男人天堂日韩,中文字幕18页,天天伊人网,成人性生交大片免费视频

勾股定理說(shuō)課稿

時(shí)間:2022-11-12 09:07:53 說(shuō)課稿 我要投稿

勾股定理說(shuō)課稿

  作為一無(wú)名無(wú)私奉獻(xiàn)的教育工作者,常常要根據(jù)教學(xué)需要編寫說(shuō)課稿,說(shuō)課稿有利于教學(xué)水平的提高,有助于教研活動(dòng)的開(kāi)展。那要怎么寫好說(shuō)課稿呢?下面是小編整理的勾股定理說(shuō)課稿,希望對(duì)大家有所幫助。

勾股定理說(shuō)課稿

勾股定理說(shuō)課稿1

  一、教材分析

 。ㄒ唬┙滩牡匚慌c作用

  勾股定理它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過(guò)重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過(guò)對(duì)勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對(duì)直角三角形有進(jìn)一步的認(rèn)識(shí)和理解。

  (二)教學(xué)目標(biāo)知識(shí)與能力:掌握勾股定理,并能運(yùn)用勾股定理解決一些簡(jiǎn)單實(shí)際問(wèn)題。過(guò)程與方法:經(jīng)歷探索及驗(yàn)證勾股定理的過(guò)程,了解利用拼圖驗(yàn)證勾股定理的方法,發(fā)展學(xué)生的合情推理意識(shí)、主動(dòng)探究的習(xí)慣,感受數(shù)形結(jié)合和從特殊到一般的思想。情感態(tài)度與價(jià)值觀:激發(fā)愛(ài)國(guó)熱情,體驗(yàn)自己努力得到結(jié)論的成就感,體驗(yàn)數(shù)學(xué)充滿探索和創(chuàng)造,體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡數(shù)學(xué)。

 。ㄈ┙虒W(xué)重點(diǎn):經(jīng)歷探索及驗(yàn)證勾股定理的過(guò)程,并能用它來(lái)解決一些簡(jiǎn)單的實(shí)際問(wèn)題。

  教學(xué)難點(diǎn):用面積法(拼圖法)發(fā)現(xiàn)勾股定理。

  突出重點(diǎn)、突破難點(diǎn)的辦法:發(fā)揮學(xué)生的主體作用,通過(guò)學(xué)生動(dòng)手實(shí)驗(yàn),讓學(xué)生在實(shí)驗(yàn)中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解。

  二、教法與學(xué)法分析:

  學(xué)情分析:七年級(jí)學(xué)生已經(jīng)具備一定的觀察、歸納、猜想和推理的能力。他們?cè)谛W(xué)已學(xué)習(xí)了一些幾何圖形的面積計(jì)算方法(包括割補(bǔ)、拼接),但運(yùn)用面積法和割補(bǔ)思想來(lái)解決問(wèn)題的意識(shí)和能力還不夠。另外,學(xué)生普遍學(xué)習(xí)積極性較高,課堂活動(dòng)參與較主動(dòng),但合作交流的能力還有待加強(qiáng)。

  教法分析:結(jié)合七年級(jí)學(xué)生和本節(jié)教材的特點(diǎn),在教學(xué)中采用“問(wèn)題情境----建立模型----解釋應(yīng)用---拓展鞏固”的模式,選擇引導(dǎo)探索法。把教學(xué)過(guò)程轉(zhuǎn)化為學(xué)生親身觀察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過(guò)程。

  學(xué)法分析:在教師的組織引導(dǎo)下,學(xué)生采用自主探究合作交流的研討式學(xué)習(xí)方式,使學(xué)生真正成為學(xué)習(xí)的主人。

  三、教學(xué)過(guò)程設(shè)計(jì)

  1、創(chuàng)設(shè)情境,提出問(wèn)題

  2、實(shí)驗(yàn)操作,模型構(gòu)建

  3、回歸生活,應(yīng)用新知

  4、知識(shí)拓展,鞏固深化

  5、感悟收獲,布置作業(yè)

  (一)創(chuàng)設(shè)情境提出問(wèn)題

  (1)圖片欣賞:勾股定理數(shù)形圖xxxx年希臘發(fā)行。美麗的勾股樹(shù)20xx年國(guó)際數(shù)學(xué)的一枚紀(jì)念郵票。

  設(shè)計(jì)意圖:通過(guò)圖形欣賞,感受數(shù)學(xué)美,感受勾股定理的文化價(jià)值。

  (2)某樓房三樓失火,消防隊(duì)員趕來(lái)救火,了解到每層樓高3米,消防隊(duì)員取來(lái)6.5米長(zhǎng)的云梯,如果梯子的底部離墻基的距離是2.5米,請(qǐng)問(wèn)消防隊(duì)員能否進(jìn)入三樓滅火?

  設(shè)計(jì)意圖:以實(shí)際問(wèn)題為切入點(diǎn)引入新課,反映了數(shù)學(xué)來(lái)源于實(shí)際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識(shí)的發(fā)生過(guò)程,解決問(wèn)題的過(guò)程也是一個(gè)“數(shù)學(xué)化”的過(guò)程,從而引出下面的環(huán)節(jié)。

 。ǘ⿲(shí)驗(yàn)操作模型構(gòu)建

  1、等腰直角三角形(數(shù)格子)

  2、一般直角三角形(割補(bǔ))

  問(wèn)題一:對(duì)于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關(guān)系?設(shè)計(jì)意圖:這樣做利于學(xué)生參與探索,利于培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想。

  問(wèn)題二:對(duì)于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個(gè)關(guān)系嗎?(割補(bǔ)法是本節(jié)的難點(diǎn),組織學(xué)生合作交流)

  設(shè)計(jì)意圖:不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下基礎(chǔ),讓學(xué)生的分析問(wèn)題解決問(wèn)題的能力在無(wú)形中得到提高。

  通過(guò)以上實(shí)驗(yàn)歸納總結(jié)勾股定理。

  設(shè)計(jì)意圖:學(xué)生通過(guò)合作交流,歸納出勾股定理的雛形,培養(yǎng)學(xué)生抽象、概括的能力,同時(shí)發(fā)揮了學(xué)生的主體作用,體驗(yàn)了從特殊——一般的認(rèn)知規(guī)律。

 。ㄈ┗貧w生活應(yīng)用新知

  讓學(xué)生解決開(kāi)頭情景中的問(wèn)題,前呼后應(yīng),增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識(shí),增加學(xué)以致用的樂(lè)趣和信心。

 。ㄋ模┲R(shí)拓展鞏固深化

  基礎(chǔ)題,情境題,探索題。

  設(shè)計(jì)意圖:給出一組題目,分三個(gè)梯度,由淺入深層層練習(xí),照顧學(xué)生的個(gè)體差異,關(guān)注學(xué)生的個(gè)性發(fā)展。知識(shí)的運(yùn)用得到升華。

  基礎(chǔ)題:直角三角形的一直角邊長(zhǎng)為3,斜邊為5,另一直角邊長(zhǎng)為X,你可以根據(jù)條件提出多少個(gè)數(shù)學(xué)問(wèn)題?你能解決所提出的問(wèn)題嗎?

  設(shè)計(jì)意圖:這道題立足于雙基。通過(guò)學(xué)生自己創(chuàng)設(shè)情境,鍛煉了發(fā)散思維。

  情境題:小明媽媽買了一部29英寸(74厘米)的電視機(jī)。小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長(zhǎng)和46厘米寬,他覺(jué)得一定是售貨員搞錯(cuò)了。你同意他的想法嗎?

  設(shè)計(jì)意圖:增加學(xué)生的生活常識(shí),也體現(xiàn)了數(shù)學(xué)源于生活,并用于生活。

  探索題:做一個(gè)長(zhǎng),寬,高分別為50厘米,40厘米,30厘米的木箱,一根長(zhǎng)為70厘米的木棒能否放入,為什么?試用今天學(xué)過(guò)的知識(shí)說(shuō)明。

  設(shè)計(jì)意圖:探索題的難度相對(duì)大了些,但教師利用教學(xué)模型和學(xué)生合作交流的方式,拓展學(xué)生的思維、發(fā)展空間想象能力。

 。ㄎ澹└形蚴斋@布置作業(yè):這節(jié)課你的收獲是什么?

  作業(yè):

  1、課本習(xí)題2、1

  2、搜集有關(guān)勾股定理證明的資料。

  板書(shū)設(shè)計(jì)

  探索勾股定理

  如果直角三角形兩直角邊分別為a,b,斜邊為c,那么a2、b2、c2。

  設(shè)計(jì)說(shuō)明:

  1、探索定理采用面積法,為學(xué)生創(chuàng)設(shè)一個(gè)和諧、寬松的情境,讓學(xué)生體會(huì)數(shù)形結(jié)合及從特殊到一般的思想方法。

  2、讓學(xué)生人人參與,注重對(duì)學(xué)生活動(dòng)的評(píng)價(jià),一是學(xué)生在活動(dòng)中的投入程度;二是學(xué)生在活動(dòng)中表現(xiàn)出來(lái)的思維水平、表達(dá)水平。

勾股定理說(shuō)課稿2

 說(shuō)教材

  本課時(shí)是北師大版八年級(jí)(上)數(shù)學(xué)第14章第二節(jié)內(nèi)容,是在掌握勾股定理的基礎(chǔ)上對(duì)勾股定理的應(yīng)用之一。 勾股定理是我國(guó)古數(shù)學(xué)的一項(xiàng)偉大成就。勾股定理為我們提供了直角三角形的三邊間的數(shù)量關(guān)系,它的逆定理為我們提供了判斷三角形是否屬于直角三角形的依據(jù),也是判定兩條直線是否互相垂直的一個(gè)重要方法,這些成果被廣泛應(yīng)用于數(shù)學(xué)和實(shí)際生活的各個(gè)方面。教材在編寫時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問(wèn)題的能力,通過(guò)實(shí)際分析,使學(xué)生獲得較為直觀的印象,通過(guò)聯(lián)系和比較,了解勾股定理在實(shí)際生活中的廣泛應(yīng)用。 據(jù)此,制定教學(xué)目標(biāo)如下:

