男人天堂日韩,中文字幕18页,天天伊人网,成人性生交大片免费视频

初中數(shù)學(xué) 和圓的比例線(xiàn)段 教案

時(shí)間:2023-02-27 10:29:55 教案 我要投稿
  • 相關(guān)推薦

初中數(shù)學(xué) 和圓有關(guān)的比例線(xiàn)段 教案

  作為一位優(yōu)秀的人民教師,常常需要準(zhǔn)備教案,通過(guò)教案準(zhǔn)備可以更好地根據(jù)具體情況對(duì)教學(xué)進(jìn)程做適當(dāng)?shù)谋匾恼{(diào)整?靵(lái)參考教案是怎么寫(xiě)的吧!下面是小編精心整理的初中數(shù)學(xué) 和圓有關(guān)的比例線(xiàn)段 教案,希望能夠幫助到大家。

初中數(shù)學(xué) 和圓有關(guān)的比例線(xiàn)段 教案

  教學(xué)目標(biāo):

 。1)會(huì)將正多邊形的邊長(zhǎng)、半徑、邊心距和中心角、周長(zhǎng)、面積等有關(guān)的計(jì)算問(wèn)題轉(zhuǎn)化為解直角三角形的問(wèn)題;

  (2)鞏固學(xué)生解直角三角形的能力,培養(yǎng)學(xué)生正確迅速的運(yùn)算能力;

 。3)通過(guò)正多邊形有關(guān)計(jì)算公式的推導(dǎo),激發(fā)學(xué)生探索和創(chuàng)新.

  教學(xué)重點(diǎn):

  把正多邊形的有關(guān)計(jì)算問(wèn)題轉(zhuǎn)化為解直角三角形的問(wèn)題.

  教學(xué)難點(diǎn):

  正確地將正多邊形的有關(guān)計(jì)算問(wèn)題轉(zhuǎn)化為解直角三角形的問(wèn)題解決、綜合運(yùn)用幾何知識(shí)準(zhǔn)確計(jì)算.

  教學(xué)活動(dòng)設(shè)計(jì):

 。ㄒ唬﹦(chuàng)設(shè)情境、觀察、分析、歸納結(jié)論

  1、情境一:給出圖形.

  問(wèn)題1:正n邊形內(nèi)角的規(guī)律.

  觀察:在圖形中,應(yīng)用以有的知識(shí)(多邊形內(nèi)角和定理,多邊形的每個(gè)內(nèi)角都相等)得出新結(jié)論.

  教師組織學(xué)生自主觀察,學(xué)生回答.(正n邊形的每個(gè)內(nèi)角都等于.)

  2、情境二:給出圖形.

  問(wèn)題2:每個(gè)圖形的半徑,分別將它們分割成什么樣的三角形?它們有什么規(guī)律?

  教師引導(dǎo)學(xué)生觀察,學(xué)生回答.

  觀察:三角形的形狀,三角形的個(gè)數(shù).

  歸納:正n邊形的n條半徑分正n邊形為n個(gè)全等的等腰三角形.

  3、情境三:給出圖形.

  問(wèn)題3:作每個(gè)正多邊形的邊心距,又有什么規(guī)律?

  觀察、歸納:這些邊心距又把這n個(gè)等腰三角形分成了個(gè)直角三角形,這些直角三角形也是全等的.

 。ǘ┒ɡ、理解、應(yīng)用:

  1、 定理: 正n 邊形的半徑和邊心距把正n 邊形分成2n 個(gè)全等的直角三角形.

  2、理解:定理的實(shí)質(zhì)是把正多邊形的問(wèn)題向直角三角形轉(zhuǎn)化.

  由于這些直角三角形的斜邊都是正n邊形的半徑R,一條直角邊是正n邊形的邊心距r n,另一條直角邊是正n邊形邊長(zhǎng)a n的一半,一個(gè)銳角是正n邊形中心角的一半,即,所以,根據(jù)上面定理就可以把正n邊形的有關(guān)計(jì)算歸結(jié)為解直角三角形問(wèn)題.

