gè)高潮:傾斜角如何定義、為什么斜率定義為傾斜角的正切和斜率公式如何建立.相應(yīng)的教學(xué)過(guò)程也有三個(gè)階段

 、僭诮虒W(xué)中首先是創(chuàng)設(shè)問題情境,然后通過(guò)討論明確用角來(lái)刻畫直線的方向,如何定義這個(gè)角呢,學(xué)生在討論中逐漸明確傾斜角的概念.

 、诒竟(jié)的難點(diǎn)是對(duì)斜率概念的理解.學(xué)生認(rèn)為傾斜角就可以刻畫直線的方向,而且每一條直線的傾斜角是唯一確定的,而斜率卻不這樣.學(xué)生還會(huì)認(rèn)為用弧度制表示傾斜角不是一樣可以數(shù)量化嗎.再有,為什么要用傾斜角的正切定義斜率,而不用正弦、余弦或余切哪?要解決這些問題,就要求教師幫助學(xué)生認(rèn)識(shí)到在直線的方程中體現(xiàn)的不是直線的傾斜角,而是傾斜角的正切,即直線方程(一次函數(shù)的形式,下同)中x的系數(shù)恰好就是直線傾斜角的正切.為了便于學(xué)生更好的理解直線斜率的概念,可以借助幾何畫板設(shè)計(jì):

  (1) α變化→直線變化→中的系數(shù)變化(同時(shí)注意的變化).

  (2)中的系數(shù)變化→直線變化→α變化(同時(shí)注意的變化).

  運(yùn)用上述正反兩種變化的動(dòng)態(tài)演示充分揭示直線方程中系數(shù)與傾斜角正切的內(nèi)在關(guān)系,這對(duì)幫助學(xué)生理解斜率概念是極有好處的.

 、墼谶M(jìn)行過(guò)兩點(diǎn)的斜率公式推導(dǎo)的教學(xué)中要注意與前后知識(shí)的聯(lián)系,課前要對(duì)平面向量,三角函數(shù)等有關(guān)內(nèi)容作一定的復(fù)習(xí)準(zhǔn)備.

  ④在學(xué)習(xí)直線方程的概念時(shí)要通過(guò)舉例清晰地指出兩個(gè)條件,最好能用充要條件敘述直線方程的概念,強(qiáng)化直線與相應(yīng)方程的對(duì)應(yīng)關(guān)系.為將來(lái)學(xué)習(xí)曲線方程做好準(zhǔn)備.

 。2)本節(jié)內(nèi)容在教學(xué)中宜采用啟發(fā)引導(dǎo)法和討論法,設(shè)計(jì)為啟發(fā)、引導(dǎo)、探究、評(píng)價(jià)的教學(xué)模式.學(xué)生在積極思維的基礎(chǔ)上,進(jìn)行充分的討論、爭(zhēng)辯、交流、和評(píng)價(jià).傾斜角如何定義、為什么斜率定義為傾斜角的正切和斜率公式的建立,這三項(xiàng)教學(xué)任務(wù)都是在討論、交流、評(píng)價(jià)中完成的.在此過(guò)程中學(xué)生的思維和能力得到充分的發(fā)展.教師的任務(wù)是創(chuàng)設(shè)問題情境,引發(fā)爭(zhēng)論,組織交流,參與評(píng)價(jià).

  教學(xué)設(shè)計(jì)示例

  直線的傾斜角和斜率

  教學(xué)目標(biāo)

 。1)了解直線方程的概念,正確理解直線傾斜角和斜率概念,

  (2)理解公式的推導(dǎo)過(guò)程,掌握過(guò)兩點(diǎn)的直線的斜率公式.

 。3)培養(yǎng)學(xué)生觀察、探索能力,運(yùn)用數(shù)學(xué)語(yǔ)言表達(dá)能力,數(shù)學(xué)交流與評(píng)價(jià)能力.

 。4)幫助學(xué)生進(jìn)一步理解數(shù)形結(jié)合思想,培養(yǎng)學(xué)生樹立辯證統(tǒng)一的觀點(diǎn),培養(yǎng)學(xué)生形成嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度和求簡(jiǎn)的數(shù)學(xué)精神.

  教學(xué)重點(diǎn)、難點(diǎn):直線斜率的概念和公式

  教學(xué)用具:計(jì)算機(jī)

  教學(xué)方法:?jiǎn)l(fā)引導(dǎo)法,討論法

  教學(xué)過(guò)程

  (一)直線方程的概念

  如圖1,對(duì)于一次函數(shù),和它的圖像——直線有下面關(guān)系:

 。1)有序數(shù)對(duì)(0,1)滿足函數(shù),則直線上就有一點(diǎn)A,它的坐標(biāo)是(0,1).

 。2)反過(guò)來(lái),直線上點(diǎn)B(1,3),則有序?qū)崝?shù)對(duì)(1,3)就滿足.