  1。知識(shí)和方法目標(biāo):通過(guò)對(duì)一些典型題目的思考,練習(xí),能正確熟練地進(jìn)行勾股定理有關(guān)計(jì)算,深入對(duì)勾股定理的理解。

  2。過(guò)程與方法目標(biāo):通過(guò)對(duì)一些題目的探討,以達(dá)到掌握知識(shí)的目的。 3。情感與態(tài)度目標(biāo):感受數(shù)學(xué)在生活中的應(yīng)用,感受數(shù)學(xué)定理的美。 教學(xué)重點(diǎn):勾股定理的應(yīng)用。 教學(xué)難點(diǎn):勾股定理的正確使用。 教學(xué)關(guān)鍵:在現(xiàn)實(shí)情境中捕抓直角三角形,確定好直角三角形之后,再應(yīng)用勾股定理。

  說(shuō)教法和學(xué)法

  1。以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運(yùn)用各種手段激發(fā)學(xué)習(xí)欲望和興趣,組織學(xué)生活動(dòng),讓學(xué)生主動(dòng)參與學(xué)習(xí)全過(guò)程。 2。切實(shí)體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過(guò)觀察,分析,討論,操作,歸納理解定理,提高學(xué)生動(dòng)手操作能力,以及分析問(wèn)題和解決問(wèn)題的能力。 3。通過(guò)演示實(shí)物,引導(dǎo)學(xué)生觀察,操作,分析,證明,使學(xué)生獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。

  教學(xué)程序

  本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生的動(dòng)手,動(dòng)腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)置如下: 一。回顧問(wèn):勾股定理的內(nèi)容是什么? 勾股定理揭示了直角三角形三邊之間的關(guān)系,今天我們來(lái)學(xué)習(xí)這個(gè)定理在實(shí)際生活中的應(yīng)用。 二。新授課例1。如圖所示,有一個(gè)圓柱,它的高AB等于4厘米,底面周長(zhǎng)等于20厘米,在圓柱下底面的A點(diǎn)有一只螞蟻,它想吃到上底面與A點(diǎn)相對(duì)的C點(diǎn)處的食物,沿圓柱側(cè)面爬行的最短路線是多少?(課本P57圖14。2。1)

 、賹W(xué)生取出自制圓柱,,嘗試從A點(diǎn)到C點(diǎn)沿圓柱側(cè)面畫出幾條路線。思考:那條路線最短? ②如圖,將圓柱側(cè)面剪開(kāi)展成一個(gè)長(zhǎng)方形,從A點(diǎn)到C點(diǎn)的最短路線是什么?你畫得對(duì)嗎? ③螞蟻從A點(diǎn)出發(fā),想吃到C點(diǎn)處的食物,它沿圓柱側(cè)面爬行的最短路線是什么?

  思路點(diǎn)撥:引導(dǎo)學(xué)生在自制的圓柱側(cè)面上尋找最短路線;提醒學(xué)生將圓柱側(cè)面展開(kāi)成長(zhǎng)方形,引導(dǎo)學(xué)生觀察分析發(fā)現(xiàn)“兩點(diǎn)之間的所有線中,線段最短”。 學(xué)生在自主探索的基礎(chǔ)上興趣高漲,氣氛異常的活躍,他們發(fā)現(xiàn)螞蟻從A點(diǎn)往上爬到B點(diǎn)后順著直徑爬向C點(diǎn)爬行的路線是最短的!我也意外的發(fā)現(xiàn)了這種爬法是正確的,但是課本上是順著側(cè)面往上爬的,我就告訴學(xué)生:“課本中的圓柱體是沒(méi)有上蓋的”。只有這樣課本上的解答才算是完全正確的。例2。(課本P58圖14。2。3) 思路點(diǎn)撥:廠門的寬度是足夠的,這個(gè)問(wèn)題的關(guān)鍵是觀察當(dāng)卡車位于廠門正中間時(shí)其高度是否小于CH,點(diǎn)D在離廠門中線0。8米處,且CD⊥AB, 與地面交于H,尋找出Rt△OCD,運(yùn)用勾股定理求出CD= = =0。6,CH=0。6+2。3=2。9>2。5可見(jiàn)卡車能順利通過(guò) 。詳細(xì)解題過(guò)程看課本 引導(dǎo)學(xué)生完成P58做一做。 三。課堂小練 1。課本P58練習(xí)第1,2題。 2。探究: 一門框的尺寸如圖所示,一塊長(zhǎng)3米,寬2。2米的薄木板是否能從門框內(nèi)通過(guò)?為什么?

  四。小結(jié)直角三角形在實(shí)際生活中有更為廣泛的應(yīng)用希望同學(xué)們能緊緊抓住直角三角形的性質(zhì),學(xué)透勾股定理的具體應(yīng)用,那樣就能很輕松的解決現(xiàn)實(shí)生活中的許多問(wèn)題,達(dá)到事倍功半的效果。

勾股定理說(shuō)課稿3

各位專家領(lǐng)導(dǎo):

  上午好!今天我說(shuō)課的課題是《勾股定理》。

  一、教材分析:

  (一)本節(jié)內(nèi)容在全書(shū)和章節(jié)的地位。

  這節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)(華東版),八年級(jí)第十九章第二節(jié)“勾股定理”第一課時(shí)。勾股定理是學(xué)生在已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個(gè)三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形的主要依據(jù)之一,在實(shí)際生活中用途很大。教材在編寫時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和觀察分析問(wèn)題的能力;通過(guò)實(shí)際分析,拼圖等活動(dòng),使學(xué)生獲得較為直觀的印象;通過(guò)聯(lián)系比較,理解勾股定理,以便于正確的進(jìn)行運(yùn)用。

  (二)三維教學(xué)目標(biāo):

  1、知識(shí)與能力目標(biāo)。

 。1)理解并掌握勾股定理的內(nèi)容和證明,能夠靈活運(yùn)用勾股定理及其計(jì)算;

 。2)通過(guò)觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學(xué)生動(dòng)手操作、合作交流、邏輯推理的能力。

  2、過(guò)程與方法目標(biāo)。

  在探索勾股定理的過(guò)程中,讓學(xué)生經(jīng)歷“觀察-猜想-歸納-驗(yàn)證”的數(shù)學(xué)思想,并體會(huì)數(shù)形結(jié)合和從特殊到一般的思想方法。

  3、情感態(tài)度與價(jià)值觀。

  通過(guò)介紹中國(guó)古代勾股方面的成就,激發(fā)學(xué)生熱愛(ài)祖國(guó)和熱愛(ài)祖國(guó)悠久文化的思想感情,培養(yǎng)學(xué)生的民族自豪感和鉆研精神。

  (三)教學(xué)重點(diǎn)、難點(diǎn):

  1、教學(xué)重點(diǎn):勾股定理的證明與運(yùn)用

  2、教學(xué)難點(diǎn):用面積法等方法證明勾股定理

  3、難點(diǎn)成因:

  對(duì)于勾股定理的得出,首先需要學(xué)生通過(guò)動(dòng)手操作,在觀察的基礎(chǔ)上,大膽猜想數(shù)學(xué)結(jié)論,而這需要學(xué)生具備一定的分析、歸納的思維方法和運(yùn)用數(shù)學(xué)的思想意識(shí),但學(xué)生在這一方面的可預(yù)見(jiàn)性和耐挫折能力并不是很成熟,從而形成困難。

  4、突破措施:

 。1)創(chuàng)設(shè)情景,激發(fā)思維:

  創(chuàng)設(shè)生動(dòng)、啟發(fā)性的問(wèn)題情景,激發(fā)學(xué)生的問(wèn)題沖突,讓學(xué)生在感到“有趣”、“有意思”的狀態(tài)下進(jìn)入學(xué)習(xí)過(guò)程;

 。2)自主探索,敢于猜想:

  充分讓自己動(dòng)手操作,大膽猜想數(shù)學(xué)問(wèn)題的結(jié)論,老師是整個(gè)活動(dòng)的組織者,更是一位參入者,學(xué)生之間相互交流、協(xié)作,從而形成生動(dòng)的課堂環(huán)境;

 。3)張揚(yáng)個(gè)性,展示風(fēng)采:

  實(shí)行“小組合作制”,各小組中自己推薦一人擔(dān)任“發(fā)言人”,一人擔(dān)任“書(shū)記員”,在討論結(jié)束后,由小組的“發(fā)言人”匯報(bào)本小組的討論結(jié)果,并可上臺(tái)利用“多媒體視頻展示臺(tái)”展示本組的優(yōu)秀作品,其他小組給予評(píng)價(jià)。這樣既保證討論的有效性,也調(diào)動(dòng)了學(xué)生的學(xué)習(xí)積極性。

  二、教法與學(xué)法分析:

  1、教法分析:

  數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科,因此在教學(xué)中,不僅要使學(xué)生“知其然”,而且還要使學(xué)生“知其所以然”。針對(duì)初二年級(jí)學(xué)生的認(rèn)知結(jié)構(gòu)和心理特征,本節(jié)課可選擇“引導(dǎo)探索法”,由淺到深,由特殊到一般的提出問(wèn)題。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念緊隨新課改理念,也反映了時(shí)代精神;镜慕虒W(xué)程序是“創(chuàng)設(shè)情景-動(dòng)手操作-歸納驗(yàn)證-問(wèn)題解決-課堂小結(jié)-布置作業(yè)”六個(gè)方面。

  2、學(xué)法分析:

  新課標(biāo)明確提出要培養(yǎng)“可持續(xù)發(fā)展的學(xué)生”,因此教師要有組織、有目的、有針對(duì)性的引導(dǎo)學(xué)生并參入到學(xué)習(xí)活動(dòng)中,鼓勵(lì)學(xué)生采用自主探索,合作交流的研討式學(xué)習(xí)方式,培養(yǎng)學(xué)生“動(dòng)手”、“動(dòng)腦”、“動(dòng)口”的習(xí)慣與能力,使學(xué)生真正成為學(xué)習(xí)的主人。

  三、教學(xué)過(guò)程設(shè)計(jì):

  (一)創(chuàng)設(shè)情景:

  多媒體課件演示FLASH小動(dòng)畫片:某樓房三樓失火,消防隊(duì)員趕來(lái)救火,了解到每層樓高3米,消防隊(duì)員取來(lái)6.5米長(zhǎng)的云梯,如果梯子的底部離墻基的距離是2.5米,請(qǐng)問(wèn)消防隊(duì)員能否進(jìn)入三樓滅火?

