《反比例意義》教學(xué)反思15篇
作為一位剛到崗的人民教師,課堂教學(xué)是重要的任務(wù)之一,通過教學(xué)反思可以快速積累我們的教學(xué)經(jīng)驗,那么你有了解過教學(xué)反思嗎?下面是小編收集整理的《反比例意義》教學(xué)反思,歡迎閱讀與收藏。
《反比例意義》教學(xué)反思1
接到學(xué)期公開課任務(wù)的當(dāng)天晚上就開始著手準(zhǔn)備,查找相關(guān)資料,做到心中有數(shù),怕自己做的不好,很是緊張。第二天先寫好了常規(guī)的教學(xué)設(shè)計,也算是雛形已定。我覺得對我自己來說,教學(xué)設(shè)計一定要先把握好教學(xué)目標(biāo)的分析,所以我參照要求設(shè)定了合適的教學(xué)目標(biāo)。初稿是按照流水帳形式,和平時上課一樣,按照復(fù)習(xí)引入、講授新課、分析例題、練習(xí)鞏固、歸納小結(jié)、布置作業(yè)等程序進行。初稿交給指導(dǎo)老師后,孟主任建議其中的復(fù)習(xí)引入環(huán)節(jié)做大的調(diào)整,對習(xí)題的設(shè)置也給出了指導(dǎo)建議,修改后流暢了很多。隨后設(shè)計了學(xué)卷,給董老師把關(guān)指導(dǎo)。因為我定位于層次相對高的學(xué)生,在習(xí)題的數(shù)量設(shè)置、坡度設(shè)置上不合理,難度不適宜。有些題目過于簡單,毫無價值;而有些則過難,在課堂上會耽誤很多時間,于是想到變式訓(xùn)練,在題目設(shè)置的順序和難度上下功夫。
在第一次試講后,發(fā)現(xiàn)引入部分太拖沓,用了10分鐘時間才歸納得出反比例函數(shù)的定義和形式,隨后的兩個針對定義設(shè)計的稍難的題目就直接跨過到待定系數(shù)法求反比例函數(shù)解析式,課程結(jié)束得比較匆忙。
在備課組老師的指導(dǎo)下,重新設(shè)置了題目的數(shù)量,第4題中原來為了復(fù)習(xí)設(shè)置了五個小問題,在函數(shù)概念上糾纏過多,反而引起學(xué)生理解困難;把引入部分第5題的練習(xí)由原來的四個減少到兩個,剩下了的兩個留在第7題作為練習(xí)。由于函數(shù)解析式的形式通過歸納與對比形成新知識并不需要太多雷同的題目,這樣引入時間大大減少,而列關(guān)系式的題目難度并不大,把第一次的逐題講解變成了答案展示,節(jié)約了近10分鐘時間。其實開始是對學(xué)生的水平不太相信,怕題目過難,學(xué)生不能迅速完成,時間證明,引入部分的題目難度不大,學(xué)生能迅速完成,而我還是按照自己的想法進行第一次的試講,所以時間顯得很緊張,沒有顧及學(xué)生的實際水平。
第3題的最后一問“反比例函數(shù)kxy=還可以表示成什么的形式” ,這個問題顯得很寬泛,學(xué)生也無從下手,不知從哪個角度入手,也不明白老師想問的問題到底是什么,這是一個無效的設(shè)計。后來結(jié)合要求,麗濤說新課只要求學(xué)生能辨認出偽裝后的反比例函數(shù)或者說經(jīng)過等價變形的反比例函數(shù)的形式,因此問題改成了以選擇題的形式出現(xiàn),這樣學(xué)生也有了一定的目標(biāo)范圍,也不會因為問題設(shè)置不合理而耽誤過多時間。當(dāng)他能正確選擇出答案時,也說明他知道了這幾個答案是由標(biāo)準(zhǔn)形式經(jīng)歷了怎么樣的等價變形而得到的。
第6題目更改設(shè)計后是使得教學(xué)過程流暢了很多且節(jié)約了時間,但是在實際上課過程中,對這個問題忽略了,認為學(xué)生能直接選擇出答案就是他們已經(jīng)牢記了這些形式。此處應(yīng)該在學(xué)生選擇了正確答案后,教師最好再花2分鐘的時間講解下變形過程,同時也回顧了分式的乘法、負指數(shù)的意義等知識,加深知識點之間的聯(lián)系;或者讓學(xué)生口頭回答他選擇的理由。總之在這里應(yīng)該停頓回顧下這個重要的知識點,以加深對新知識的印象,及時總結(jié)歸納反比例函數(shù)形式的特點,要能突破這個學(xué)生理解的難點,要不會對第8題的影響就比較大。
