抽屜原理的教學(xué)設(shè)計(jì)范文(通用5篇)
作為一名默默奉獻(xiàn)的教育工作者,時(shí)常需要用到教學(xué)設(shè)計(jì),教學(xué)設(shè)計(jì)是連接基礎(chǔ)理論與實(shí)踐的橋梁,對于教學(xué)理論與實(shí)踐的緊密結(jié)合具有溝通作用。寫教學(xué)設(shè)計(jì)需要注意哪些格式呢?下面是小編精心整理的抽屜原理的教學(xué)設(shè)計(jì)范文(通用5篇),歡迎大家借鑒與參考,希望對大家有所幫助。
抽屜原理的教學(xué)設(shè)計(jì)1
【教學(xué)內(nèi)容】
《義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書·數(shù)學(xué)》六年級下冊。
【教材分析】
讓學(xué)生初步了解簡單“抽屜原理”,教材借助把4枝鉛筆放進(jìn)3個文具盒中的操作情景,介紹了較簡單的“抽屜原理”,通過用“抽屜原理”解決簡單的實(shí)際問題,初步感受數(shù)學(xué)的魅力。主要培養(yǎng)學(xué)生的思考和推理能力,讓學(xué)生初步經(jīng)歷“數(shù)學(xué)原理”的過程,提高學(xué)生數(shù)學(xué)應(yīng)用意識。
【學(xué)情分析】
教材借助把4枝鉛筆放進(jìn)3個文具盒中的操作情景,介紹了較簡單的“抽屜原理”。學(xué)生在操作實(shí)物的過程中可以發(fā)現(xiàn)一個現(xiàn)象:不管怎么放,總有一個文具盒里至少放進(jìn)2枝鉛筆,從而產(chǎn)生疑問,激起尋求答案的欲望。為了解釋這一現(xiàn)象,教材呈現(xiàn)了枚舉。
【教學(xué)目標(biāo)】
1.經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實(shí)際問題。
2.通過操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。
3.通過“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力。
【教學(xué)重點(diǎn)】
經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。
【教學(xué)難點(diǎn)】
理解“抽屜原理”,并對一些簡單實(shí)際問題加以“模型化”。
【教具、學(xué)具準(zhǔn)備】
每組都有3個文具盒和4枝鉛筆。
【教學(xué)過程】
一、談話導(dǎo)入
教師:同學(xué)們,你們在電腦上玩過“電腦算命”嗎?“電腦算命”看起來很深奧,只要報(bào)出你的出生的年、月、日和性別,一按鍵,屏幕上就會出現(xiàn)所謂性格、命運(yùn)、財(cái)運(yùn)等。通過今天的學(xué)習(xí),我們掌握了“抽屜原理”之后,你就不難證明這種“電腦算命”是非?尚突奶频模遣荒苄诺墓戆褢。
板書:抽屜原理
教師:通過學(xué)習(xí),你想解決那些問題?
根據(jù)學(xué)生回答,教師把學(xué)生提出的問題歸結(jié)為:“抽屜原理”是怎樣的?這里的“抽屜”是指什么?運(yùn)用“抽屜原理”能解決那些問題?怎樣運(yùn)用“抽屜原理”解決實(shí)際問題?
二、通過操作,探究新知
。ㄒ唬┱J(rèn)識“抽屜原理”
出示題目:有3枝鉛筆,2個盒子,把3枝鉛筆放進(jìn)2個盒子里,怎么放?有幾種不同的放法?
師:請同學(xué)們實(shí)際放放看,誰來展示一下你擺放的情況?(指名擺)根據(jù)學(xué)生擺的情況,師板書各種情況(3,0)(2,1)
師:5個人坐在4把椅子上,不管怎么坐,總有一把椅子上至少坐兩個同學(xué)。3支筆放進(jìn)2個盒子里呢?
生:不管怎么放,總有一個盒子里至少有2枝筆?
師:是這樣嗎?誰還有這樣的發(fā)現(xiàn),再說一說。
師:那么,把4枝鉛筆放進(jìn)3個盒子里,怎么放?有幾種不同的放法?請同學(xué)們實(shí)際放放看。(師巡視,了解情況,個別指導(dǎo))
師:誰來展示一下你擺放的情況?(指名擺)根據(jù)學(xué)生擺的情況,師板書各種情況。
。4,0,0)(3,1,0)(2,2,0)(2,1,1),
師:還有不同的放法嗎?
生:沒有了。
師:你能發(fā)現(xiàn)什么?
生:不管怎么放,總有一個盒子里至少有2枝鉛筆。
師:“總有”是什么意思?
生:一定有
師:“至少”有2枝什么意思?
生:不少于兩只,可能是2枝,也可能是多于2枝?
師:就是不能少于2枝。(通過操作讓學(xué)生充分體驗(yàn)感受)
師:把3枝筆放進(jìn)2個盒子里,和把4枝筆飯放進(jìn)3個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。這是我們通過實(shí)際操作現(xiàn)了這個結(jié)論。那么,我們能不能找到一種更為直接的方法,只擺一種情況,也能得到這個結(jié)論呢?
