- 相關推薦
高中函數(shù)說課稿
函數(shù)是高中數(shù)學中的關鍵學習點。下面就隨小編一起去閱讀高中函數(shù)說課稿,相信能帶給大家?guī)椭?/p>
一、說教材
首先談談我對教材的理解,《函數(shù)的概念》是北師大版必修一第二章2.1的內(nèi)容,本節(jié)課的內(nèi)容是函數(shù)概念。函數(shù)內(nèi)容是高中數(shù)學學習的一條主線,它貫穿整個高中數(shù)學學習中。又是溝通代數(shù)、方程、、不等式、數(shù)列、三角函數(shù)、解析幾何、導數(shù)等內(nèi)容的橋梁,同時也是今后進一步學習高等數(shù)學的基礎。函數(shù)學習過程經(jīng)歷了直觀感知、觀察分析、歸納類比、抽象概括等思維過程,通過學習可以提高了學生的數(shù)學思維能力。
二、說學情
接下來談談學生的實際情況。新課標指出學生是教學的主體,所以要成為符合新課標要求的教師,深入了解所面對的學生可以說是必修課。本階段的學生已經(jīng)具備了一定的分析能力,以及邏輯推理能力。所以,學生對本節(jié)課的學習是相對比較容易的。
三、說教學目標
根據(jù)以上對教材的分析以及對學情的把握,我制定了如下三維教學目標:
(一)知識與技能
理解函數(shù)的概念,能對具體函數(shù)指出定義域、對應法則、值域,能夠正確使用“區(qū)間”符號表示某些函數(shù)的定義域、值域。
(二)過程與方法
通過實例,進一步體會函數(shù)是描述變量之間的依賴關系的重要數(shù)學模型,在此基礎上學習用集合與對應的.語言來刻畫函數(shù),體會對應關系在刻畫函數(shù)概念中的作用進一步加深集合與對應數(shù)學思想方法。
(三)情感態(tài)度價值觀
在自主探索中感受到成功的喜悅,激發(fā)學習數(shù)學的興趣。
四、說教學重難點
我認為一節(jié)好的數(shù)學課,從教學內(nèi)容上說一定要突出重點、突破難點。而教學重點的確立與我本節(jié)課的內(nèi)容肯定是密不可分的。那么根據(jù)授課內(nèi)容可以確定本節(jié)課的教學重點是:函數(shù)的模型化思想,函數(shù)的三要素。本節(jié)課的教學難點是:符號“y=f(x)”的含義,函數(shù)定義域、值域的區(qū)間表示,從具體實例中抽象出函數(shù)概念。
五、說教法和學法
現(xiàn)代教學理論認為,在教學過程中,學生是學習的主體,教師是學習的組織者、引導者,教學的一切活動都必須以強調(diào)學生的主動性、積極性為出發(fā)點。根據(jù)這一教學理念,結(jié)合本節(jié)課的內(nèi)容特點和學生的心理特征與認知規(guī)律以問題為主線,我采用啟發(fā)法、講授法、小組合作、自主探究等教學方法。
六、說教學過程
下面我將重點談談我對教學過程的設計。
(一)新課導入
首先是導入環(huán)節(jié),提問:關于函數(shù)你知道什么?在初中階段對函數(shù)是如何下定義的?你能否舉一個例子。從而引出本節(jié)課的課題《函數(shù)概念》。
利用初中的函數(shù)概念進行導入,拉近學生與新知識之間的距離,幫助學生進一步完善知識框架行程知識體系。
(二)新知探索
接下來是教學中最重要的新知探索環(huán)節(jié),我主要采用講解法、小組合作、自主探究法等。
首先利用多媒體展示生活實例
(1)某山的海拔高度與氣溫的變化關系;
(2)汽車勻速行駛,路程和時間的變化關系;
(3)沸點和氣壓的變化關系。
引導學生分析歸納以上三個實例,他們之間有什么共同點,并根據(jù)初中所學函數(shù)的概念,判斷各個實例中的兩個變量之間的關系是否為函數(shù)關系。
預設:①都有兩個非空數(shù)集A、B;②兩個數(shù)集之間都有一種確定的對應關系;③對于數(shù)集A中的每一個x,按照某種對應關系f,在數(shù)集B中都有唯一確定的y值和它對應。
接下來引導學生思考通過對上述實例的共同點并結(jié)合課本歸納函數(shù)的概念。組織學生閱讀課本,在閱讀過程中注意思考以下問題
問題1:函數(shù)的概念是什么?初中與高中對函數(shù)概念的定義的異同點是什么?符號“ ”的含義是什么?