第5題在講解過程中花了過多的時間,說明前面kxy=及其變形講解不透徹。k值(反比例系數(shù))不能順利求出,表示y是的x反比例函數(shù)疑惑頗多,講解費時,在成反比例和反比例函數(shù)之間有混淆。經(jīng)過對比板書,學(xué)生明白了題目要求的是y與x成反比例 ,為了鞏固對反比例概念的理解,增加了練習(xí)6。
在講解用待定系數(shù)法求反比例函數(shù)的解析式時,原來只設(shè)計了講解例題,隨后的鞏固練習(xí)與例題幾乎完全相同,只是改變了數(shù)據(jù)而已,這樣的題目設(shè)計對學(xué)生來說是很不愿意接受的,但是用待定系數(shù)法求函數(shù)的解析式是一個重要的方法,學(xué)生必須動手寫一次,難度又不能加大太多,怎么辦呢?就結(jié)合小組活動,讓學(xué)生動起來。雖然多了考察內(nèi)容,但是都是最基本的內(nèi)容,難度沒有加大太多,學(xué)生也能按照順序順利解決問題
課堂歸納小結(jié)第一次設(shè)計的時候,就是問一句“本節(jié)課你有什么收獲?”,對于這些寬泛的問題,學(xué)生一般都不知怎么回答,所以要緊扣定義,引導(dǎo)學(xué)生。這樣,學(xué)生知道了本節(jié)課的內(nèi)容,也明白了空白處就是本節(jié)課的重點要掌握的部分了。
在講課的過程中,與學(xué)生的互動較少,沒有充分調(diào)動起學(xué)生的積極性,自己也有點緊張,學(xué)生也有點緊張。 在數(shù)次不停修改教學(xué)設(shè)計的過程中,自己的認識也在不斷提高,題目設(shè)計水平也有了提高,指導(dǎo)老師,還有我的同事都給了我不少的建議和幫助,才使我的設(shè)計更臻完善,在此也感謝他們!
《反比例意義》教學(xué)反思2
《數(shù)學(xué)課程標(biāo)準(zhǔn)》中指出:“學(xué)生的數(shù)學(xué)學(xué)習(xí)內(nèi)容應(yīng)當(dāng)是現(xiàn)實的、有意義的、富有挑戰(zhàn)性的,這些內(nèi)容要有利于學(xué)生主動地進行觀察、實驗、猜測、驗證、推理與交流等數(shù)學(xué)活動!币虼松贤赀@節(jié)課我比較滿意的地方有:
一、猜想導(dǎo)課,激發(fā)探究愿望
猜想是一種創(chuàng)造性思維。牛頓說:“沒有大膽的猜想,就沒有偉大的發(fā)明和發(fā)現(xiàn)!闭n一開始我就引導(dǎo)學(xué)生猜測兩種量還可能成什么比例,學(xué)生很自然想到反比例,然后我問學(xué)生想學(xué)會反比例的哪些知識,再讓學(xué)生猜測這些知識,對反比例的意義展開合理的猜想。這一環(huán)節(jié)設(shè)計巧妙,符合學(xué)生的認知規(guī)律,同時也激起了學(xué)生探究問題的強烈愿望。
二、創(chuàng)造性地使用教材
這節(jié)課教材上的例題是由例一變化來的,教學(xué)正比例時,我也是自己重新編寫了例題,因為我感覺利用圓柱的體積、底面積和高這三種量認識正、反比例對學(xué)生來說有些抽象,不接近生活。因此,我借鑒了學(xué)生讀《安徒生童話選》這一事例,學(xué)生感覺這就是發(fā)生在學(xué)生身上的事,親切易懂,并且愿意在這個表格中找尋規(guī)律,進而總結(jié)出反比例的意義。
《反比例意義》教學(xué)反思3
反比例關(guān)系是一種重要的數(shù)量關(guān)系,它滲透了初步的函數(shù)思想,是六年級數(shù)學(xué)教學(xué)的一個重點。但由于這部分內(nèi)容比較抽象、難懂,歷來都是學(xué)生怕學(xué)、教師怕教的內(nèi)容。怎樣化解這一教學(xué)難點,使學(xué)生有效地理解和掌握這一重點內(nèi)容呢?我在本課的教學(xué)中做了一些嘗試。
一、創(chuàng)設(shè)情景激發(fā)求知欲望