學(xué)生思考——組內(nèi)交流——匯報(bào)
師:哪一組同學(xué)能把你們的想法匯報(bào)一下?
組1生:我們發(fā)現(xiàn)如果每個盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進(jìn)哪一個盒子里,總有一個盒子里至少有2枝鉛筆。
師:你能結(jié)合操作給大家演示一遍嗎?(學(xué)生操作演示)
師:同學(xué)們自己說說看,同位之間邊演示邊說一說好嗎?
師:這種分法,實(shí)際就是先怎么分的?
生眾:平均分
師:為什么要先平均分?(組織學(xué)生討論)
生1:要想發(fā)現(xiàn)存在著“總有一個盒子里一定至少有2枝”,先平均分,余下1枝,不管放在那個盒子里,一定會出現(xiàn)“總有一個盒子里一定至少有2枝”。
生2:這樣分,只分一次就能確定總有一個盒子至少有幾枝筆了?
師:同意嗎?那么把5枝筆放進(jìn)4個盒子里呢?(可以結(jié)合操作,說一說)
師:哪位同學(xué)能把你的想法匯報(bào)一下,
生:(一邊演示一邊說)5枝鉛筆放在4個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。
師:把6枝筆放進(jìn)5個盒子里呢?還用擺嗎?
生:6枝鉛筆放在5個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。
師:把7枝筆放進(jìn)6個盒子里呢?
把8枝筆放進(jìn)7個盒子里呢?
把9枝筆放進(jìn)8個盒子里呢?……
你發(fā)現(xiàn)什么?
生1:筆的枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個盒子里至少有2枝鉛筆。
師:你的發(fā)現(xiàn)和他一樣嗎?(一樣)你們太了不起了!同桌互相說一遍。
。ǘ┨骄啃轮
1.出示題目:把5本書放進(jìn)2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?
把7本書放進(jìn)2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?
把9本書放進(jìn)2個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?
。艚o學(xué)生思考的空間,師巡視了解各種情況)
2.學(xué)生匯報(bào)。
生1:把5本書放進(jìn)2個抽屜里,如果每個抽屜里先放2本,還剩1本,這本書不管放到哪個抽屜里,總有一個抽屜里至少有3本書。
板書:5本2個2本……余1本(總有一個抽屜里至有3本書)
7本2個3本……余1本(總有一個抽屜里至有4本書)
9本2個4本……余1本(總有一個抽屜里至有5本書)
師:2本、3本、4本是怎么得到的?生答完成除法算式。
5÷2=2本……1本(商加1)
7÷2=3本……1本(商加1)
9÷2=4本……1本(商加1)
師:觀察板書你能發(fā)現(xiàn)什么?
生1:“總有一個抽屜里的至少有2本”只要用“商+1”就可以得到。
師:如果把5本書放進(jìn)3個抽屜里,不管怎么放,總有一個抽屜里至少有幾本書?
生:“總有一個抽屜里的至少有3本”只要用5÷3=1本……2本,用“商+2”就可以了。
生:不同意!先把5本書平均分放到3個抽屜里,每個抽屜里先放1本,還剩2本,這2本書再平均分,不管分到哪兩個抽屜里,總有一個抽屜里至少有2本書,不是3本書。
師:到底是“商+1”還是“商+余數(shù)”呢?誰的結(jié)論對呢?在小組里進(jìn)行研究、討論。
交流、說理活動:
生1:我們組通過討論并且實(shí)際分了分,結(jié)論是總有一個抽屜里至少有2本書,不是3本書。
生2:把5本書平均分放到3個抽屜里,每個抽屜里先放1本,余下的2本可以在2個抽屜里再各放1本,結(jié)論是“總有一個抽屜里至少有2本書”。
生3我們組的結(jié)論是5本書平均分放到3個抽屜里,“總有一個抽屜里至少有2本書”用“商加1”就可以了,不是“商加2”。
師:現(xiàn)在大家都明白了吧?那么怎樣才能夠確定總有一個抽屜里至少有幾個物體呢?
生4:如果書的本數(shù)是奇數(shù),用書的本數(shù)除以抽屜數(shù),再用所得的商加1,就會發(fā)現(xiàn)“總有一個抽屜里至少有商加1本書”了。
師:同學(xué)們同意吧?
師:同學(xué)們的這一發(fā)現(xiàn),稱為“抽屜原理”,“抽屜原理”又稱“鴿籠原理”,最先是由19世紀(jì)的德國數(shù)學(xué)家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實(shí)際問題中有著廣泛的應(yīng)用!俺閷显怼钡膽(yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。下面我們應(yīng)用這一原理解決問題。
3.解決問題。71頁第3題。(獨(dú)立完成,交流反饋)
小結(jié):經(jīng)過剛才的探索研究,我們經(jīng)歷了一個很不簡單的思維過程,我們獲得了解決這類問題的好辦法,下面讓我們輕松一下做個小游戲。
三、應(yīng)用原理解決問題
師:我這里有一副撲克牌,去掉了兩張王牌,還剩52張,我請五位同學(xué)每人任意抽1張,聽清要求,不要讓別人看到你抽的是什么牌。請大家猜測一下,同種花色的至少有幾張?為什么?