  問(wèn)題的設(shè)計(jì)有一定的挑戰(zhàn)性,目的是激發(fā)學(xué)生的探究欲望,老師要注意引導(dǎo)學(xué)生將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,也就是“已知一直角三角形的兩邊,求第三邊?”的問(wèn)題。學(xué)生會(huì)感到一些困難,從而老師指出學(xué)習(xí)了今天的這節(jié)課后,同學(xué)們就會(huì)有辦法解決了。這種以實(shí)際問(wèn)題作為切入點(diǎn)導(dǎo)入新課,不僅自然,而且也反映了“數(shù)學(xué)來(lái)源于生活”,學(xué)習(xí)數(shù)學(xué)是為更好“服務(wù)于生活”。

  (二)動(dòng)手操作:

  1、課件出示課本P99圖19.2.1:

  觀察圖中用陰影畫出的三個(gè)正方形,你從中能夠得出什么結(jié)論?

  學(xué)生可能考慮到各種不同的思考方法,老師要給予肯定,并鼓勵(lì)學(xué)生用語(yǔ)言進(jìn)行描述,引導(dǎo)學(xué)生發(fā)現(xiàn)SP+SQ=SR(此時(shí)讓小組“發(fā)言人”發(fā)言),從而讓學(xué)生通過(guò)正方形的面積之間的關(guān)系發(fā)現(xiàn):對(duì)于等腰直角三角形,其兩直角邊的平方和等于斜邊的平方,即當(dāng)∠C=90°,AC=BC時(shí),則 AC2+BC2=AB2。這樣做有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過(guò)程,也有利于培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想。

  2、緊接著讓學(xué)生思考:

  上述是在等腰直角三角形中的情況,那么在一般情況下的直角三角形中,是否也存在這一結(jié)論呢?于是再利用多媒體投影出P100圖 19.2.2(一般直角三角形)。學(xué)生可以同樣求出正方形P和Q的面積,只是求正方形R的面積有一些困難,這時(shí)可讓學(xué)生在預(yù)先準(zhǔn)備的方格紙上畫出圖形,再剪一剪、拼一拼,通過(guò)小組合作、交流后,學(xué)生就能夠發(fā)現(xiàn):對(duì)于一般的以整數(shù)為邊長(zhǎng)的直角三角形也存在兩直角邊的平方和等于斜邊的平方。通過(guò)學(xué)生的動(dòng)手操作、合作交流,來(lái)獲取知識(shí),這樣設(shè)計(jì)有利于突破難點(diǎn),也讓學(xué)生體會(huì)到觀察、猜想、歸納的數(shù)學(xué)思想及學(xué)習(xí)過(guò)程,提高學(xué)生的分析問(wèn)題和解決問(wèn)題的能力。

  3、再問(wèn):

  當(dāng)邊長(zhǎng)不為整數(shù)的直角三角形是否也存在這一結(jié)論呢?投影例題:一個(gè)邊長(zhǎng)分別為1.5,3.6,3.9這種含有小數(shù)的直角三角形,讓學(xué)生計(jì)算。這樣設(shè)計(jì)的目的是讓學(xué)生體會(huì)到“從特殊到一般”的情形,這樣歸納的結(jié)論更具有一般性。

  (三)歸納驗(yàn)證:

  1、歸納:

  通過(guò)動(dòng)手操作、合作交流,探索邊長(zhǎng)為整數(shù)的等腰直角三角形到一般的直角三角形,再到邊長(zhǎng)為小數(shù)的直角三角形的兩直角邊與斜邊的關(guān)系,讓學(xué)生在整個(gè)學(xué)習(xí)過(guò)程中感受學(xué)數(shù)學(xué)的樂(lè)趣,,使學(xué)生學(xué)會(huì)“文字語(yǔ)言”與“數(shù)學(xué)語(yǔ)言”這兩種表達(dá)方式,各小組“發(fā)言人”的積極表現(xiàn),整堂課充分發(fā)揮學(xué)生的主體作用,真正獲取知識(shí),解決問(wèn)題。

  2、驗(yàn)證:

  先后三次驗(yàn)證“勾股定理”這一結(jié)論,期間學(xué)生動(dòng)手進(jìn)行了畫圖、剪圖、拼圖,還有測(cè)量、計(jì)算等活動(dòng),使學(xué)生從中體會(huì)到數(shù)形結(jié)合和從特殊到一般的數(shù)學(xué)思想,而且這一過(guò)程也有利于培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、科學(xué)的學(xué)習(xí)態(tài)度。

  (四)問(wèn)題解決:

  1、讓學(xué)生解決開(kāi)始上課前所提出的問(wèn)題,前后呼應(yīng),讓學(xué)生體會(huì)到成功的快樂(lè)。

  2、自學(xué)課本P101例1,然后完成P102練習(xí)。

  (五)課堂小結(jié):

  1、小組成員從內(nèi)容、數(shù)學(xué)思想方法、獲取知識(shí)的途徑進(jìn)行小結(jié),后由“發(fā)言人”匯報(bào),小組間要互相比一比,看看哪一個(gè)小組表現(xiàn)最佳。

  2、教師用多媒體介紹“勾股定理史話”。

 。1)《周髀算徑》:西周的商高(公元一千多年前)發(fā)現(xiàn)了“勾三股四弦五”這一規(guī)律。

 。2)康熙數(shù)學(xué)專著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是其獨(dú)創(chuàng)。

  3、目的:對(duì)學(xué)生進(jìn)行愛(ài)國(guó)主義教育,激勵(lì)學(xué)生奮發(fā)向上。

  (六)布置作業(yè):

  課本P104習(xí)題19.2中的第1.2.3題。目的一方面是鞏固“勾股定理”,另一方面是讓學(xué)生進(jìn)一步體會(huì)定理與實(shí)際生活的聯(lián)系。

  以上內(nèi)容,我僅從“說(shuō)教材”,“說(shuō)學(xué)情”、“說(shuō)教法”、“說(shuō)學(xué)法”、“說(shuō)教學(xué)過(guò)程”上來(lái)說(shuō)明這堂課“教什么”和“怎么教”,也闡述了“為什么這樣教”,希望各位專家領(lǐng)導(dǎo)對(duì)本次說(shuō)課提出寶貴的意見(jiàn),謝謝!

勾股定理說(shuō)課稿4

  課題:“勾股定理”第一課時(shí)

  內(nèi)容:教材分析、教學(xué)過(guò)程設(shè)計(jì)、設(shè)計(jì)說(shuō)明

  一、教材分析

 。ㄒ唬┙滩乃幍牡匚

  這節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)八年級(jí)第一章第一節(jié)探索勾股定理第一課時(shí),勾股定理是幾何中幾個(gè)重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過(guò)重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過(guò)對(duì)勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對(duì)直角三角形有進(jìn)一步的認(rèn)識(shí)和理解。

  (二)根據(jù)課程標(biāo)準(zhǔn),本課的教學(xué)目標(biāo)是:

  1、能說(shuō)出勾股定理的內(nèi)容。

  2、會(huì)初步運(yùn)用勾股定理進(jìn)行簡(jiǎn)單的計(jì)算和實(shí)際運(yùn)用。

  3、在探索勾股定理的過(guò)程中,讓學(xué)生經(jīng)歷“觀察—猜想—?dú)w納—驗(yàn)證”的數(shù)學(xué)思想,并體會(huì)數(shù)形結(jié)合和特殊到一般的思想方法。

  4、通過(guò)介紹勾股定理在中國(guó)古代的研究,激發(fā)學(xué)生熱愛(ài)祖國(guó),熱愛(ài)祖國(guó)悠久文化的思想,激勵(lì)學(xué)生發(fā)奮學(xué)習(xí)。

 。ㄈ┍菊n的教學(xué)重點(diǎn):探索勾股定理

  本課的教學(xué)難點(diǎn):以直角三角形為邊的正方形面積的計(jì)算。

  二、教法與學(xué)法分析:

  教法分析:針對(duì)初二年級(jí)學(xué)生的知識(shí)結(jié)構(gòu)和心理特征,本節(jié)課可選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問(wèn)題。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念反映了時(shí)代精神,有利于提高學(xué)生的思維能力,能有效地激發(fā)學(xué)生的思維積極性,基本教學(xué)流程是:提出問(wèn)題—實(shí)驗(yàn)操作—?dú)w納驗(yàn)證—問(wèn)題解決—課堂小結(jié)—布置作業(yè)六部分。