我從身邊的現(xiàn)實生活中發(fā)掘素材,組織活動,讓學(xué)生從活動中發(fā)現(xiàn)數(shù)學(xué)問題,從而引入學(xué)習(xí)內(nèi)容和學(xué)習(xí)目標(biāo)。這就激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,激起了自主參與的積極性和主動性,為自主探究新知創(chuàng)設(shè)了現(xiàn)實背景并激發(fā)了積極的情感態(tài)度。
二、深入探究,理解涵義
在演示的基礎(chǔ)上,我又不失時機地組織學(xué)生合作學(xué)習(xí),討論、分析例4,因而取得滿意的效果:學(xué)生自己弄清了成反比例的兩種量之間的數(shù)量關(guān)系,初步認識了反比例的涵義,體驗了探索新知、發(fā)現(xiàn)規(guī)律的樂趣。
三、比較猜想,歸納規(guī)律
我考慮到例5和例4相仿,必須注意學(xué)習(xí)方式不能雷同。所以采取請學(xué)生當(dāng)“老師”的方式,進一步把自主權(quán)交給學(xué)生,營造了民主、平等、寬松、和諧的課堂氛圍,因而對例5的學(xué)習(xí)探索取得更深一層的效果。然后通過例4、例5同質(zhì)比較,歸納出成反比例的兩種量的3個特點,再以此和正比例的意義作異質(zhì)比較,猜想出反比例的意義。最后經(jīng)過讀書驗證,得出反比例的意義和關(guān)系式。既達成了本課的知識目標(biāo),又培養(yǎng)了合情推理的能力。]
四、聯(lián)系舊知識,滲透難點
聯(lián)系舊知,抓住概念與舊知之間的聯(lián)系,以舊引新,得出新知,在聯(lián)系中滲透重點難點,為引出概念打下伏筆,減輕學(xué)生理解概念的困難程度,使得學(xué)生對概念的理解輕松有效。例如本節(jié)課《成反比例的量》中重點和難點都是學(xué)生理解“成反比例”這個概念,而這個概念的得出要從研究數(shù)量關(guān)系入手,實質(zhì)上是對數(shù)量之間關(guān)系一種新的定義,一種新的內(nèi)在揭示。對于學(xué)生來說,數(shù)量關(guān)系并不陌生,在以前的應(yīng)用題學(xué)習(xí)中是反復(fù)強調(diào)過的,本節(jié)課的教學(xué)并不僅僅停留在數(shù)量關(guān)系上,而是要從一個新的數(shù)學(xué)角度來加以研究,用一種新的數(shù)學(xué)思想來加以理解,用一種新的數(shù)學(xué)語言來加以定義!俺煞幢壤牧俊迸c數(shù)量關(guān)系是有本質(zhì)聯(lián)系的,都是研究兩種數(shù)量之間的關(guān)系,而且是兩種數(shù)量之間相乘的關(guān)系,因此在復(fù)習(xí)題中我讓學(xué)生大量的復(fù)習(xí)了常見的乘法數(shù)量關(guān)系,并且聯(lián)系教材復(fù)習(xí)了教材及練習(xí)中涉及到的一些數(shù)量關(guān)系,滲透了難點。
總之,在本案例的教學(xué)活動中,教師的教學(xué)行為和學(xué)生的學(xué)習(xí)方式都有較明顯的改善。教師比較關(guān)注學(xué)生的興趣、經(jīng)驗和情感態(tài)度,以多種方式充分發(fā)揮學(xué)生的主體性。在教師精心的組織、引導(dǎo)下,學(xué)生通過自主學(xué)習(xí)、合作探究、猜想歸納,建構(gòu)了新的知識結(jié)構(gòu),提高了各種能力,發(fā)展了積極的情感和學(xué)習(xí)態(tài)度。
《反比例意義》教學(xué)反思4
我在教學(xué)“正比例和反比例的意義”這部分內(nèi)容著重使學(xué)生理解正反比例的意義。
生活是數(shù)學(xué)知識的源泉,正反比例是來源于生活的。
其次,能充分尊重學(xué)生主體,靈活運用知識,聯(lián)系生活實際,為學(xué)生提供豐富的感性材料,重過程練習(xí)
課上學(xué)生基本能夠正確判斷,說理也較清楚。
教學(xué)有法,但教無定法,貴在得法,我認為只要切合學(xué)生實際的,讓師生花最短的時間獲得最大的學(xué)習(xí)效益的方法都是成功的,都是有價值的。
《反比例意義》教學(xué)反思5
。1)對教材內(nèi)容安排的思考