生:2張/因?yàn)?÷4=1…1
師:先驗(yàn)證一下你們的猜測:舉牌驗(yàn)證。
師:如有3張同花色的,符合你們的猜測嗎?
師:如果9個人每一個人抽一張呢?
生:至少有3張牌是同一花色,因?yàn)?÷4=2…1
四、全課小結(jié)
上面我們所證明的數(shù)學(xué)原理就是最簡單的“抽屜原理”,可以概括為:把m個物體任意放到m—1個抽屜里,那么總有一個抽屜中放進(jìn)了至少2個物體。
五、思維訓(xùn)練
1aa從街上隨便找來13人,就可以斷定他們中至少有兩個人屬相(指鼠、牛、虎、兔……十二種生肖)相同。說明理由。
2aa任意367名學(xué)生中,一定存在兩名學(xué)生,他們在同一天過生日。說明理由。
【教學(xué)反思】
1、小組活動很容易抓住學(xué)生的注意力,讓學(xué)生覺得這節(jié)課要探究的問題即好玩又有意義。
2、理解“抽屜原理”對于學(xué)生來說有著一定的難度。
3、部分學(xué)生很難判斷誰是物體,誰是抽屜。
抽屜原理的教學(xué)設(shè)計(jì)2
【知識技能】
1.理解最簡單的抽屜原理及抽屜原理的一般形式。
2.引導(dǎo)學(xué)生采用操作的方法進(jìn)行枚舉及假設(shè)法探究。
【過程方法】
經(jīng)歷抽屜原理的探究過程,初步了解抽屜原理。
【情感態(tài)度價(jià)值觀】
體會數(shù)學(xué)知識在日常生活中的廣泛應(yīng)用,培養(yǎng)學(xué)生的探究意識和能力。
【教學(xué)重、難點(diǎn)】經(jīng)歷“抽屜原理”的探究過程,理解“抽屜原理”,并對一些簡單實(shí)際問題加以“模型化”。
【教學(xué)過程】
一、問題引入。
師:同學(xué)們,你們玩過搶椅子的游戲嗎?現(xiàn)在,老師這里準(zhǔn)備了3把椅子,請4個同學(xué)上來,誰愿來?
1.游戲要求:開始以后,請你們5個都坐在椅子上,每個人必須都坐下。
2.討論:“不管怎么坐,總有一把椅子上至少坐兩個同學(xué)”這句話說得對嗎?
游戲開始,讓學(xué)生初步體驗(yàn)不管怎么坐,總有一把椅子上至少坐兩個同學(xué),使學(xué)生明確這是現(xiàn)實(shí)生活中存在著的一種現(xiàn)象。
引入:不管怎么坐,總有一把椅子上至少坐兩個同學(xué)?你知道這是什么道理嗎?這其中蘊(yùn)含著一個有趣的數(shù)學(xué)原理,這節(jié)課我們就一起來研究這個原理。
二、探究新知
。ㄒ唬┙虒W(xué)例1
1.出示題目:有4枝鉛筆,3個盒子,把4枝鉛筆放進(jìn)3個盒子里,怎么放?有幾種不同的放法?
師:請同學(xué)們實(shí)際放放看,誰來展示一下你擺放的情況?(指名擺)根據(jù)學(xué)生擺的情況,師出示各種情況。
板書:(4,0,0)(3,1,0)(2,2,0)(2,1,1),
問題:4個人坐在3把椅子上,不管怎么坐,總有一把椅子上至少坐兩個同學(xué)。4支筆放進(jìn)3個盒子里呢?
引導(dǎo)學(xué)生得出:不管怎么放,總有一個盒子里至少有2枝筆。
問題:
。1)“總有”是什么意思?(一定有)
。2)“至少”有2枝什么意思?(不少于兩只,可能是2枝,也可能是多于2枝?)
教師引導(dǎo)學(xué)生總結(jié)規(guī)律:我們把4枝筆放進(jìn)3個盒子里,不管怎么放,總有一個盒子里至少有2枝鉛筆。這是我們通過實(shí)際操作現(xiàn)了這個結(jié)論。那么,你們能不能找到一種更為直接的方法得到這個結(jié)論呢?