問題2:構成函數(shù)的三要素是什么?
問題3:區(qū)間的概念是什么?區(qū)間與集合的關系是什么?在數(shù)軸上如何表示區(qū)間?
十分鐘過后,組織學生進行全班交流。
預設:函數(shù)的概念:給定兩個非空數(shù)集A和B,如果按照某個對應關系f,對于集合A中任何一個數(shù)x,在集合B中都存在唯一確定的數(shù)f(x)與之對應,那么就把這對應關系f叫作定義在幾何A上的函數(shù),記作f:A→B,或y=f(x),x∈A。此時,x叫做自變量,集合A叫做函數(shù)的定義域,集合{f(x)▏x∈A}叫作函數(shù)的值域。
函數(shù)的三要素包括:定義域、值域、對應法則。
為了使得學生對函數(shù)概念的本質(zhì)了解的更加深入此時進行追問
追問1:初中的函數(shù)概念與高中的函數(shù)概念有什么異同點?
講解過程中注意強調(diào),函數(shù)的本質(zhì)為兩個數(shù)集之間都有一種確定的對應關系,而且是一對一,或者多對一,不能一對多。
追問2:符號“y=f(x)”的含義是什么?“y=g(x)”可以表示函數(shù)嗎?
講解過程中注意強調(diào),符號“y=f(x)”是函數(shù)符號,可以用任意的字母表示,f(x)表示與x對應的函數(shù)值,一個數(shù)不是f與x相乘。
追問3:對應關系f可以是什么形式?
講解過程中注意強調(diào),對應關系f可以是解析式、圖象、表格
追問4:函數(shù)的三要素可以缺失嗎?指出三個實例中的三要素分別是什么。
講解過程中注意強調(diào),函數(shù)的三要素缺一不可。
追問5:用區(qū)間表示三個實例的定義域和值域。
設計意圖:在這個過程當中我將課堂完全交給學生,教師發(fā)揮組織者,引導者的作用,在運用啟發(fā)性的原則,學生能夠獨立思考問題,動手操作,還能在這個過程中和同學之間討論,加強了學生們之間的交流,這樣有利于培養(yǎng)學生們的合作意識和探究能力。
(三)課堂練習
接下來是鞏固提高環(huán)節(jié)。
組織學生自己列舉幾個生活中有關函數(shù)的例子,并用定義加以描述,指出函數(shù)的定義域和值域并用區(qū)間表示。
這樣的問題的設置,讓學生對知識進一步鞏固,讓學生逐漸熟練掌握。
(四)小結(jié)作業(yè)
在課程的最后我會提問:今天有什么收獲?
引導學生回顧:函數(shù)的概念、函數(shù)的三要素、區(qū)間的表示。
本節(jié)課的課后作業(yè)我設計為:
1.求解下列函數(shù)的值
已知f(x)=5x-3,求發(fā)(x)=4。
2.如圖,某灌溉渠道的橫截面是等腰梯形,底寬2m,渠深1.8m,邊坡的傾角是45°
(1)試用解析表達式將橫截面中水的面積A表示成水深h的函數(shù)
(2)確定函數(shù)的定義域和值域
【高中函數(shù)說課稿】相關文章:
高中函數(shù)的概念說課稿01-14
高中函數(shù)概念說課稿02-19
高中函數(shù)的概念說課稿04-01
高中函數(shù)的概念說課稿范文12-02
高中變量與函數(shù)說課稿02-19
高中對數(shù)函數(shù)說課稿02-19
高中數(shù)學函數(shù)說課稿02-18