本堂課是在學(xué)生學(xué)習(xí)了正比例的基礎(chǔ)上學(xué)習(xí)反比例,由于學(xué)生有了前面學(xué)習(xí)正比例的基礎(chǔ),加上正比例與反比例在意義上研究的時候存在有一定的共性,因此學(xué)生在整堂課的學(xué)習(xí)上與前面學(xué)習(xí)的正比例相比有明顯的提高。
(2)對練習(xí)題型、題量的思考
第一堂課在教學(xué)的時候,對于課本上的練一練沒有進行選擇,要求學(xué)生全部解答,結(jié)果發(fā)現(xiàn)學(xué)生化的時間比較多,而且效果也不是特別的理想。有了上次的經(jīng)驗,教師做適當(dāng)?shù)难a充和引導(dǎo),在第二節(jié)課的時候,學(xué)生的完成情況就比較理想,時間不多效率也高。
另外,由于在課始的導(dǎo)入環(huán)節(jié)中的未知每本頁數(shù)與裝訂的本書的求解就已經(jīng)知道求解方法,所遇課堂學(xué)生就沒有刻意的去講解,結(jié)果從課后的練習(xí)第二題來看,學(xué)生的掌握情況不是很好,雖然有些同學(xué)已經(jīng)利用的了反比例的方法解答。后來想想本堂課學(xué)習(xí)的是反比例,既然已經(jīng)學(xué)習(xí)了反比例,對于課后安排的這樣的習(xí)題就不應(yīng)該還只是利用上節(jié)課的方法去解答,應(yīng)該很好的把這堂課所學(xué)習(xí)到的知識利用起來,一來是學(xué)生進一步理解反比例,二來可以為后面學(xué)生學(xué)習(xí)利用反比例解答應(yīng)用題留下伏筆。
。3)對正、反比例數(shù)量關(guān)系的書寫的一點思考
在課堂上講解:長方形的面積一定,它的長和寬。這道題是,想到三角形是否學(xué)生也能正確的解答,于是就補充了:三角形的面積一定,它的底與相應(yīng)的高是不是成反比例?為什么?
這個問題的提出,使我對于為什么教材在安排上引入了利用字母表示有了更好的理解,起初不太清楚為什么要用字母表示,現(xiàn)在想想,字母的標(biāo)識其實是最能用數(shù)學(xué)語言來判斷是不是成反比例,所以可以寫成ah=s(一定)來說明底和高成反比例。這樣學(xué)生在書寫數(shù)量關(guān)系的時候,思維方法就會更明確。
《反比例意義》教學(xué)反思6
本節(jié)課內(nèi)容比較抽象、難懂,學(xué)生掌握有一定得困難。怎樣化解這一教學(xué)難點,使學(xué)生有效地理解和掌握這一重點內(nèi)容呢?我在本課的教學(xué)中做了一些嘗試。
一、創(chuàng)設(shè)情境,激發(fā)求知欲望。
我從學(xué)生身邊發(fā)掘素材,組織活動,讓學(xué)生從活動中發(fā)現(xiàn)數(shù)學(xué)問題,從而引入學(xué)習(xí)內(nèi)容和學(xué)習(xí)目標(biāo)。這就激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,激起了自主參與的積極性和主動性,為自主探究新知較好的創(chuàng)設(shè)了現(xiàn)實背景。
二、深入探究,理解涵義
在演示的基礎(chǔ)上,我又不失時機地組織學(xué)生合作學(xué)習(xí),討論、分析,因而取得滿意的效果:學(xué)生自己弄清了成反比例的兩種量之間的數(shù)量關(guān)系,初步認識了反比例的涵義,體驗了探索新知、發(fā)現(xiàn)規(guī)律的樂趣。
三、比較猜想,歸納規(guī)律
我考慮到例題比較相近,因此要注意學(xué)習(xí)方式必須加以改變。因此我采取把自主權(quán)交給學(xué)生方式,營造了民主、寬松、和諧的課堂氛圍,因而對例題的學(xué)習(xí)探索取得了比較好的效果。然后通過例題與例題進行比較,歸納出成反比例的兩種量的幾個特點,再以此和正比例的意義作比較,猜想出反比例的意義。最后經(jīng)過驗證,得出反比例的意義和關(guān)系式。既達成了本課的知識目標(biāo),又培養(yǎng)了推理的能力。
《反比例意義》教學(xué)反思7