  學(xué)法分析:在教師的組織引導(dǎo)下,采用自主探索、合作交流的研討式學(xué)習(xí)方式,讓學(xué)生思考問(wèn)題,獲取知識(shí),掌握方法,借此培養(yǎng)學(xué)生動(dòng)手、動(dòng)腦、動(dòng)口的能力,使學(xué)生真正成為學(xué)習(xí)的主體。

  三、教學(xué)過(guò)程設(shè)計(jì)

 。ㄒ唬┨岢鰡(wèn)題:

  首先創(chuàng)設(shè)這樣一個(gè)問(wèn)題情境:某樓房三樓失火,消防隊(duì)員趕來(lái)救火,了解到每層樓高3米,消防隊(duì)員取來(lái)6。5米長(zhǎng)的云梯,如果梯子的底部離墻基的距離是2。5米,請(qǐng)問(wèn)消防隊(duì)員能否進(jìn)入三樓滅火?問(wèn)題設(shè)計(jì)具有一定的挑戰(zhàn)性,目的是激發(fā)學(xué)生的探究欲望,教師引導(dǎo)學(xué)生將實(shí)際問(wèn)題轉(zhuǎn)化成數(shù)學(xué)問(wèn)題,也就是“已知一直角三角形的兩邊,如何求第三邊?”的問(wèn)題。學(xué)生會(huì)感到困難,從而教師指出學(xué)習(xí)了今天這一課后就有辦法解決了。這種以實(shí)際問(wèn)題為切入點(diǎn)引入新課,不僅自然,而且反映了數(shù)學(xué)來(lái)源于實(shí)際生活,數(shù)學(xué)是從人的需要中產(chǎn)生這一認(rèn)識(shí)的基本觀點(diǎn),同時(shí)也體現(xiàn)了知識(shí)的發(fā)生過(guò)程,而且解決問(wèn)題的過(guò)程也是一個(gè)“數(shù)學(xué)化”的過(guò)程。

 。ǘ⿲(shí)驗(yàn)操作:

  1、投影課本圖1—1,圖1—2的有關(guān)直角三角形問(wèn)題,讓學(xué)生計(jì)算正方形A,B,C的面積,學(xué)生可能有不同的方法,不管是通過(guò)直接數(shù)小方格的個(gè)數(shù),還是將C劃分為4個(gè)全等的等腰直角三角形來(lái)求等等,各種方法都應(yīng)予于肯定,并鼓勵(lì)學(xué)生用語(yǔ)言進(jìn)行表達(dá),引導(dǎo)學(xué)生發(fā)現(xiàn)正方形A,B,C的面積之間的數(shù)量關(guān)系,從而學(xué)生通過(guò)正方形面積之間的關(guān)系容易發(fā)現(xiàn)對(duì)于等腰直角三角形而言滿足兩直角邊的平方和等于斜邊的平方。這樣做有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過(guò)程,也有利于培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想。

  2、接著讓學(xué)生思考:如果是其它一般的直角三角形,是否也具備這一結(jié)論呢?于是投影圖1—3,圖1—4,同樣讓學(xué)生計(jì)算正方形的面積,但正方形C的面積不易求出,可讓學(xué)生在預(yù)先準(zhǔn)備的方格紙上畫出圖形,在剪一剪,拼一拼后學(xué)生也不難發(fā)現(xiàn)對(duì)于一般的以整數(shù)為邊長(zhǎng)的直角三角形也有兩直角邊的平方和等于斜邊的平方。這樣設(shè)計(jì)不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下了基礎(chǔ),讓學(xué)生體會(huì)到觀察、猜想、歸納的思想,也讓學(xué)生的分析問(wèn)題和解決問(wèn)題的能力在無(wú)形中得到了提高,這對(duì)后面的學(xué)習(xí)及有幫助。

  3、給出一個(gè)邊長(zhǎng)為0。5,1。2,1。3,這種含小數(shù)的直角三角形,讓學(xué)生計(jì)算是否也滿足這個(gè)結(jié)論,設(shè)計(jì)的目的是讓學(xué)生體會(huì)到結(jié)論更具有一般性。

 。ㄈw納驗(yàn)證:

  1、歸納通過(guò)對(duì)邊長(zhǎng)為整數(shù)的等腰直角三角形到一般直角三角形再到邊長(zhǎng)含小數(shù)的直角三角形三邊關(guān)系的研究,讓學(xué)生用數(shù)學(xué)語(yǔ)言概括出一般的結(jié)論,盡管學(xué)生可能講的不完全正確,但對(duì)于培養(yǎng)學(xué)生運(yùn)用數(shù)學(xué)語(yǔ)言進(jìn)行抽象、概括的能力是有益的,同時(shí)發(fā)揮了學(xué)生的主體作用,也便于記憶和理解,這比教師直接教給學(xué)生一個(gè)結(jié)論要好的多。

  2、驗(yàn)證為了讓學(xué)生確信結(jié)論的正確性,引導(dǎo)學(xué)生在紙上任意作一個(gè)直角三角形,通過(guò)測(cè)量、計(jì)算來(lái)驗(yàn)證結(jié)論的正確性。這一過(guò)程有利于培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、科學(xué)的學(xué)習(xí)態(tài)度。然后引導(dǎo)學(xué)生用符號(hào)語(yǔ)言表示,因?yàn)閷⑽淖终Z(yǔ)言轉(zhuǎn)化為數(shù)學(xué)語(yǔ)言是學(xué)習(xí)數(shù)學(xué)學(xué)習(xí)的一項(xiàng)基本能力。接著教師向?qū)W生介紹“勾,股,弦”的含義、勾股定理,進(jìn)行點(diǎn)題,并指出勾股定理只適用于直角三角形。最后向?qū)W生介紹古今中外對(duì)勾股定理的研究,對(duì)學(xué)生進(jìn)行愛(ài)國(guó)主義教育。

  (四)問(wèn)題解決:

  讓學(xué)生解決開(kāi)頭的實(shí)際問(wèn)題,前后呼應(yīng),學(xué)生從中能體會(huì)到成功的喜悅。完成課本“想一想”進(jìn)一步體會(huì)勾股定理在實(shí)際生活中的'應(yīng)用,數(shù)學(xué)是與實(shí)際生活緊密相連的。

 。ㄎ澹┱n堂小結(jié):

  主要通過(guò)學(xué)生回憶本節(jié)課所學(xué)內(nèi)容,從內(nèi)容、應(yīng)用、數(shù)學(xué)思想方法、獲取新知的途徑方面先進(jìn)行小結(jié),后由教師總結(jié)。

 。┎贾米鳂I(yè):

  課本P6習(xí)題1。11,2,3,4一方面鞏固勾股定理,另一方面進(jìn)一步體會(huì)定理與實(shí)際生活的聯(lián)系。另外,補(bǔ)充一道開(kāi)放題。

  四、設(shè)計(jì)說(shuō)明

  1、本節(jié)課是公式課,根據(jù)學(xué)生的知識(shí)結(jié)構(gòu),我采用的教學(xué)流程是:提出問(wèn)題—實(shí)驗(yàn)操作—?dú)w納驗(yàn)證—問(wèn)題解決—課堂小結(jié)—布置作業(yè)六部分,這一流程體現(xiàn)了知識(shí)發(fā)生、形成和發(fā)展的過(guò)程,讓學(xué)生體會(huì)到觀察、猜想、歸納、驗(yàn)證的思想和數(shù)形結(jié)合的思想。

  2、探索定理采用了面積法,引導(dǎo)學(xué)生利用實(shí)驗(yàn)由特殊到一般再到更一般的對(duì)直角三角形三邊關(guān)系的研究,得出結(jié)論。這種方法是認(rèn)識(shí)事物規(guī)律的重要方法之一,通過(guò)教學(xué)讓學(xué)生初步掌握這種方法,對(duì)于學(xué)生良好思維品質(zhì)的形成有重要作用,對(duì)學(xué)生的終身發(fā)展也有一定的作用。

  3、關(guān)于練習(xí)的設(shè)計(jì),除兩個(gè)實(shí)際問(wèn)題和課本習(xí)題以外,我準(zhǔn)備設(shè)計(jì)一道開(kāi)放題,大致思路是在已畫出斜邊上的高的直角三角形中讓學(xué)生盡量地找出線段之間的關(guān)系。

  4、本課小結(jié)從內(nèi)容,應(yīng)用,數(shù)學(xué)思想方法,獲取知識(shí)的途徑等幾個(gè)方面展開(kāi),既有知識(shí)的總結(jié),又有方法的提煉,這樣對(duì)于學(xué)生學(xué)知識(shí),用知識(shí)的意識(shí)是有很大的促進(jìn)的。

勾股定理說(shuō)課稿5

  一、教材分析

  勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個(gè)三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計(jì)算問(wèn)題,是解直角三角形的主要根據(jù)之一,在實(shí)際生活中用途很大,我們的教材在編寫時(shí)注意培養(yǎng)大家的動(dòng)手操作能力和分析問(wèn)題的能力,通過(guò)實(shí)際分析、拼圖等活動(dòng),使學(xué)生獲得較為直觀的印象;通過(guò)聯(lián)系和比較,理解勾股定理,以利于正確的進(jìn)行運(yùn)用。

  據(jù)此,制定教學(xué)目標(biāo)如下:

  1、理解并且掌握勾股定理及其證明。

  2、能夠靈活地運(yùn)用勾股定理及其計(jì)算。

  3、主要就是培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。

  4、通過(guò)介紹我們中國(guó)古代勾股方面的成就,激發(fā)學(xué)生熱愛(ài)祖國(guó)與熱愛(ài)祖國(guó)悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。

  教學(xué)重點(diǎn):

  勾股定理的證明和應(yīng)用。

  教學(xué)難點(diǎn):