學(xué)生思考并進(jìn)行組內(nèi)交流,教師選代表進(jìn)行總結(jié):如果每個盒子里放1枝鉛筆,最多放3枝,剩下的1枝不管放進(jìn)哪一個盒子里,總有一個盒子里至少有2枝鉛筆。首先通過平均分,余下1枝,不管放在那個盒子里,一定會出現(xiàn)“總有一個盒子里一定至少有2枝”。
問題:把6枝筆放進(jìn)5個盒子里呢?還用擺嗎?把7枝筆放進(jìn)6個盒子里呢?把8枝筆放進(jìn)7個盒子里呢?把9枝筆放進(jìn)8個盒子里呢?……你發(fā)現(xiàn)什么?(筆的枝數(shù)比盒子數(shù)多1,不管怎么放,總有一個盒子里至少有2枝鉛筆。)
抽屜原理的教學(xué)設(shè)計(jì)3
教學(xué)目標(biāo):
1.知識與能力目標(biāo):
經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實(shí)際問題。通過猜測、驗(yàn)證、觀察、分析等數(shù)學(xué)活動,建立數(shù)學(xué)模型,發(fā)現(xiàn)規(guī)律。滲透“建!彼枷搿
2.過程與方法目標(biāo):
經(jīng)歷從具體到抽象的探究過程,提高學(xué)生有根據(jù)、有條理地進(jìn)行思考和推理的能力。
3.情感、態(tài)度與價(jià)值觀目標(biāo):
通過“抽屜原理”的靈活應(yīng)用,提高學(xué)生解決數(shù)學(xué)問題的能力和興趣,感受到數(shù)學(xué)文化及數(shù)學(xué)的魅力。
教學(xué)重點(diǎn):經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。
教學(xué)難點(diǎn):理解“抽屜原理”,并對一些簡單實(shí)際問題加以“模型化”。
教學(xué)準(zhǔn)備:教具:5個杯子,6根小棒;學(xué)具:每組5個杯子,6根小棒。
教學(xué)過程:
一、游戲激趣,初步體驗(yàn)。
師:同學(xué)們,你們玩過撲克牌嗎?下面我們用撲克牌來玩?zhèn)游戲。大家知道一副撲克牌有54張,如果去掉兩張王牌,就剩52張,對嗎?如果從這52張撲克牌中任意抽取5張,我敢肯定地說:“張5張撲克牌至少有2張是同一種花色的,你們信嗎?那就請5位同學(xué)上來各抽一張,我們來驗(yàn)證一下。如果再請五位同學(xué)來抽,我還敢這樣肯定地說,你們相信嗎?其實(shí)這里面蘊(yùn)藏著一個非常有趣的數(shù)學(xué)原理,想不想研究?
二、操作探究,發(fā)現(xiàn)規(guī)律。
。ㄒ唬┙(jīng)歷“抽屜原理”的探究過程,理解原理。
1.研究小棒數(shù)比杯子數(shù)多1的情況。
師:今天這節(jié)課我們就用小棒和杯子來研究。板書:小棒杯子
師:如果把3根小棒放在2個杯子里,該怎樣放?有幾種放法?
學(xué)生分組操作,并把操作的結(jié)果記錄下來。
請一個小組匯報(bào)操作過程,教師在黑板上記錄。
師:觀察這所有的擺法,你們發(fā)現(xiàn)總有一個杯子里至少有幾根小棒?板書:總有一個杯子里至少有。
師:依此推想下去,4根小棒放在3個杯子里,又可以怎樣放?大家再來擺擺看,看看又有什么發(fā)現(xiàn)?
學(xué)生分組操作,并把操作的結(jié)果記錄下來。
請一個小組代表匯報(bào)操作過程,教師在黑板上記錄。
師:觀察所有的擺法,你發(fā)現(xiàn)了什么?這里的“總有”是什么意思?“至少”又是什么意思?
師:那如果把6根小棒放在5個杯子里,猜一猜,會有什么樣的結(jié)果?
師:怎樣驗(yàn)證猜測的結(jié)果對不對,你又什么好方法?引導(dǎo)學(xué)生不再一一列舉,用平均分的方法來找答案。并用算式表示分的結(jié)果:6÷5=1……1
師:那如果用這種方法,你知道把7根小棒放在6個杯子里,把10根小棒放在9個杯子里,把100根小棒放在99個杯子里,會有什么樣的結(jié)果呢?你又從中發(fā)現(xiàn)了什么規(guī)律呢?
師:我們發(fā)現(xiàn)了小棒的數(shù)量比杯子的數(shù)量多1,總有一個杯子里至少有2根小棒。那如果小棒的數(shù)量比杯子的數(shù)量多2、多3,又會有什么樣的結(jié)果呢?
2、研究小棒數(shù)比杯子數(shù)多2、多3的情況。
師:如果把5根小棒放在3個杯子里,會有什么結(jié)果?
引導(dǎo):先平均分,每個杯子里分得1根小棒,余下的2根小棒又該怎么分呢?
師:把7根小棒放在3個杯子里,會有什么結(jié)果呢?為什么?
3、研究小棒數(shù)比杯子數(shù)的2倍多、3倍多…等情況。
師:如果把9根小棒放在4個杯子里,把15根小棒放在4個杯子里,分別又會有什么結(jié)果?
小組內(nèi)討論,再請同學(xué)說結(jié)果和理由。
4、總結(jié)規(guī)律。
師:我們將小棒看做物體、把杯子看做抽屜,你發(fā)現(xiàn)了什么規(guī)律?