在教學(xué)反比例的意義時,我首先是聯(lián)系舊知、滲透難點。因為反比例的意義這一部分的內(nèi)容的編排跟正比例的意義比較相似,在教學(xué)反比例的意義時,我以學(xué)生學(xué)習(xí)的正比例的意義為基礎(chǔ),提出自主學(xué)習(xí)“要求”,讓學(xué)生主動、自覺地去觀察、分析、概括、發(fā)現(xiàn)規(guī)律。
對于學(xué)生來說,數(shù)量關(guān)系并不陌生,在以前的應(yīng)用題學(xué)習(xí)中是反復(fù)強調(diào)過的,因此,學(xué)生觀察、分析、概括起來是較為輕松的。當(dāng)學(xué)完例1時,我并沒有急于讓學(xué)生概括出反比例的意義,而是讓學(xué)生按照學(xué)習(xí)例1的方法學(xué)習(xí)試一試,接著對例1和試一試進行比較,得出它們的相同點,在此基礎(chǔ)上來揭示反比例的意義,就顯得水道渠成了。
然后,再通過說一說,讓學(xué)生對兩種相關(guān)聯(lián)的量進行判斷,以加深學(xué)生對反比例意義的理解。最后,通過學(xué)生對正反比例意義的對比,加強了知識的內(nèi)在聯(lián)系,通過區(qū)別不同的概念,鞏固了知識。通過這節(jié)課的教學(xué),我深深地體會到:要上好一節(jié)數(shù)學(xué)課很難,要上好每一節(jié)數(shù)學(xué)課就更難,原因多多……這節(jié)課課前我雖做了充分的準(zhǔn)備,但還是存在一些問題。比如練習(xí)題安排難易不到位。由于學(xué)生剛接觸反比例的意義,應(yīng)多練習(xí)學(xué)生接觸較多的題目,使學(xué)生的基礎(chǔ)得到鞏固,不能讓難題把學(xué)生剛建立起的知識結(jié)構(gòu)沖跨。
《反比例意義》教學(xué)反思8
《反比例的意義》一課是北師大版六年級下冊教學(xué)內(nèi)容,它是在教學(xué)《正比例的意義》的基礎(chǔ)上的認識,因此在教學(xué)設(shè)計上,分為三步:
第一,先從復(fù)習(xí)正比例開始,復(fù)習(xí)成正比例的條件和特點。通過"說一說成正比例的兩個量是怎樣變化"和"判斷兩個量是否成正比例"的練習(xí),讓學(xué)生回顧"一種量隨著另一種量的變化而相應(yīng)變化,兩種量之間的比值一定。"的正比例的`意義。然后引入新課題——反比例。
(從課堂的效果看,感覺在這個環(huán)節(jié)上的設(shè)計還是比較傳統(tǒng)化,學(xué)生的回答中規(guī)中矩,學(xué)生的積極性和投入性不是很高,課堂氣氛稍顯沉悶。課后我想如果這樣設(shè)計:給出路程,速度,時間,問怎樣組合才能符合正比例的要求,接著小結(jié),"既然有正比例,那就有…"(讓學(xué)生說出"反比例")從而引出課題《反比例》,引出課題后,讓學(xué)生先根據(jù)正比例的意義猜一猜什么是反比例,不管學(xué)生猜的對與錯,讓學(xué)生初步感知反比例,這樣會不會更能調(diào)動起學(xué)生的積極性和學(xué)生的發(fā)散思維,為后面更好的學(xué)習(xí)作鋪墊 )
第二,通過例2與例3兩個情境(如果按教材的安排先講例1,覺得會增加難度,讓學(xué)生不知所以,于是這節(jié)課暫不講例1),讓學(xué)生了解反比例的意義以及特點,A,路程一定,速度與時間的關(guān)系;B,果汁總量一定,分的杯數(shù)與每杯的果汁量的關(guān)系。然后讓學(xué)生自己總結(jié)出反比例的意義和成反比例的條件:一種量變化,另一種量也隨著相反變化,在變化過程中,兩種量的乘積一定。
(這個環(huán)節(jié)的設(shè)計,我采用了與教學(xué)正比例時同樣的教學(xué)程序?紤]到上一節(jié)課的研究方法學(xué)生已經(jīng)有了一定的認識,所以采取了放手的形式,引導(dǎo)后就直接把研究和討論的要求給學(xué)生,讓學(xué)生仿照正比例的學(xué)習(xí)再次的研究反比例的意義。但在教學(xué)過程中,感覺還是扶著學(xué)生走,有點放不開。)
第三,在學(xué)生理解反比例意義的基礎(chǔ)上,讓學(xué)生通過練習(xí)嘗試判斷給出的兩種量,是否成反比例。