  一般地,滿足函數(shù)式的每一對(duì),的值,都是直線上的點(diǎn)的坐標(biāo)(,);

  反之,直線上每一點(diǎn)的坐標(biāo)(,)都滿足函數(shù)式,因此,一次函數(shù)的圖象是一條直線,它是以滿足的每一對(duì)x,y的值為坐標(biāo)的點(diǎn)構(gòu)成的.

  從方程的角度看,函數(shù)也可以看作是二元一次方程,這樣滿足一次函數(shù)的每一對(duì),的值“變成了”二元一次方程的解,使方程和直線建立了聯(lián)系.

  定義:以一個(gè)方程的解為坐標(biāo)的點(diǎn)都是某條直線上的點(diǎn),反過(guò)來(lái),這條直線上的所有點(diǎn)坐標(biāo)都是這個(gè)方程的解,這時(shí),這個(gè)方程就叫做這條直線的方程,這條直線就叫做這個(gè)方程的直線.

  以上定義改用集合表述:,的二元一次方程的解為坐標(biāo)的集合,記作.若(1)(2),則.

  問:你能用充要條件敘述嗎?

  答:一條直線是一個(gè)方程的直線,或者說(shuō)這個(gè)方程是這條直線的方程的充要條件是…….

 。ǘ┲本的傾斜角

  【問題1】

  請(qǐng)畫出以下三個(gè)方程所表示的直線,并觀察它們的異同.

  過(guò)定點(diǎn),方向不同.

  如何確定一條直線?

  兩點(diǎn)確定一條直線.

  還有其他方法嗎?或者說(shuō)如果只給出一點(diǎn),要確定這條直線還應(yīng)增加什么條件?

  學(xué)生:思考、回憶、回答:這條直線的.方向,或者說(shuō)傾斜程度.

  【導(dǎo)入】

  今天我們就共同來(lái)研究如何刻畫直線的方向.

  【問題2】

  在坐標(biāo)系中的一條直線,我們用怎樣的角來(lái)刻畫直線的方向呢?討論之前我們可以設(shè)想這個(gè)角應(yīng)該是怎樣的呢?它不僅能解決我們的問題,同時(shí)還應(yīng)該是簡(jiǎn)單的、自然的.

  學(xué)生:展開討論.

  學(xué)生討論過(guò)程中會(huì)有錯(cuò)誤和不嚴(yán)謹(jǐn)之處,教師注意引導(dǎo).

  通過(guò)討論認(rèn)為:應(yīng)選擇α角來(lái)刻畫直線的方向.根據(jù)三角函數(shù)的知識(shí),表明一個(gè)方向可以有無(wú)窮多個(gè)角,這里只需一個(gè)角即可(開始時(shí)可能有學(xué)生認(rèn)為有四個(gè)角或兩個(gè)角),當(dāng)然用最小的正角.從而得到直線傾斜角的概念.

  【板書】

  定義:一條直線l向上的方向與軸的正方向所成的最小正角叫做直線的傾斜角.

  (教師強(qiáng)調(diào)三點(diǎn):(1)直線向上的方向,(2)軸的正方向,(3)最小正角.)

  特別地,當(dāng)與軸平行或重合時(shí),規(guī)定傾斜角為0°.

  由此定義,角的范圍如何?

  0°≤α<180°或0≤α<π如圖3

  至此問題2已經(jīng)解決了,回顧一下是怎么解決的.

 。ㄈ┲本的斜率

  【問題3】

  下面我們?cè)谕蛔鴺?biāo)系中畫出過(guò)原點(diǎn)傾斜角分別是30°、45°、135°的直線,并試著寫出它們的直線方程.然后觀察思考:

  直線的傾斜角在直線方程中是如何體現(xiàn)的?

  學(xué)生:在練習(xí)本上畫出直線,寫出方程.

  30° --à=

  45° --à=

  135°--à=

 。ㄗⅲ簩W(xué)生對(duì)于寫出傾斜角是45°、135°的直線方程不會(huì)困難,但對(duì)于傾斜角是30°可能有困難,此時(shí)可啟發(fā)學(xué)生借用三角函數(shù)中的30°角終邊與單位圓的交點(diǎn)坐標(biāo)來(lái)解決.)

  【演示動(dòng)畫】

  觀察直線變化,傾斜角變化,直線方程中系數(shù)變化的關(guān)系

  (1)直線變化→α變化→中的系數(shù)變化(同時(shí)注意α的變化).

  (2)中的x系數(shù)k變化→直線變化→α變化(同時(shí)注意α的變化).

  教師引導(dǎo)學(xué)生觀察,歸納,猜想出傾斜角與的系數(shù)的關(guān)系:傾斜角不同,方程中的系數(shù)不同,而且這個(gè)系數(shù)正是傾斜角的正切!

  【板書】

  定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率.記作,即.

  這樣我們定義了一個(gè)從“形”的方面刻畫直線相對(duì)于軸(正方向)傾斜程度的量——傾斜角,現(xiàn)在我們又定義一個(gè)從“數(shù)”的方面刻畫直線相對(duì)于軸(正方向)傾斜程度的量——斜率.