總結(jié):把m個物體放在n個抽屜里(m>n),總有一個抽屜至少有“商+1”個物體。
5、介紹抽屜原理。
“抽屜原理”又稱“鴿巢原理”,最先是由19世紀(jì)的德國數(shù)學(xué)家狄利克雷提出來的,所以又稱“狄里克雷原理”,這一原理在解決實(shí)際問題中有著廣泛的應(yīng)用!俺閷显怼钡膽(yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。
三、應(yīng)用“抽屜原理”,感受數(shù)學(xué)的魅力。
1、把5本書放進(jìn)2個抽屜中,不管怎么放,總有一個抽屜至少放進(jìn)幾本書?為什么?
先思考:這里是把什么看做物體?什么看做抽屜?再說結(jié)果和理由。
2、8只鴿子飛回3個鴿舍,至少有3只鴿子要飛進(jìn)同一個鴿舍里。為什么?
3、向東小學(xué)六年級共有370名學(xué)生,其中六(2)班有49名學(xué)生。請問下面兩人說的對嗎?為什么?
(1)六年級里至少有兩人的生日是同一天。
。2)六(2)班中至少有5人是同一個月出生的。
4、張叔叔參加飛鏢比賽,投了5鏢,成績是41環(huán)。張叔叔至少有一鏢不低于9環(huán)。為什么?
5、師:開課時(shí)我們做的游戲還記得嗎?為什么老師可以肯定地說:從52張牌中任意抽取5張牌,至少會有2張牌是同一花色的?你能用所學(xué)的抽屜原理來解釋嗎?
四、全課小結(jié)。
說一說:今天這節(jié)課,我們又學(xué)習(xí)了什么新知識?(師生共同對本節(jié)課的內(nèi)容進(jìn)行小結(jié))
五、布置作業(yè)。
課本73頁練習(xí)十二第2、4題。
六、板書設(shè)計(jì)。
數(shù)學(xué)廣角——抽屜原理
物體數(shù)÷抽屜數(shù)=商……余數(shù)至少數(shù)=商+1
小棒杯子總有一個杯子里至少有
322
432
6÷5=1……12
5÷3=1……22
7÷4=1……32
9÷4=2……13
15÷4=3……34
教學(xué)反思:
1、通過游戲,激發(fā)興趣。
興趣是最好的老師。課前我設(shè)計(jì)了從52張撲克牌(去掉2張王牌)中任意抽取5張,老師肯定地說:至少有2張牌是同一花色的,在學(xué)生半信半疑時(shí),師生共同游戲,讓學(xué)生信服,但又不知道其中奧妙,這樣導(dǎo)入,學(xué)生興趣盎然。
2、操作探究,建立模型。
本節(jié)課充分放手,讓學(xué)生自主思考,采用自己的方法“證明”:“把4根小棒放入3個杯子里,不管怎么放,總有一個杯子里至少有2根小棒”,然后交流展示,為后面開展教與學(xué)的活動做了鋪墊。此處設(shè)計(jì)注意了從最簡單的`數(shù)據(jù)開始擺放,有利于學(xué)生觀察、理解,有利于調(diào)動所有的學(xué)生積極性。在有趣的類推活動中,引導(dǎo)學(xué)生得出一般性的結(jié)論,讓學(xué)生體驗(yàn)和理解“抽屜原理”的最基本原理,當(dāng)物體個數(shù)大于抽屜個數(shù)時(shí),一定有一個抽屜中放進(jìn)了至少2個物體。這樣的教學(xué)過程,從方法層面和知識層面上對學(xué)生進(jìn)行了提升,有助于發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。在評價(jià)學(xué)生各種“證明”方法,針對學(xué)生的不同方法教師給予針對性的鼓勵和指導(dǎo),讓學(xué)生在自主探索中體驗(yàn)成功,獲得發(fā)展。在學(xué)生自主探索的基礎(chǔ)上,進(jìn)一步比較優(yōu)化,讓學(xué)生逐步學(xué)會運(yùn)用一般性的數(shù)學(xué)方法來思考問題。在這一環(huán)節(jié)的教學(xué)中抓住了假設(shè)法最核心的思路就是用“有余數(shù)除法”形式表示出來,使學(xué)生借助直觀,很好的理解了如果把物體盡量多地“平均分”給各個抽屜里,看每個抽屜里能分到多少,余下的不管放到哪個抽屜里,總有一個抽屜里比平均分得的數(shù)量多1。特別是對“某個抽屜至少有的數(shù)量”是除法算式中的商加“1”,而不是商加“余數(shù)”,教師適時(shí)挑出針對性問題進(jìn)行交流、討論,使學(xué)生從本質(zhì)上理解了“抽屜原理”。
3、解釋應(yīng)用,深化知識。