1,在教學(xué)的過程中,能注意生活與實際的相結(jié)合,通過生活中的兩個情境引導(dǎo)學(xué)生理解反比例,讓學(xué)生容易上手,也容易去判斷。
2,在提問的方面,基本兼顧了優(yōu)生和中下生,但感覺面不夠廣。學(xué)生的回答很完整,而且也有條理性,感覺是平常課堂上要求的結(jié)果反映。
3,在教學(xué)的設(shè)計上,條理是清晰的,思路是明確的,但感覺還是有點不夠活。如果讓學(xué)生自己來設(shè)計問題,讓學(xué)生互相提問題,編問題,讓學(xué)生自己來探索,自己去提問,自己去發(fā)現(xiàn),我想,這樣可能會更好的調(diào)動起學(xué)生的積極性,發(fā)揮學(xué)生的質(zhì)疑能力和創(chuàng)造力,效果一定會更好。
《反比例意義》教學(xué)反思9
通過本次的教學(xué)展示,總體感覺自己整節(jié)課的教學(xué)流程清晰,教師對本節(jié)課的兩個重點突破較好,學(xué)生都理解了比例的意義。
但本節(jié)課也存在著一些不足之處:
。1)整節(jié)課一味擔(dān)心自己的教學(xué)任務(wù)不能完成,對學(xué)生放手不夠,有牽著學(xué)生走的嫌疑。
。2)教師講解太過仔細,以至拓展練習(xí)無法完成。在今后的教學(xué)中將加大“放手”力度,多注意培養(yǎng)學(xué)生創(chuàng)新思維。
一、把“分層”理念貫穿于整節(jié)課堂
學(xué)生是一個個鮮活的個體,知識基礎(chǔ)和生活經(jīng)驗各不相同,所以教學(xué)中我盡最大努力照顧到所有的學(xué)生,使他們每一個人都得到應(yīng)有的知識和不同程度的提高。
在整個教學(xué)過程中,我靈活運用《分層測試卡》這一教學(xué)資源,把其中的題目按照難易程度和層次的不同選擇性的適時融入教學(xué),為學(xué)生理解正比例的意義而服務(wù)。
二、關(guān)注學(xué)生的學(xué)習(xí)過程
數(shù)學(xué)學(xué)習(xí)是一個思考的過程,沒有思考就沒有真正的數(shù)學(xué)學(xué)習(xí)。
《反比例意義》教學(xué)反思10
這部分內(nèi)容是在學(xué)生認識了正比例的意義以及應(yīng)用的基礎(chǔ)上進行教學(xué)的,主要任務(wù)是使學(xué)生認識反比例關(guān)系的意義,掌握成反比例量的變化規(guī)律及其特征,能依據(jù)反比例的意義判斷兩種量成不成反比例。由于學(xué)生憑借正比例的學(xué)習(xí),因此這節(jié)課可以做一個“放手”的老師了。
課上先回憶如何去判斷兩種相聯(lián)的量成正比例關(guān)系,然后出示信息窗的表格,問這兩種量成正比例嗎?學(xué)生馬上得出不成,因為兩種量的比值是不一定的。從而引導(dǎo)學(xué)生觀察表中數(shù)據(jù),小組討論:(1)哪兩種量是相關(guān)聯(lián)的量?(2)這兩種量的變化規(guī)律與正比例的兩種量的變化規(guī)律有什么不同?(3)這種變化有沒有規(guī)律?是怎樣的規(guī)律?課上重點研究(2)和(3)兩個問題,得出這兩種量的變化規(guī)律是一種量在變大,另一種量在變小,一種量變小,另一種量變大,是相反的,突出反比例的一個“反”字。不管這兩種量怎樣變化,但是萬變中有不變,這兩個量的積是不變的(一定的)。揭示這兩種量是成反比例的。讓學(xué)生說說成反比例的三個條件,受正比例的影響,學(xué)生一下就說出來了!然后我直接給出,“糖果廠包裝一批糖果,每袋糖果的粒數(shù)和裝的袋數(shù)是否成反比例,為什么?”學(xué)生也很流利地把問題解決了
最后出示三個填空:填成正比例、反比例或不成比例
長方形的面積一定,長和寬( )。
三角形的面積一定,底和高( )。
圓錐的底一定,圓錐的體積和高( )。
第一小題沒有問題,第二小題問題比較多,都說不成比例,第三題有的同學(xué)不動腦筋,受反比例影響也說是成反比例了。
整節(jié)課我很順利地完成教學(xué)任務(wù),在知識的遷移性的應(yīng)用上我感覺挺不錯,而這也讓我明白打牢知識的基礎(chǔ)才能很好的發(fā)揮知識的遷移性,它能讓自己的教學(xué)輕松自如,讓孩子們對學(xué)習(xí)更加充滿自信,更能體驗到學(xué)習(xí)成功的快樂。