  勾股定理的證明。

  二、教法和學(xué)法

  教法和學(xué)法是體現(xiàn)在整個(gè)教學(xué)過(guò)程中的,本課的教法和學(xué)法體現(xiàn)如下特點(diǎn):

  1、以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運(yùn)用各種手段激發(fā)學(xué)生學(xué)習(xí)欲望和興趣,組織學(xué)生活動(dòng),讓學(xué)生主動(dòng)參與學(xué)習(xí)全過(guò)程。

  2、切實(shí)體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過(guò)觀察、分析、討論、操作、歸納,理解定理,提高學(xué)生動(dòng)手操作能力,以及分析問(wèn)題和解決問(wèn)題的能力。

  3、通過(guò)演示實(shí)物,引導(dǎo)學(xué)生觀察、操作、分析、證明,使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。

  三、教學(xué)程序

  本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生動(dòng)手、動(dòng)腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)計(jì)如下:

  (一)創(chuàng)設(shè)情境 以古引新

  1、由故事引入,3000多年前有個(gè)叫商高的人對(duì)周公說(shuō),把一根直尺折成直角,兩端連接得到一個(gè)直角三角形,如果勾是3,股是4,那么弦等于5,小學(xué)數(shù)學(xué)教案《數(shù)學(xué) - 勾股定理說(shuō)課稿》。這樣引起學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生求知欲。

  2、是不是所有的直角三角形都有這個(gè)性質(zhì)呢?教師要善于激疑,使學(xué)生進(jìn)入樂(lè)學(xué)狀態(tài)。

  3、板書(shū)課題,出示學(xué)習(xí)目標(biāo)。

 。ǘ┏醪礁兄 理解教材

  教師指導(dǎo)學(xué)生自學(xué)教材,通過(guò)自學(xué)感悟理解新知,體現(xiàn)了學(xué)生的自主學(xué)習(xí)意識(shí),鍛煉學(xué)生主動(dòng)探究知識(shí),養(yǎng)成良好的自學(xué)習(xí)慣。

  (三)質(zhì)疑解難 討論歸納

  1、教師設(shè)疑或?qū)W生提疑。如:

  怎樣證明勾股定理?學(xué)生通過(guò)自學(xué),中等以上的學(xué)生基本掌握,這時(shí)能激發(fā)學(xué)生的表現(xiàn)欲。

  2、教師引導(dǎo)學(xué)生按照要求進(jìn)行拼圖,觀察并分析;

 。1)這兩個(gè)圖形有什么特點(diǎn)?

 。2)你能寫出這兩個(gè)圖形的面積嗎?

 。3)如何運(yùn)用勾股定理?是否還有其他形式?

  這時(shí)教師組織學(xué)生分組討論,調(diào)動(dòng)全體學(xué)生的積極性,達(dá)到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說(shuō)明本組對(duì)問(wèn)題的理解程度,其他各組作評(píng)價(jià)和補(bǔ)充。教師及時(shí)進(jìn)行富有啟發(fā)性的點(diǎn)撥,最后,師生共同歸納,形成一致意見(jiàn),最終解決疑難。

  (四)鞏固練習(xí) 強(qiáng)化提高

  1、出示練習(xí),學(xué)生分組解答,并由學(xué)生總結(jié)解題規(guī)律。課堂教學(xué)中動(dòng)靜結(jié)合,以免引起學(xué)生的疲勞。

  2、出示例1學(xué)生試解,師生共同評(píng)價(jià),以加深對(duì)例題的理解與運(yùn)用。針對(duì)例題再次出現(xiàn)鞏固練習(xí),進(jìn)一步提高學(xué)生運(yùn)用知識(shí)的能力,對(duì)練習(xí)中出現(xiàn)的情況可采取互評(píng)、互議的形式,在互評(píng)互議中出現(xiàn)的具有代表性的問(wèn)題,教師可以采取全班討論的形式予以解決,以此突出教學(xué)重點(diǎn)。

 。ㄎ澹w納總結(jié) 練習(xí)反饋

  引導(dǎo)學(xué)生對(duì)知識(shí)要點(diǎn)進(jìn)行總結(jié),梳理學(xué)習(xí)思路。分發(fā)自我反饋練習(xí),學(xué)生獨(dú)立完成。

  本課意在創(chuàng)設(shè)愉悅和諧的樂(lè)學(xué)氣氛,優(yōu)化教學(xué)手段,借助電教手段提高課堂教學(xué)效率,建立平等、民主、和諧的師生關(guān)系。加強(qiáng)師生間的合作,營(yíng)造一種學(xué)生敢想、感說(shuō)、感問(wèn)的課堂氣氛,讓全體學(xué)生都能生動(dòng)活潑、積極主動(dòng)地教學(xué)活動(dòng),在學(xué)習(xí)中創(chuàng)新精神和實(shí)踐能力得到培養(yǎng)。

勾股定理說(shuō)課稿6

  一、教材分析

  教材所處的地位與作用

  “探索勾股定理”是人教版八年級(jí)《數(shù)學(xué)》下冊(cè)內(nèi)容!肮垂啥ɡ怼笔前才旁趯W(xué)生學(xué)習(xí)了三角形、全等三角形、等腰三角形等有關(guān)知識(shí)之后,它揭示了直角三角形三邊之間的一種美妙關(guān)系,將數(shù)與形密切聯(lián)系起來(lái),在幾何學(xué)中占有非常重要的位置。同時(shí)勾股定理在生產(chǎn)、生活中也有很大的用途。

  二、教學(xué)目標(biāo)

  綜上分析及教學(xué)大綱要求,本課時(shí)教學(xué)目標(biāo)制定如下:

  1、知識(shí)目標(biāo)

   知道勾股定理的由來(lái),初步理解割補(bǔ)拼接的面積證法。

   掌握勾股定理,通過(guò)動(dòng)手操作利用等積法理解勾股定理的證明過(guò)程。

  2、能力目標(biāo)

   在探索勾股定理的過(guò)程中,讓學(xué)生經(jīng)歷“觀察——合理猜想——?dú)w納——驗(yàn)證”的數(shù)學(xué)思想,并體會(huì)數(shù)形結(jié)合以及由特殊到一般的思想方法,培養(yǎng)學(xué)生的觀察力、抽象概括能力、創(chuàng)造想象能力以及科學(xué)探究問(wèn)題的能力。

  3、情感目標(biāo)

   通過(guò)觀察、猜想、拼圖、證明等操作,使學(xué)生深刻感受到數(shù)學(xué)知識(shí)的發(fā)生、發(fā)展過(guò)程。

   介紹“趙爽弦圖”,讓學(xué)生感受到中國(guó)古代在勾股定理研究方面所取得的偉大成就,激發(fā)學(xué)生的數(shù)學(xué)激情及愛(ài)國(guó)情感。

  三、教學(xué)重難點(diǎn)

  本課重點(diǎn)是掌握勾股定理,讓學(xué)生深刻感悟到直角三角形三邊所具備的特殊關(guān)系。由于八年級(jí)學(xué)生構(gòu)造能力較低以及對(duì)面積證法的不熟悉,因此本課的難點(diǎn)便是勾股定理的證明。

  四、教學(xué)問(wèn)題診斷

  本 節(jié)主要攻克的問(wèn)題就是本節(jié)的難點(diǎn):勾股定理的證明。我打算采用面積法來(lái)講解,但這種借助于圖形的面積來(lái)探索、驗(yàn)證數(shù)學(xué)結(jié)論的數(shù)形結(jié)合思想,對(duì)于學(xué)生來(lái)說(shuō), 有些陌生,難以理解,又加之?dāng)?shù)學(xué)課本身的課程特征,在講解時(shí),沒(méi)有文科那么深動(dòng)形象,所以針對(duì)這一現(xiàn)狀,我在教法和學(xué)法上都進(jìn)行了改進(jìn)。

  五、教法與學(xué)法分析

  [教學(xué)方法與手段] 針對(duì)八年級(jí)學(xué)生的知識(shí)結(jié)構(gòu)和心理特征,本節(jié)課選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問(wèn)題,引導(dǎo)學(xué)生自主探索,合作交流,并利用多媒體進(jìn)行教學(xué)。

  [學(xué)法分析] 在教師組織引導(dǎo)下,采用自主探索、合作交流的方式,讓學(xué)生自己實(shí)驗(yàn),自己獲取知識(shí),并感悟?qū)W習(xí)方法,借此培養(yǎng)學(xué)生動(dòng)手、動(dòng)口、動(dòng)腦能力,使學(xué)生真正成為學(xué)習(xí)的主體。讓學(xué)生感受到自己是學(xué)習(xí)的主體,增強(qiáng)他們的主動(dòng)感和責(zé)任感,這樣對(duì)掌握新知會(huì)事半功倍。

  六、教學(xué)流程設(shè)計(jì)

  1、創(chuàng)設(shè)情境,引入新課

  本節(jié)課開(kāi)始利用多媒體介紹了在北京召開(kāi)的20xx年 國(guó)際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),其圖案為“趙爽弦圖”,由此導(dǎo)入新課,是為了激發(fā)學(xué)生的興趣和民族自豪感,它是課堂教學(xué)的重要一環(huán)!昂玫拈_(kāi)始是成功的一半”,在 課的起始階段迅速集中學(xué)生注意力,把他們的思緒帶進(jìn)特定的學(xué)習(xí)情境中,激發(fā)學(xué)生濃厚的學(xué)習(xí)興趣和強(qiáng)烈的求知欲。多媒體展示這一有意義的圖案,可有效開(kāi)啟學(xué) 生思維的閘門,激勵(lì)探究,使學(xué)生的學(xué)習(xí)狀態(tài)由被動(dòng)變?yōu)橹鲃?dòng),在輕松愉悅的氛圍中學(xué)到知識(shí)。