學(xué)了“抽屜原理”有什么用?能解決生活中的什么問題,這就要求在教學(xué)中要注重聯(lián)系學(xué)生的生活實(shí)際。在應(yīng)用“抽屜原理”,感受數(shù)學(xué)的魅力環(huán)節(jié)里,我設(shè)計(jì)了一組簡單、真實(shí)的生活情境,讓學(xué)生用學(xué)過的知識來解釋這些現(xiàn)象,有效的將學(xué)生的自主探究學(xué)習(xí)延伸到課外,體現(xiàn)了“數(shù)學(xué)來源于生活,又還原于生活”的理念。
教學(xué)永遠(yuǎn)是一門遺憾的藝術(shù)。
反思本節(jié)課的教學(xué),有以下幾點(diǎn)不足:
1、在把3根小棒放進(jìn)2個杯子,把4根小棒放進(jìn)3個杯子里,都讓學(xué)生進(jìn)行了操作并做了記錄,但對學(xué)生的有序思考重視不夠,導(dǎo)致課堂檢測時(shí),學(xué)生用列舉法解決問題的時(shí)候,有兩個同學(xué)把所有的可能都列舉對了,但不是有序排列的。還有兩個差一點(diǎn)的學(xué)生由于思維無序,因此沒能正確列舉出來。
2、在把5根小棒放在3個杯子里,有學(xué)生出現(xiàn)了總有一個杯子里至少有3根小棒的結(jié)論,可能是用5÷3=1……2,1+2=3,也就是很多同學(xué)容易出的錯誤:用商+余數(shù)。這時(shí)老師沒有抓住這個同學(xué)思維中的錯誤制造思維矛盾,因此感覺學(xué)生對總有一個抽屜至少有的數(shù)量=商+1這一知識點(diǎn)的理解還不夠透徹。
3學(xué)生在用“抽屜原理”解決實(shí)際問題時(shí),書寫格式教師指導(dǎo)不到位。有些題目是要先說結(jié)論,再說理由。那么說理由的時(shí)候,有的同學(xué)只列了算式,如:5÷3=1……2,1+1=2,還有的同學(xué)先列算式,再回答問題。在區(qū)教研室周俊主任的指導(dǎo)下,我才明白這類題目的書寫格式是:因?yàn)?÷3=1(根)……2(根),1+1=2(根),所以每個杯子里至少有2根小棒。
總的說來,本節(jié)課學(xué)生的學(xué)習(xí)效果還不錯,全班學(xué)生針對這類問題都能快速做出正確分析與判斷。我也算圓滿完成了這節(jié)課的學(xué)習(xí)目標(biāo),實(shí)現(xiàn)了三維目標(biāo)的有機(jī)整合。
抽屜原理的教學(xué)設(shè)計(jì)4
桌上有十個蘋果,要把這十個蘋果放到九個抽屜里,無論怎樣放,我們會發(fā)現(xiàn)至少會有一個抽屜里面至少放兩個蘋果。這一現(xiàn)象就是我們所說的“抽屜原理”。
教學(xué)理念:
激趣是新課導(dǎo)入的抓手,喜歡和好奇心比什么都重要,以“搶椅子”,讓學(xué)生置身游戲中開始學(xué)習(xí),為理解抽屜原理埋下伏筆。通過小組合作,動手操作的探究性學(xué)習(xí)把抽屜原理較為抽象難懂的內(nèi)容變?yōu)閷W(xué)生感興趣又易于理解的內(nèi)容。特別是對教材中的結(jié)論“總有、至少”等字詞作了充分的闡釋,幫助學(xué)生進(jìn)行較好的“建模”,使復(fù)雜問題簡單化,簡單問題模型化,充分體現(xiàn)了新課標(biāo)要求。
教學(xué)目標(biāo):
1.經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實(shí)際問題。
2.通過操作發(fā)展學(xué)生的類推能力,形成比較抽象的數(shù)學(xué)思維。
3.通過“抽屜原理”的靈活應(yīng)用感受數(shù)學(xué)的魅力。
教學(xué)重難點(diǎn):
重點(diǎn):經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。
難點(diǎn):理解“抽屜原理”,并對一些簡單實(shí)際問題加以“模型化”。
教學(xué)過程:
一、課前游戲引入。
師:同學(xué)們在我們上課之前,先做個小游戲:老師這里準(zhǔn)備了4把椅子,請5個同學(xué)上來,誰愿來?(學(xué)生上來后)
師:聽清要求,老師說開始以后,請你們5個都坐在椅子上,每個人必須都坐下,好嗎?(好)。這時(shí)教師面向全體,背對那5個人。
師:開始。
師:都坐下了嗎?
生:坐下了。
師:我沒有看到他們坐的情況,但是我敢肯定地說:“不管怎么坐,總有一把椅子上至少坐兩個同學(xué)”我說得對嗎?
生:對!