《反比例意義》教學(xué)反思11
今天上午的第二節(jié)課,我試講了《正、反比例的意義》。這節(jié)課上完以后,給我感觸最深的是第一層次(認識量、變量,建立兩種相關(guān)聯(lián)的量這個概念)的教學(xué)。這個環(huán)節(jié)處理得很不好(具體的下面介紹),學(xué)生沒有很好地建立“兩種相關(guān)聯(lián)的量”這個概念,也就影響到了對正、反比例意義的理解。
我自己很清楚,不管怎么說,“兩種相關(guān)聯(lián)的量”這個概念教學(xué)的失誤是我造成的,后來我明白了,如果在學(xué)生回答了“路程和時間這兩種量在變化”后,我順勢說一句“讀一讀這些數(shù)據(jù)”,隨后再接著問:“誰隨著誰變呀?”這樣就會很順暢地得出:路程隨著時間的變化而變化(或是時間隨著路程變),我們就把這兩種量叫做兩種相關(guān)聯(lián)的量。最后再用表(2)中的兩種量來鞏固這個概念。這樣的教學(xué)設(shè)計應(yīng)該就能夠使學(xué)生很好地建立這個概念了,也就圓滿地完成了這一層的教學(xué)內(nèi)容。
《反比例意義》教學(xué)反思12
反比例的意義的教學(xué),考慮到前面正比例的教學(xué),所以在教學(xué)上就采用了正比例這樣的教學(xué)程序。通過逐層深化的方法慢慢幫助學(xué)生建立反比例的正確意義。由具體數(shù)據(jù)和表格式的例題的教學(xué)到具體數(shù)量之間的關(guān)系的判斷。然后再到一些比較特別的例子的判斷,從而慢慢形成反比例的正確理解。
因為反比例的意義這一部分內(nèi)容的編排跟正比例的意義比較相似,在教學(xué)反比例的意義時,我以學(xué)生學(xué)習(xí)正比例的意義為基礎(chǔ),采取了放手的形式,通過開始教師引導(dǎo)后就直接把研究和討論的要求交給了學(xué)生,在學(xué)生之間創(chuàng)設(shè)了一種相互交流、相互合作、相互幫助的關(guān)系,讓學(xué)生主動、自覺地去觀察、分析、概括、發(fā)現(xiàn)規(guī)律,這樣不僅僅是教會了學(xué)生學(xué)習(xí)的內(nèi)容,還培養(yǎng)了學(xué)生的自學(xué)能力。
本堂課是在學(xué)生學(xué)習(xí)了正比例的基礎(chǔ)上學(xué)習(xí)反比例,由于學(xué)生有了前面學(xué)習(xí)正比例的基礎(chǔ),加上正比例與反比例在意義上研究的時候存在著一定的共性,因此學(xué)生在整堂課的思維上與前面學(xué)習(xí)的正比例相比有明顯的提高。但是這一節(jié)課還是出現(xiàn)一些學(xué)生注意力不夠集中的情況。同時在教學(xué)中由于小組合作的關(guān)系,個別學(xué)困生沒有做到較好的參與。
《反比例意義》教學(xué)反思13
我在反比例函數(shù)的意義的教學(xué)中做了一些嘗試。由于學(xué)生有一定的函數(shù)知識基礎(chǔ),并且有正比例的研究經(jīng)驗,這為反比例的數(shù)學(xué)建模提供了有利條件,教學(xué)中利用類比、歸納的數(shù)學(xué)思想方法開展數(shù)學(xué)建;顒印
一、創(chuàng)設(shè)情景,引入新課。
我選擇了課本上的探究素材,讓學(xué)生從生活實際中發(fā)現(xiàn)數(shù)學(xué)問題,從而引入學(xué)習(xí)內(nèi)容。因為反比例的意義這一部分的內(nèi)容的編排跟正比例的意義比較相似,在教學(xué)反比例的意義時,我以學(xué)生學(xué)習(xí)的正比例的意義為基礎(chǔ),在學(xué)生之間創(chuàng)設(shè)了一種相互交流、相互合作、相互幫助的關(guān)系,讓學(xué)生主動、自覺地去觀察、分析問題再組織學(xué)生通過充分討論交流后得出它們的相同點,概括、發(fā)現(xiàn)規(guī)律,在此基礎(chǔ)上來揭示反比例的意義,構(gòu)建反比例的數(shù)學(xué)模型就顯得水到渠成了。