  2、觀察發(fā)現(xiàn),類比猜想

  讓學(xué)生仔細(xì)觀察畢達(dá)哥拉斯朋友家的瓷磚(圖1), 從而得到特殊的等腰直角三角形三邊關(guān)系,緊接著由特殊到一般,讓學(xué)生合理猜測(cè):是否任意直角三角形都符合這個(gè)“三邊關(guān)系”的結(jié)論?同學(xué)們很輕易的得到了結(jié) 論。最后對(duì)此結(jié)論通過(guò)在網(wǎng)格中數(shù)格子進(jìn)行驗(yàn)證,讓學(xué)生經(jīng)歷了“觀察——合理猜測(cè)——?dú)w納——驗(yàn)證”的這一數(shù)學(xué)思想。在數(shù)格子的驗(yàn)證過(guò)程中,發(fā)現(xiàn)任意直角三 角形(圖2)斜邊上長(zhǎng)出的正方形中網(wǎng)格不規(guī)則,沒(méi)法數(shù)出。通過(guò)同學(xué)們的討論,發(fā)現(xiàn)數(shù)不出來(lái)的原因是格子不規(guī)則,從而想到了用補(bǔ)或割的方法進(jìn)行計(jì)算,其原則就是由不規(guī)則經(jīng)過(guò)割補(bǔ)變?yōu)橐?guī)則。

  3、實(shí)驗(yàn)探究,證明結(jié)論

  因?yàn)楣垂啥ɡ淼某霈F(xiàn),使數(shù)學(xué)從單一的純計(jì)算進(jìn)入了幾何圖形的證明,所以為了讓學(xué)生感受數(shù)形結(jié)合這一數(shù)學(xué)思想,讓學(xué)生親自動(dòng)手,互相協(xié)作,拿一塊由a2和b2組成的不規(guī)則的平面圖形經(jīng)割補(bǔ),變?yōu)橐?guī)則的c2,又因兩塊割補(bǔ)前后面積相等,從而得到勾股定理:a2+b2= c2,也因此引入了“等積法”證明勾股定理。

  4、練兵之際

  這是“總統(tǒng)證法”,此時(shí)讓學(xué)生自己探索,然后討論。選用“總統(tǒng)證法”,第一是為了讓同學(xué)們熟悉“等積法”,第二讓學(xué)生感受數(shù)學(xué)的地位之高,第三在沒(méi)有講解的情況下,學(xué)生自己得出了“總統(tǒng)證法”,大大增強(qiáng)了學(xué)生的自信心和自豪感。

  5、自己動(dòng)手,拼出弦圖

  讓同學(xué)們拿出了提前準(zhǔn)備好的四個(gè)全等的邊長(zhǎng)為a、b、c的 直角三角形進(jìn)行拼圖,小組活動(dòng),拼出自己喜愛(ài)的圖形,但有一個(gè)前提是所拼出的圖形必須能夠用等積法證明勾股定理。此時(shí)已經(jīng)是把課堂全部還給了學(xué)生,讓他們 在數(shù)學(xué)的海洋中馳騁,提供這種學(xué)習(xí)方式就是為了讓孩子們更加開(kāi)闊,更加自主,更方便于他們到廣闊的海洋中去尋找寶藏,學(xué)生們拼得很好,并且都給出了正確的 證明,在黑板上盡情地展示了一番。

  6、總結(jié)反思

  通 過(guò)這一堂課,我認(rèn)為數(shù)學(xué)教學(xué)的核心不是知識(shí)本身,而是數(shù)學(xué)的思維方式,而培養(yǎng)這種數(shù)學(xué)思維方式需要豐富的數(shù)學(xué)活動(dòng)。在活動(dòng)中學(xué)生可以用自己創(chuàng)造與體驗(yàn)的方 法來(lái)學(xué)習(xí)數(shù)學(xué),這樣才能真正的掌握數(shù)學(xué),真正擁有數(shù)學(xué)的思維方式,這一課的學(xué)習(xí)就是通過(guò)讓學(xué)生自主探索知識(shí),從而將其轉(zhuǎn)化為自己的,真正做到了先激發(fā)興 趣,再合作交流,最后展示成果的自主學(xué)習(xí),教學(xué)模式也從教師講授為主轉(zhuǎn)為了學(xué)生動(dòng)腦、動(dòng)手、自主研究,小組學(xué)習(xí)討論交流為主,把數(shù)學(xué)課堂轉(zhuǎn)化為“數(shù)學(xué)實(shí)驗(yàn) 室”,學(xué)生通過(guò)自己活動(dòng)得出結(jié)論,使創(chuàng)新精神與實(shí)踐能力得到了發(fā)展。

  七、設(shè)計(jì)說(shuō)明

  1、根據(jù)學(xué)生的知識(shí)結(jié)構(gòu),我采用的數(shù)學(xué)流程是:創(chuàng)設(shè)情境引入新課——觀察發(fā)現(xiàn)類比猜想——實(shí)驗(yàn)探究證明結(jié)論——自己動(dòng)手拼出弦圖——總結(jié)反思這五部分。這一流程體現(xiàn)了知識(shí)的發(fā)生、形成和發(fā)展的過(guò)程,讓學(xué)生經(jīng)歷了觀察——猜想——?dú)w納——驗(yàn)證的思想和數(shù)形結(jié)合的思想。

  2、探索定理采用了面積法,引導(dǎo)學(xué)生利用實(shí)驗(yàn)由特殊到一般的數(shù)學(xué)思想對(duì)直角三角形三邊關(guān)系進(jìn)行了研究,并得出了結(jié)論。這種方法是認(rèn)識(shí)事物規(guī)律的重要方法之一,通過(guò)教學(xué)讓學(xué)生初步掌握這種方法,對(duì)于學(xué)生良好的思維品質(zhì)的形成有重要作用,對(duì)學(xué)生終身發(fā)展也有很大作用。

勾股定理說(shuō)課稿7

  一、教材分析

  (一)教材地位:這節(jié)課是九年制義務(wù)教育初級(jí)中學(xué)教材北師大版七年級(jí)第二章第一節(jié)《探索勾股定理》第一課時(shí),勾股定理是幾何中幾個(gè)重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過(guò)重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過(guò)對(duì)勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對(duì)直角三角形有進(jìn)一步的認(rèn)識(shí)和理解。

 。ǘ┙虒W(xué)目標(biāo):

  知識(shí)與能力:掌握勾股定理,并能運(yùn)用勾股定理解決一些簡(jiǎn)單實(shí)際問(wèn)題.

  過(guò)程與方法:經(jīng)歷探索及驗(yàn)證勾股定理的過(guò)程,了解利用拼圖驗(yàn)證勾股定理的方法,發(fā)展學(xué)生的合情推理意識(shí)、主動(dòng)探究的習(xí)慣,感受數(shù)形結(jié)合和從特殊到一般的思想.

  情感態(tài)度與價(jià)值觀:激發(fā)學(xué)生愛(ài)國(guó)熱情,讓學(xué)生體驗(yàn)自己努力得到結(jié)論的成就感,體驗(yàn)數(shù)學(xué)充滿探索和創(chuàng)造,體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡數(shù)學(xué).

  (三)教學(xué)重點(diǎn):經(jīng)歷探索及驗(yàn)證勾股定理的過(guò)程,并能用它來(lái)解決一些簡(jiǎn)單的實(shí)際問(wèn)題。

  教學(xué)難點(diǎn):用面積法(拼圖法)發(fā)現(xiàn)勾股定理。

  突出重點(diǎn)、突破難點(diǎn)的辦法:發(fā)揮學(xué)生的主體作用,通過(guò)學(xué)生動(dòng)手實(shí)驗(yàn),讓學(xué)生在實(shí)驗(yàn)中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解.

  二、教法與學(xué)法分析:

  學(xué)情分析:七年級(jí)學(xué)生已經(jīng)具備一定的觀察、歸納、猜想和推理的能力.他們?cè)谛W(xué)已學(xué)習(xí)了一些幾何圖形的面積計(jì)算方法(包括割補(bǔ)、拼接),但運(yùn)用面積法和割補(bǔ)思想來(lái)解決問(wèn)題的意識(shí)和能力還不夠.另外,學(xué)生普遍學(xué)習(xí)積極性較高,課堂活動(dòng)參與較主動(dòng),但合作交流的能力還有待加強(qiáng).

  教法分析:結(jié)合七年級(jí)學(xué)生和本節(jié)教材的特點(diǎn),在教學(xué)中采用“問(wèn)題情境----建立模型----解釋應(yīng)用---拓展鞏固”的模式,選擇引導(dǎo)探索法。把教學(xué)過(guò)程轉(zhuǎn)化為學(xué)生親身觀察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過(guò)程。

  學(xué)法分析:在教師的組織引導(dǎo)下,學(xué)生采用自主探究合作交流的研討式學(xué)習(xí)方式,使學(xué)生真正成為學(xué)習(xí)的主人.

  三、教學(xué)過(guò)程設(shè)計(jì)

  1.創(chuàng)設(shè)情境,提出問(wèn)題

  2.實(shí)驗(yàn)操作,模型構(gòu)建

  3.回歸生活,應(yīng)用新知

  4.知識(shí)拓展,鞏固深化

  5.感悟收獲,布置作業(yè)

  (一)創(chuàng)設(shè)情境提出問(wèn)題

  (1)圖片欣賞勾股定理數(shù)形圖1955年希臘發(fā)行美麗的勾股樹(shù)20xx年國(guó)際數(shù)學(xué)的一枚紀(jì)念郵票大會(huì)會(huì)標(biāo)

  設(shè)計(jì)意圖:通過(guò)圖形欣賞,感受數(shù)學(xué)美,感受勾股定理的文化價(jià)值.