師:老師為什么能做出準(zhǔn)確的判斷呢?道理是什么?這其中蘊(yùn)含著一個有趣的數(shù)學(xué)原理,這節(jié)課我們就一起來研究這個原理。(抽屜原理)
二、通過操作,探究新知
。ㄒ唬┨骄坷1
1、研究3枝鉛筆放進(jìn)2個文具盒。
。1)要把3枝鉛筆放進(jìn)2個文具盒,有幾種放法?請同學(xué)們想一想,擺一擺,寫一寫,再把你的想法在小組內(nèi)交流。
。2)反饋:兩種放法:(3,0)和(2,1)。
(3)從兩種放法,同學(xué)們會有什么發(fā)現(xiàn)呢?(總有一個文具盒至少放進(jìn)2枝鉛筆)你是怎么發(fā)現(xiàn)的?(說得真有道理)
。4)“總有”什么意思?(一定有)
。5)“至少”有2枝什么意思?(不少于2枝)
小結(jié):在研究3枝鉛筆放進(jìn)2個文具盒時(shí),同學(xué)們表現(xiàn)得很積極,發(fā)現(xiàn)了“不管怎么放,總有一個文具盒放進(jìn)2枝鉛筆)
2、研究4枝鉛筆放進(jìn)3個文具盒。
。1)要把4枝鉛筆放進(jìn)3個文具盒里,有幾種放法?請同學(xué)們動手?jǐn)[一擺,再把你的想法在小組內(nèi)交流。
。2)反饋:四種放法:(4,0,0)、(3,1,0)、(2,2,0)、(2,1,1)。
(3)從四種放法,同學(xué)們會有什么發(fā)現(xiàn)呢?(總有一個筆盒至少有2枝鉛筆)
。4)你是怎么發(fā)現(xiàn)的?
。5)大家通過枚舉出四種放法,能清楚地發(fā)現(xiàn)“總有一個文具盒放進(jìn)2枝鉛筆”。如果要讓每個文具盒里放的筆盡可能的少,你覺得應(yīng)該要怎樣放?(每個文具盒都先放進(jìn)一枝,還剩一枝不管放進(jìn)哪個文具盒,總會有一個文具盒至少有2枝筆)(你真是一個善于思想的孩子。)
。6)這位同學(xué)運(yùn)用了假設(shè)法來說明問題,你是假設(shè)先在每個文具盒里放1枝鉛筆,這種放法其實(shí)也就是怎樣分?(平均分)那剩下的1枝怎么處理?(放入任意一個文具盒,那么這個文具盒就有2枝鉛筆了)
。7)誰能用算式來表示這位同學(xué)的想法?(5÷4=1…1)商1表示什么?余數(shù)1表示什么?怎么辦?
。8)在探究4枝鉛筆放進(jìn)3個文具盒的問題,同學(xué)們的方法有兩種,一是枚舉了所有放法,找規(guī)律,二是采用了“假設(shè)法”來說明理由,你覺得哪種方法更明了更簡單?
3、類推:把5枝鉛筆放進(jìn)4個文具盒,是不是總有一個筆盒至少有2枝鉛筆?為什么?
把6枝鉛筆放進(jìn)5個文具盒,是不是總有一個筆盒至少有2枝鉛筆?為什么?
把7枝鉛筆放進(jìn)6個文具盒,是不是總有一個筆盒至少有2枝鉛筆?為什么?
把100枝鉛筆放進(jìn)99個文具盒,是不是總有一個筆盒至少有2枝鉛筆?為什么?
4、從剛才我們的探究活動中,你有什么發(fā)現(xiàn)?(只要放的鉛筆比文具盒的數(shù)量多1,總有一個文具盒里至少放進(jìn)2枝鉛筆。)
5、如果鉛筆數(shù)比文具盒數(shù)多2呢?多3呢?是不是也能得到結(jié)論:“總有一個筆盒至少有2枝鉛筆!
6、小結(jié):剛才我們分析了把鉛筆放進(jìn)文具盒的情況,只要鉛筆數(shù)量多于文具盒數(shù)量時(shí),總有一個文具盒至少放進(jìn)2枝鉛筆。
這就是今天我們要學(xué)習(xí)的抽屜原理。既然叫“抽屜原理”是不是應(yīng)該和抽屜有聯(lián)系吧?鉛筆相當(dāng)于我們要準(zhǔn)備放進(jìn)抽屜的物體,那么文具盒就相當(dāng)于抽屜了。如果物體數(shù)多于抽屜數(shù),我們就能得出結(jié)論“總有一個抽屜里放進(jìn)了2個物體!
7、在我們的生活中,常常會遇到抽屜原理,你能不能舉個例子?在課前我們玩的游戲中,有沒有抽屜原理?
過渡:同學(xué)們非常了不起,善于運(yùn)用觀察、分析、思考、推理、證明的方法研究問題,得出結(jié)論。同學(xué)們的思維也在不知不覺中提升了許多,那么讓我們再來研究這樣一組問題。
。ǘ┨骄坷2
1、研究把5本書放進(jìn)2個抽屜。
(1)把5本書放進(jìn)2個抽屜會有幾種情況?(5,0)、(4,1)和(3,2)
。2)從三種情況中,我們可以得到怎樣的結(jié)論呢?(總有一個抽屜至少放進(jìn)了3本書)
。3)還可以怎樣理解這個結(jié)論?先在每個抽屜里放進(jìn)2本,剩下的1本放進(jìn)任何一個抽屜,這個抽屜就有3本書了。
。4)可以把我們的想法用算式表示出來:5÷2=2…1(商2表示什么,余數(shù)1表示什么)2+1=3表示什么?