二、深入探究,理解涵義
為了使學(xué)生進一步弄清反比例函數(shù)中兩種量之間的數(shù)量關(guān)系,加深理解反比例的涵義,體驗探索新知、發(fā)現(xiàn)規(guī)律的樂趣。我設(shè)計了例題1使學(xué)生對反比例的一般型的變式有所認識,設(shè)計例題2使學(xué)生從系數(shù)、指數(shù)進一步領(lǐng)會反比例的解析式條件,至此基本完成反比例的數(shù)學(xué)的建模。以上活動力求問題有梯度、由淺入深的開展建模活動。教學(xué)中按設(shè)計好的思路進行,達到了預(yù)計的效果。此環(huán)節(jié)暴露的問題是:學(xué)生逐漸感受了反比關(guān)系,但在語言組織上有欠缺,今后應(yīng)注意對學(xué)生數(shù)學(xué)語言表達方面的訓(xùn)練。
三、應(yīng)用拓展:
設(shè)置例題3的目的是讓學(xué)生得到求反比例函數(shù)解析式的方法:待定系數(shù)法。提高學(xué)生的分析能力并獲得數(shù)學(xué)方法,積累數(shù)學(xué)經(jīng)驗。設(shè)置兩個練習(xí),讓學(xué)生充分理解并掌握反比例函數(shù)的應(yīng)用。
另外課堂中指教者的示范作用體現(xiàn)的不是很好,板書不夠端正,肢體語言的多余動作,需要在今后的教學(xué)過程中嚴(yán)格要求自己,方方面面進行改善!本次公開課得到備課組長劉燕老師的認真指導(dǎo)。
《反比例意義》教學(xué)反思14
我利用了一節(jié)課時間進行了對比整理,讓學(xué)生在比較的過程中發(fā)現(xiàn)兩種比例關(guān)系的異同后,總結(jié)出判斷的三個步驟:
第一步先找相關(guān)聯(lián)的兩個量和一定的量;
第二步列出求一定量的數(shù)量關(guān)系式;
第三步根據(jù)正反比例的關(guān)系式對照判斷是比值一定還是乘積一定,從而確定成什么比例關(guān)系。學(xué)生根據(jù)這三個步驟做有關(guān)的判斷練習(xí)時,思路清晰了,也找到了一定的規(guī)律和竅門
看來在一些概念性的教學(xué)中必要的點撥引導(dǎo)是不能少的,這時就需要充分發(fā)揮教師的主導(dǎo)作用,學(xué)生的理解能力是在日積月累的過程中培養(yǎng)起來的,教給學(xué)生一定解題的技巧和方法能提高教學(xué)效率。
《反比例意義》教學(xué)反思15
學(xué)習(xí)了正反比例的意義后,學(xué)生接受的效果并不理想,特別是離開具體數(shù)據(jù)根據(jù)數(shù)量關(guān)系判斷成什么比例時問題比較大,一部分同學(xué)對于這兩種比例關(guān)系的意義比較模糊。為了幫助學(xué)生理解辨析這兩種比例關(guān)系,我利用了一節(jié)課時間進行了對比整理,讓學(xué)生在比較的過程中發(fā)現(xiàn)兩種比例關(guān)系的異同后,總結(jié)出判斷的三個步驟:第一步先找相關(guān)聯(lián)的兩個量和一定的量;第二步列出求一定量的數(shù)量關(guān)系式;第三步根據(jù)正反比例的關(guān)系式對照判斷是比值一定還是乘積一定,從而確定成什么比例關(guān)系。學(xué)生根據(jù)這三個步驟做有關(guān)的判斷練習(xí)時,思路清晰了,也找到了一定的規(guī)律和竅門,不再是一頭霧水了,逐漸地錯誤減少了?磥碓谝恍└拍钚缘慕虒W(xué)中必要的點撥引導(dǎo)是不能少的,這時就需要充分發(fā)揮教師的主導(dǎo)作用,學(xué)生的理解能力是在日積月累的過程中培養(yǎng)起來的,教給學(xué)生一定解題的技巧和方法能提高教學(xué)效率。
【《反比例意義》教學(xué)反思】相關(guān)文章:
反比例意義教學(xué)反思12-13
《反比例意義》教學(xué)反思12-15
《反比例意義》教學(xué)反思11-17
反比例的意義的教學(xué)反思11-01
《反比例意義》教學(xué)反思11-29
《正反比例的意義》教學(xué)反思07-06
《反比例意義》教學(xué)反思 15篇12-05