  (2)某樓房三樓失火,消防隊(duì)員趕來(lái)救火,了解到每層樓高3米,消防隊(duì)員取來(lái)6.5米長(zhǎng)的云梯,如果梯子的底部離墻基的距離是2.5米,請(qǐng)問(wèn)消防隊(duì)員能否進(jìn)入三樓滅火?

  設(shè)計(jì)意圖:以實(shí)際問(wèn)題為切入點(diǎn)引入新課,反映了數(shù)學(xué)來(lái)源于實(shí)際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識(shí)的發(fā)生過(guò)程,解決問(wèn)題的過(guò)程也是一個(gè)“數(shù)學(xué)化”的過(guò)程,從而引出下面的環(huán)節(jié).

  二、實(shí)驗(yàn)操作模型構(gòu)建

  1.等腰直角三角形(數(shù)格子)2.一般直角三角形(割補(bǔ))

  問(wèn)題一:對(duì)于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關(guān)系?

  設(shè)計(jì)意圖:這樣做利于學(xué)生參與探索,利于培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想.

  問(wèn)題二:對(duì)于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個(gè)關(guān)系嗎?(割補(bǔ)法是本節(jié)的難點(diǎn),組織學(xué)生合作交流)

  設(shè)計(jì)意圖:不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下基礎(chǔ),讓學(xué)生的分析問(wèn)題解決問(wèn)題的能力在無(wú)形中得到提高.

  通過(guò)以上實(shí)驗(yàn)歸納總結(jié)勾股定理.

  設(shè)計(jì)意圖:學(xué)生通過(guò)合作交流,歸納出勾股定理的雛形,培養(yǎng)學(xué)生抽象、概括的能力,同時(shí)發(fā)揮了學(xué)生的主體作用,體驗(yàn)了從特殊——一般的認(rèn)知規(guī)律.

  三.回歸生活應(yīng)用新知

  讓學(xué)生解決開(kāi)頭情景中的問(wèn)題,前呼后應(yīng),增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識(shí),增加學(xué)以致用的樂(lè)趣和信心.

  四、知識(shí)拓展鞏固深化

  基礎(chǔ)題,情境題,探索題.

  設(shè)計(jì)意圖:給出一組題目,分三個(gè)梯度,由淺入深層層練習(xí),照顧學(xué)生的個(gè)體差異,關(guān)注學(xué)生的個(gè)性發(fā)展.知識(shí)的運(yùn)用得到升華.

  基礎(chǔ)題:直角三角形的一直角邊長(zhǎng)為3,斜邊為5,另一直角邊長(zhǎng)為X,你可以根據(jù)條件提出多少個(gè)數(shù)學(xué)問(wèn)題?你能解決所提出的問(wèn)題嗎?

  設(shè)計(jì)意圖:這道題立足于雙基.通過(guò)學(xué)生自己創(chuàng)設(shè)情境,鍛煉了發(fā)散思維.

  情境題:小明媽媽買了一部29英寸(74厘米)的電視機(jī).小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長(zhǎng)和46厘米寬,他覺(jué)得一定是售貨員搞錯(cuò)了.你同意他的想法嗎?

  設(shè)計(jì)意圖:增加學(xué)生的生活常識(shí),也體現(xiàn)了數(shù)學(xué)源于生活,并用于生活。

  探索題:做一個(gè)長(zhǎng),寬,高分別為50厘米,40厘米,30厘米的木箱,一根長(zhǎng)為70厘米的木棒能否放入,為什么?試用今天學(xué)過(guò)的知識(shí)說(shuō)明。

  設(shè)計(jì)意圖:探索題的難度相對(duì)大了些,但教師利用教學(xué)模型和學(xué)生合作交流的方式,拓展學(xué)生的思維、發(fā)展空間想象能力.

  五、感悟收獲布置作業(yè):

  這節(jié)課你的收獲是什么?

  作業(yè):

  1、課本習(xí)題2.1

  2、搜集有關(guān)勾股定理證明的資料.

  板書(shū)設(shè)計(jì)探索勾股定理

  如果直角三角形兩直角邊分別為a,b,斜邊為c,那么

  設(shè)計(jì)說(shuō)明:

  1.探索定理采用面積法,為學(xué)生創(chuàng)設(shè)一個(gè)和諧、寬松的情境,讓學(xué)生體會(huì)數(shù)形結(jié)合及從特殊到一般的思想方法.

  2.讓學(xué)生人人參與,注重對(duì)學(xué)生活動(dòng)的評(píng)價(jià),一是學(xué)生在活動(dòng)中的投入程度;二是學(xué)生在活動(dòng)中表現(xiàn)出來(lái)的思維水平、表達(dá)水平.

勾股定理說(shuō)課稿8

  (一)創(chuàng)設(shè)問(wèn)題情境,引入新課:

  在這一環(huán)節(jié)中,我設(shè)計(jì)了這樣一個(gè)情境,多媒體動(dòng)畫展示,米老鼠來(lái)到了數(shù)學(xué)王國(guó)里的三角形城堡,要求只利用一根繩子,構(gòu)造一個(gè)直角三角形,方可入城,這可難壞了米老鼠,你能幫它想辦法嗎?預(yù)測(cè)大多數(shù)同學(xué)會(huì)無(wú)從下手,這樣引出課題。只有學(xué)習(xí)了勾股定理的逆定理后,大家都能幫助米老鼠進(jìn)入城堡,我認(rèn)為:“大疑而大進(jìn)”這樣做,充分調(diào)動(dòng)學(xué)習(xí)內(nèi)容,激發(fā)求知欲望,動(dòng)漫演示,又有了很強(qiáng)的趣味性,做到課之初,趣已生,疑已質(zhì)。

  (二)實(shí)踐猜想

  本環(huán)節(jié)要圍繞以下幾個(gè)活動(dòng)展開(kāi):

  1、算一算:求以線段a,b為直角邊的直角三角形的斜邊c長(zhǎng)。

  1a=3b=42a=5b=123a=2.5b=64a=6b=8

  2、猜一猜,以下列線段長(zhǎng)為三邊的三角形形狀

  13cm4cm5cm25cm12cm13cm

  32.5cm6cm6.5cm46cm8cm10cm

  3、擺一擺利用方便筷來(lái)操作問(wèn)題2,利用量角器來(lái)度量,驗(yàn)證問(wèn)題2的發(fā)現(xiàn)。

  4、用恰當(dāng)?shù)恼Z(yǔ)言敘述你的結(jié)論

  在算一算中學(xué)生復(fù)習(xí)了勾股定理,猜一猜和擺一擺中學(xué)生小組合作動(dòng)手實(shí)踐,在問(wèn)題1的基礎(chǔ)上做出合理的推測(cè)和猜想,這樣分層遞進(jìn)找到了學(xué)生思維的最近發(fā)展區(qū),面向不同層次的每一名學(xué)生,每一名學(xué)生都有參與數(shù)學(xué)活動(dòng)的機(jī)會(huì),最后運(yùn)用恰當(dāng)?shù)恼Z(yǔ)言表述,得到了勾股定理的逆定理。在整個(gè)過(guò)程的活動(dòng)中,教師給學(xué)生充分的時(shí)間和空間,教師以平等的身份參與小組活動(dòng)中,傾聽(tīng)意見(jiàn),幫助指導(dǎo)學(xué)生的實(shí)踐活動(dòng)。學(xué)生的擺一擺的過(guò)程利用實(shí)物投影儀展示,在活動(dòng)中教師關(guān)注;

  1)學(xué)生的參與意識(shí)與動(dòng)手能力。

  2)是否清楚三角形三邊長(zhǎng)度的平方關(guān)系是因,直角三角形是果。既先有數(shù),后有形。

  3)數(shù)形結(jié)合的思想方法及歸納能力。

  (三)推理證明

  八年級(jí)正是學(xué)生由實(shí)驗(yàn)幾何向推理幾何過(guò)渡的重要時(shí)期,多數(shù)學(xué)生難以由直觀到抽象這一思維的飛躍,而勾股定理的逆定理的證明又不同于以往的幾何圖形的證明,需要構(gòu)造直角三角形才能完成,而構(gòu)造直角三角形就成為解決問(wèn)題的關(guān)鍵,直接拋給學(xué)生證明,無(wú)疑會(huì)石沉大海,所以,我采用分層導(dǎo)進(jìn)的方法,以求一石激起千層浪。

  1.三邊長(zhǎng)度為3cm,4cm,5cm的三角形與以3cm,4cm為直角邊的直角三角形之間有什么關(guān)系?你是怎樣得到的?請(qǐng)簡(jiǎn)要說(shuō)明理由?

  2.△ABC三邊長(zhǎng)a,b,c滿足a2+b2=c2與a,b為直角三角形之間有何關(guān)系?試說(shuō)明理由?