  3、應(yīng)用:

  例1、已知正六邊形ABCDEF的半徑為R,求這個(gè)正六邊形的邊長(zhǎng)、周長(zhǎng)P 6和面積S 6.

  教師引導(dǎo)學(xué)生分析解題思路:

  n=6 =30°,又半徑為R a 6 、r 6.P 6 、S 6.

  學(xué)生完成解題過(guò)程,并關(guān)注學(xué)生解直角三角形的能力.

  解:作半徑OA、OB;作OG⊥AB,垂足為G,得Rt△OGB.

  ∵∠GOB=,

  ∴a 6 =2·Rsin30°=R,

  ∴P 6 =6·a 6 =6R,

  ∵r 6 =Rcos30°=,

  歸納:如果用P n表示正n邊形的周長(zhǎng),由例1可知,正n邊形的面積S 6 = P n r n.

  4、研究:(應(yīng)用例1的方法進(jìn)一步研究)

  問(wèn)題:已知圓的半徑為R,求它的內(nèi)接正三角形、正方形的邊長(zhǎng)、邊心距及面積.

  學(xué)生以小組進(jìn)行研究,并初步歸納:

  上述公式是運(yùn)用解直角三角形的方法得到的.

  通過(guò)上式六公式看出,只要給定兩個(gè)條件,則正多邊形就完全確定了.例如:(1)圓的半徑或邊數(shù);(2)圓的半徑和邊心距;(3)邊長(zhǎng)及邊心距,就可以確定正多邊形的其它元素.

 。ㄈ┬」(jié)

  知識(shí):定理、正三角形、正方形、正六邊形的元素的計(jì)算問(wèn)題.

  思想:轉(zhuǎn)化思想.

  能力:解直角三角形的能力、計(jì)算能力;觀察、分析、研究、歸納能力.

 。ㄋ模┳鳂I(yè)

  歸納正三角形、正方形、正六邊形以及正n邊形的有關(guān)計(jì)算公式.

  教學(xué)設(shè)計(jì)示例2

  教學(xué)目標(biāo):

 。1)進(jìn)一步研究正多邊形的計(jì)算問(wèn)題,解決實(shí)際應(yīng)用問(wèn)題;

 。2)通過(guò)正十邊形的邊長(zhǎng)a 10與半徑R的關(guān)系的證明,學(xué)習(xí)邊計(jì)算邊推理的數(shù)學(xué)方法;

 。3)通過(guò)解決實(shí)際問(wèn)題,培養(yǎng)學(xué)生簡(jiǎn)單的數(shù)學(xué)建模能力;

 。4)培養(yǎng)學(xué)生用數(shù)學(xué)意識(shí),滲透理論聯(lián)系實(shí)際、實(shí)踐論的觀點(diǎn).

  教學(xué)重點(diǎn):

  應(yīng)用正多邊形的基本計(jì)算圖解決實(shí)際應(yīng)用問(wèn)題及代數(shù)計(jì)算的證明方法.

  教學(xué)難點(diǎn):

  例3的證明方法.

  教學(xué)活動(dòng)設(shè)計(jì):

  (一)知識(shí)回顧

 。1)方法:運(yùn)用將正多邊形分割成三角形的方法,把正多邊形有關(guān)計(jì)算轉(zhuǎn)化為解直角三角形問(wèn)題.

 。2)知識(shí):正三角形、正方形、正六邊形的有關(guān)計(jì)算問(wèn)題,正多邊形的有關(guān)計(jì)算.

  組織學(xué)生填寫(xiě)教材P165練習(xí)中第2題的表格.

 。ǘ┱噙呅蔚膽(yīng)用

  正多邊形的有關(guān)計(jì)算方法是基本的幾何計(jì)算知識(shí)之一,掌握這些知識(shí),一方面可以為學(xué)生進(jìn)一步學(xué)習(xí)打好基礎(chǔ),另一方面,這些知識(shí)在生產(chǎn)和生活中常常會(huì)用到,掌握后對(duì)學(xué)生參加實(shí)踐活動(dòng)具有實(shí)用意義.