2、類推:如果把7本書放進(jìn)2個抽屜中,至少有一個抽屜放進(jìn)4本書。
如果把9本書放進(jìn)2個抽屜中。至少有一個抽屜放進(jìn)5本書。
如果把11本書放進(jìn)3個抽屜中。至少有一個抽屜放進(jìn)4本書。你是怎樣想的?(11÷3=3…2)商3表示什么?余數(shù)2表示什么?3+1=4表示什么?
3、小結(jié):從以上的學(xué)習(xí)中,你有什么發(fā)現(xiàn)?(在解決抽屜原理時(shí),我們可以運(yùn)用假設(shè)法,把物體盡可量多地“平均分”給各個抽屜,總有一個抽屜比平均分得的物體數(shù)多1。)
4、經(jīng)過剛才的探索研究,我們經(jīng)歷了一個很不簡單的思維過程,個個都是了不起的數(shù)學(xué)家!俺閷显怼弊钕仁怯19世紀(jì)的德國數(shù)學(xué)家狄利克雷提出來的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。這一原理在解決實(shí)際問題中有著廣泛的應(yīng)用!俺閷显怼钡膽(yīng)用是千變?nèi)f化的,用它可以解決許多有趣的問題,并且常常能得到一些令人驚異的結(jié)果。
5、做一做:
7只鴿子飛回5個鴿舍,至少有2只鴿子要飛進(jìn)同一個佶舍里。為什么?
8只鴿子飛回3個鴿舍,至少有3只鴿子要飛時(shí)同一個鴿舍里。為什么?
。ㄏ茸寣W(xué)生獨(dú)立思考,在小組里討論,再全班反饋)
三、遷移與拓展
下面我們一起來放松一下,做個小游戲。
我這里有一副撲克牌,去掉了兩張王牌,還剩52張,我請五位同學(xué)每人任意抽1張,聽清要求,不要讓別人看到你抽的是什么牌。請大家猜測一下,同種花色的至少有幾張?為什么?
四、總結(jié)全課
這節(jié)課,你有什么收獲?
抽屜原理的教學(xué)設(shè)計(jì)5
教材分析
《抽屜原理的認(rèn)識》是人教版數(shù)學(xué)六年級下冊第五章內(nèi)容。在數(shù)學(xué)問題中有一類與“存在性”有關(guān)的問題。在這類問題中,只需要確定某個物體(或某個人)的存在就可以了,并不需要指出是哪個物體(或哪個人),也不需要說明是通過什么方式把這個存在的物體(或人)找出來。這類問題依據(jù)的理論,我們稱之為“抽屜原理”。“抽屜原理”最先是由19世紀(jì)的德國數(shù)學(xué)家狄里克雷(Dirichlet)運(yùn)用于解決數(shù)學(xué)問題的,所以又稱“狄里克雷原理”,也稱為“鴿巢原理”。、
學(xué)情分析
本節(jié)課我根據(jù)“教師是組織者、引導(dǎo)者和合作者”這一理念,以學(xué)生參與活動為主線,創(chuàng)建新型的教學(xué)結(jié)構(gòu)。通過幾個直觀的例子,用假設(shè)法向?qū)W生介紹“抽屜原理”,學(xué)生難以理解,感覺抽象。在教學(xué)時(shí),我結(jié)合本班實(shí)際,用學(xué)生熟悉的吸管和杯子貫穿整個課堂,讓學(xué)生通過動手操作,在活動中真正去認(rèn)識、理解“抽屜原理”學(xué)生學(xué)得輕松也容易接受。
教學(xué)目標(biāo)
1、經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”,會用“抽屜原理”解決簡單的實(shí)際問題。
2、通過操作發(fā)展的類推能力,形成抽象的數(shù)學(xué)思維。
3、通過“抽屜原理”的靈活應(yīng)用,感受數(shù)學(xué)的魅力。
教學(xué)重點(diǎn)和難點(diǎn)
【教學(xué)重點(diǎn)】
經(jīng)歷“抽屜原理”的探究過程,初步了解“抽屜原理”。
【教學(xué)難點(diǎn)】
理解“抽屜原理”,并對一些簡單實(shí)際問題加以“模型化”。
【抽屜原理的教學(xué)設(shè)計(jì)范文(通用5篇)】相關(guān)文章:
抽屜原理簡要說課稿11-04
美好的抽屜作文02-22
老舍的《貓》教學(xué)設(shè)計(jì)范文(通用3篇)07-01
教學(xué)設(shè)計(jì)范文03-03
朱自清《背影》教學(xué)設(shè)計(jì)范文(通用3篇)07-02
蘇軾《水調(diào)歌頭》教學(xué)設(shè)計(jì)范文(通用3篇)12-16
抽屜里的故事作文800字01-01