  指出下列直線的傾斜角和斜率:

  (2)=tg60° (3)=tg(-30°)

  學(xué)生思考后回答,師生一起訂正:(1)120°;(2)60°;(3)150°(為什么不是-30°呢?)

  畫圖,指出傾斜角和斜率.

  結(jié)合圖3(也可以演示動(dòng)畫),觀察傾斜角變化時(shí),斜率的變化情況.

  注意:當(dāng)傾斜角為90°時(shí),斜率不存在.

  α=0° --à=0

  0°<α<90° --à>0

  α=90° --à不存在

  90°<α<180°--à<0

  (四)直線過(guò)兩點(diǎn)斜率公式的推導(dǎo)

  【問題4】

  如果給定直線的傾斜角,我們當(dāng)然可以根據(jù)斜率的定義=tgα求出直線的斜率;

  如果給定直線上兩點(diǎn)坐標(biāo),直線是確定的,傾斜角也是確定的,斜率就是確定的,那么又怎么求出直線的斜率呢?

  即已知兩點(diǎn)P1(x1,y1)、P2(x2,y2)(其中x1≠x2),求直線P1P2的斜率.

  思路分析:

  首先由學(xué)生提出思路,教師啟發(fā)、引導(dǎo):

  運(yùn)用正切定義,解決問題.

  (1)正切函數(shù)定義是什么?(終邊上任一點(diǎn)的縱坐標(biāo)比橫坐標(biāo).)

  (2)角α是“標(biāo)準(zhǔn)位置”嗎?(不是.)

  (3)如何把角α放在“標(biāo)準(zhǔn)位置”?(平移向量,使P1與原點(diǎn)重合,得到新向量.)

  (4)P的坐標(biāo)是多少?(x2-x1,y2-y1)

  (5)直線的斜率是多少?=tgα=(x1≠x2)

  (6)如果P1和P2的順序不同,結(jié)果還一樣嗎?(一樣).

  評(píng)價(jià):注意公式中x1≠x2,即直線P1 P2不垂直x軸.因此當(dāng)直線P1P2不垂直x軸時(shí),由已知直線上任意兩點(diǎn)的坐標(biāo)可以求得斜率,而不需要求出傾斜角.

  【練習(xí)】

  (1)直線的傾斜角為α,則直線的斜率為α?

  (2)任意直線有傾斜角,則任意直線都有斜率?

  (3)直線(-330°)的傾斜角和斜率分別是多少?

  (4)求經(jīng)過(guò)兩點(diǎn)(0,0)、 (-1,)直線的傾斜角和斜率.

  (5)課本第37頁(yè)練習(xí)第2、4題.

  教師巡視,觀察學(xué)生情況,個(gè)別輔導(dǎo),訂正答案(答案略).

  【總結(jié)】

  教師引導(dǎo):首先回顧前邊提出的問題是否都已解決.再看下邊的問題:

  (1)直線傾斜角的概念要注意什么?

  (2)直線的傾斜角與斜率是一一對(duì)應(yīng)嗎?

  (3)已知兩點(diǎn)坐標(biāo),如何求直線的斜率?斜率公式中腳標(biāo)1和2有順序嗎?

  學(xué)生邊討論邊總結(jié):

  (1)向上的方向,正方向,最小,正角.(2)不是,當(dāng)α=90°時(shí),α不存在.

  【作業(yè)】

  1.課本第37頁(yè)習(xí)題7.1第3、4、5題.

  2.思考題

 。1)方程是單位圓的方程嗎?

 。2)你能說(shuō)出過(guò)原點(diǎn),傾斜角是45°的直線方程嗎?

  (3)你能說(shuō)出過(guò)原點(diǎn),斜率是2的直線方程嗎?

 。4)你能說(shuō)出過(guò)(1,1)點(diǎn),斜率是2的直線方程嗎?

  板書設(shè)計(jì)

  7.1直線的傾斜角和斜率

  一、直線方程

  二、直線的傾斜角

  三、直線的斜率

  四、斜率公式

  練習(xí)

  小結(jié)

  作業(yè)

【數(shù)學(xué)教案-直線的傾斜角和斜率】相關(guān)文章:

直線的傾斜角與斜率教學(xué)設(shè)計(jì)12-07

人教版高中數(shù)學(xué)A版必修二 傾斜角與斜率說(shuō)課稿11-02

《小數(shù)的意義和讀寫》數(shù)學(xué)教案12-17

空間向量在平面直線、空間直線位置關(guān)系中的應(yīng)用說(shuō)課稿11-02

直線射線線段教學(xué)反思11-01

直線射線線段教學(xué)反思11-01

直線的兩點(diǎn)式方程說(shuō)課稿11-08

精選《直線方程》測(cè)試題08-28

《光的直線傳播》 教學(xué)設(shè)計(jì)及課后反思12-02

勻變速直線運(yùn)動(dòng)的位移與時(shí)間的關(guān)系說(shuō)課稿11-04