  例2 、 在一種聯(lián)合收割機(jī)上,撥禾輪的側(cè)面是正五邊形,測(cè)得這個(gè)正五邊形的邊長(zhǎng)是48cm,求它的半徑R 5和邊心距r 5 (精確到0.1cm).

  解:設(shè)正五邊形為ABCDE,它的中心為點(diǎn)O,連接OA,作OF⊥AB,垂足為F,則OA=R 5,OF=r 5,∠AOF=.

  ∵AF=(cm),∴R 5 =(cm).

  r 5 =(cm).

  答:這個(gè)正多邊形的半徑約為40.8cm,邊心距約為33.0cm

  建議:①組織學(xué)生,使學(xué)生主動(dòng)參與教學(xué);②滲透簡(jiǎn)單的數(shù)學(xué)建模思想和實(shí)際應(yīng)用意識(shí);③對(duì)與本題除解直角三角形知識(shí)外,還要主要學(xué)生的近似計(jì)算能力的培養(yǎng).

  以小組的學(xué)習(xí)形式,每個(gè)小組自己舉一個(gè)實(shí)際生活中的例子加以研究,班內(nèi)交流.

  例3 已知:正十邊形的半徑為R,求證:它的邊長(zhǎng).

  教師引導(dǎo)學(xué)生:

  (1)∠AOB=?

 。2)在△OAB中,∠A與∠B的度數(shù)?

 。3)如果BM平分∠OBA交OA于M,你發(fā)現(xiàn)圖形中相等的線(xiàn)段有哪些?你發(fā)現(xiàn)圖中三角形有什么關(guān)系?

  (4)已知半徑為R,你能不通過(guò)解三角形的方法求出AB嗎?怎么計(jì)算?

  解:如圖,設(shè)AB=a 10.作∠OBA的平分線(xiàn)BM,交OA于點(diǎn)M,則

  ∠AOB=∠1=∠2=36°,∠OAB=∠3=72°.

  ∴OM=MB=AB= a 10.

  △ OAB∽△BAM OA:AB=BA:AM,即R :a 10 = a 10 :(R- a 10),整理,得

  ,(取正根).

  由例3的結(jié)論可得.

  回顧:黃金分割線(xiàn)段.AD 2 =DC·AC,也就是說(shuō)點(diǎn)D將線(xiàn)段AC分為兩部分,其中較長(zhǎng)的線(xiàn)段AD是較小線(xiàn)段CD與全線(xiàn)段AC的比例中項(xiàng).頂角36°角的等腰三角形的底邊長(zhǎng)是它腰長(zhǎng)的黃金分割線(xiàn)段.

  反思:解決方法.在推導(dǎo)a 10與R關(guān)系時(shí),輔助線(xiàn)角平分線(xiàn)是怎么想出來(lái)的.解決方法是復(fù)習(xí)等腰三角形的性質(zhì)、判定及相似三角形的有關(guān)知識(shí).

  練習(xí)P.165中練習(xí)1

  (三)總結(jié)

 。1)應(yīng)用正多邊形的有關(guān)計(jì)算解決實(shí)際問(wèn)題;

 。2)綜合代數(shù)列方程的方法證明了.

  (四)作業(yè)

  教材P173中8、9、10、11、12.

  探究活動(dòng)

  已知下列圖形分別為正方形、正五邊形、正六邊形,試計(jì)算角、 、的大。

  探究它們存在什么規(guī)律?你能證明嗎?

 。ㄌ崾荆海

【初中數(shù)學(xué) 和圓的比例線(xiàn)段 教案】相關(guān)文章:

圓有關(guān)的比例線(xiàn)段教案設(shè)計(jì)07-04

比例線(xiàn)段的數(shù)學(xué)教案08-26

數(shù)學(xué)教案示例:比例線(xiàn)段07-16

比例線(xiàn)段教案12-16

初中數(shù)學(xué)《線(xiàn)段》教案04-07

比例線(xiàn)段教案8篇12-16

語(yǔ)文成比例線(xiàn)段教案10-13

比和比例的數(shù)學(xué)教案07-18

初中數(shù)學(xué)圓教案12-29