  為了較好完成教師的誘導(dǎo),教師要給學(xué)生獨(dú)立思考的時(shí)間,要給學(xué)生在組內(nèi)交流個(gè)別意見(jiàn)的時(shí)間,教師要深入小組指導(dǎo)與幫助,并利用實(shí)物投影儀展示小組成果,取得階段性成果再探究問(wèn)題2.這樣由特殊到一般,凸顯了構(gòu)造直角三角形這一解決問(wèn)題的關(guān)鍵,讓他們?cè)诓粩嗟奶骄窟^(guò)程中,親自體驗(yàn)參與發(fā)現(xiàn)創(chuàng)造的愉悅,有效的突破了難點(diǎn)。

勾股定理說(shuō)課稿9

  一、 教材分析

  1. 教材的地位和作用

  它也是幾何中最重要的定理,它將形和數(shù)密切聯(lián)系起來(lái),在數(shù)學(xué)的發(fā)展中起著重要的作用。

  因此他的教育教學(xué)價(jià)值就具體體現(xiàn)在如下三維目標(biāo)中:

  知識(shí)與技能:

  1、經(jīng)歷勾股定理的探索過(guò)程,體會(huì)數(shù)形結(jié)合思想。

  2、理解直角三角形三邊的關(guān)系,會(huì)應(yīng)用勾股定理解決一些簡(jiǎn)單的實(shí)際問(wèn)題。

  過(guò)程與方法:

  1、經(jīng)歷觀察—猜想—?dú)w納—驗(yàn)證等一系列過(guò)程,體會(huì)數(shù)學(xué)定理發(fā)現(xiàn)的過(guò)程,由特殊到一般的解決問(wèn)題的方法。

  2、在觀察、猜想、歸納、驗(yàn)證等過(guò)程中培養(yǎng)學(xué)生們的數(shù)學(xué)語(yǔ)言表達(dá)能力和初步的邏輯推理能力。

  情感、態(tài)度與價(jià)值觀:

  1、通過(guò)對(duì)勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣。

  2、在探究活動(dòng)中,體驗(yàn)解決問(wèn)題方法的多樣性,培養(yǎng)學(xué)生們的合作意識(shí)和然所精神。

  3、讓學(xué)生們通過(guò)動(dòng)手實(shí)踐,增強(qiáng)探究和創(chuàng)新意識(shí),體驗(yàn)研究過(guò)程,學(xué)習(xí)研究方法,逐步養(yǎng)成一種積極的生動(dòng)的,自助合作探究的學(xué)習(xí)方式。

  由于八年級(jí)的學(xué)生們具有一定分析能力,但活動(dòng)經(jīng)驗(yàn)不足,所以

  本節(jié)課教學(xué)重點(diǎn):勾股定理的探索過(guò)程,并掌握和運(yùn)用它。

  教學(xué)難點(diǎn):分割,補(bǔ)全法證面積相等,探索勾股定理。

  二..教法學(xué)法分析:

  要上好一堂課,就是要把所確定的三維目標(biāo)有機(jī)地溶入到教學(xué)過(guò)程中去,所以我采用了“引導(dǎo)探究式”的教學(xué)方法:

  先從學(xué)生們熟知的生活實(shí)例出發(fā),以生活實(shí)踐為依托,將生活圖形數(shù)學(xué)化,然后由特殊到一般地提出問(wèn)題,引導(dǎo)學(xué)生們?cè)谧灾魈骄颗c合作交流中解決問(wèn)題,同時(shí)也真正體現(xiàn)了數(shù)學(xué)課堂是學(xué)生們自己的課堂。

  學(xué)法:我想通過(guò)“操作+思考”這樣方式,有效地讓學(xué)生們?cè)趧?dòng)手、動(dòng)腦、自主探究與合作交流中來(lái)發(fā)現(xiàn)新知,同時(shí)讓學(xué)生們感悟到:學(xué)習(xí)任何知識(shí)的最好方法就是自己去探究。

  三、 教學(xué)程序設(shè)計(jì)

  1、 故事引入新課,激起學(xué)生們學(xué)習(xí)興趣。

  牛頓,瓦特的故事,讓學(xué)生們科學(xué)家的偉大成就多數(shù)都是在看似平淡無(wú)奇的現(xiàn)象中發(fā)現(xiàn)和研究出來(lái)的;生活中處處有數(shù)學(xué),我們應(yīng)該學(xué)會(huì)觀察、思考,將學(xué)習(xí)與生活緊密結(jié)合起來(lái)。畢達(dá)哥拉斯的發(fā)現(xiàn)引入新課。

  2、探索新知

  在這里我設(shè)計(jì)了四個(gè)內(nèi)容:

 、偬剿鞯妊苯侨切稳叺年P(guān)系

  ②邊長(zhǎng)為3、4、5為邊長(zhǎng)的直角三角形的三邊關(guān)系

 、蹖W(xué)生們畫兩直角邊為2,6的直角三角形,探索三邊的關(guān)系

  ④三邊為a、b、c的直角三角形的三邊的關(guān)系,(證明)

 、莨垂啥ɡ須v史介紹,讓學(xué)生們體會(huì)勾股定理的文化價(jià)值。

  體現(xiàn)從特殊到一般的發(fā)現(xiàn)問(wèn)題的過(guò)程。

  3、新知運(yùn)用:

 、倥e出勾股定理在生活中的運(yùn)用。(老師講解勾股定理在生活中的運(yùn)用)

 、谠谥苯侨切沃校阎 B=90° ,AB=6,BC=8,求AC.

  ③要做一個(gè)人字梯,要求人字梯的跨度為6米,高為4米,請(qǐng)問(wèn)怎么做?

 、苋鐖D,學(xué)校有一塊長(zhǎng)方形花鋪,有極少數(shù)人為了避開(kāi)拐角走“捷徑”,在花鋪內(nèi)走出了一條“路”.他們僅僅少走了 步路(假設(shè)2步為1米),卻踩傷了花草.

  4、小結(jié)本課:

  學(xué)完了這節(jié)課,你有什么收獲?

  老師補(bǔ)充:科學(xué)家的偉大成就多數(shù)都是在看似平淡無(wú)奇的現(xiàn)象中發(fā)現(xiàn)和研究出來(lái)的;生活中處處有數(shù)學(xué),我們應(yīng)該學(xué)會(huì)觀察、思考,將學(xué)習(xí)與生活緊密結(jié)合起來(lái)。數(shù)學(xué)來(lái)源于實(shí)踐,而又應(yīng)用于實(shí)踐。解決一個(gè)問(wèn)題的方法是多樣性的,我們要多思考。 勾股定是數(shù)學(xué)史上的明珠,證明方法有很多種,我們將在下一節(jié)課學(xué)習(xí)它。

勾股定理說(shuō)課稿10

  一、說(shuō)教材

  本課時(shí)是華師大版八年級(jí)(上)數(shù)學(xué)第14章第二節(jié)內(nèi)容,是在掌握勾股定理的基礎(chǔ)上對(duì)勾股定理的應(yīng)用之一。 勾股定理是我國(guó)古數(shù)學(xué)的一項(xiàng)偉大成就。勾股定理為我們提供了直角三角形的三邊間的數(shù)量關(guān)系,它的逆定理為我們提供了判斷三角形是否屬于直角三角形的依據(jù),也是判定兩條直線是否互相垂直的一個(gè)重要方法,這些成果被廣泛應(yīng)用于數(shù)學(xué)和實(shí)際生活的各個(gè)方面。教材在編寫時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問(wèn)題的能力,通過(guò)實(shí)際分析,使學(xué)生獲得較為直觀的印象,通過(guò)聯(lián)系和比較,了解勾股定理在實(shí)際生活中的廣泛應(yīng)用。 據(jù)此,制定教學(xué)目標(biāo)如下:

  1、知識(shí)和方法目標(biāo):通過(guò)對(duì)一些典型題目的思考,練習(xí),能正確熟練地進(jìn)行勾股定理有關(guān)計(jì)算,深入對(duì)勾股定理的理解。

  2、過(guò)程與方法目標(biāo):通過(guò)對(duì)一些題目的探討,以達(dá)到掌握知識(shí)的目的。

  3、情感與態(tài)度目標(biāo):感受數(shù)學(xué)在生活中的應(yīng)用,感受數(shù)學(xué)定理的美。

  教學(xué)重點(diǎn):勾股定理的應(yīng)用。

  教學(xué)難點(diǎn):勾股定理的正確使用。

  教學(xué)關(guān)鍵:在現(xiàn)實(shí)情境中捕抓直角三角形,確定好直角三角形之后,再應(yīng)用勾股定理。

  二、說(shuō)教法和學(xué)法

  1、以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運(yùn)用各種手段激發(fā)學(xué)習(xí)欲望和興趣,組織學(xué)生活動(dòng),讓學(xué)生主動(dòng)參與學(xué)習(xí)全過(guò)程。

  2、切實(shí)體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過(guò)觀察,分析,討論,操作,歸納理解定理,提高學(xué)生動(dòng)手操作能力,以及分析問(wèn)題和解決問(wèn)題的能力。

  3、通過(guò)演示實(shí)物,引導(dǎo)學(xué)生觀察,操作,分析,證明,使學(xué)生獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。

  三、教學(xué)程序

  本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生的動(dòng)手,動(dòng)腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)置如下:

  一、回顧問(wèn):

  勾股定理的內(nèi)容是什么? 勾股定理揭示了直角三角形三邊之間的關(guān)系,今天我們來(lái)學(xué)習(xí)這個(gè)定理在實(shí)際生活中的應(yīng)用。

  二、新授課例

  1、如圖所示,有一個(gè)圓柱,它的高AB等于4厘米,底面周長(zhǎng)等于20厘米,在圓柱下底面的A點(diǎn)有一只螞蟻,它想吃到上底面與A點(diǎn)相對(duì)的C點(diǎn)處的食物,沿圓柱側(cè)面爬行的最短路線是多少?(課本P57圖14.2.1)

 、賹W(xué)生取出自制圓柱,,嘗試從A點(diǎn)到C點(diǎn)沿圓柱側(cè)面畫出幾條路線。思考:那條路線最短?

 、谌鐖D,將圓柱側(cè)面剪開(kāi)展成一個(gè)長(zhǎng)方形,從A點(diǎn)到C點(diǎn)的最短路線是什么?你畫得對(duì)嗎?

 、畚浵亸腁點(diǎn)出發(fā),想吃到C點(diǎn)處的食物,它沿圓柱側(cè)面爬行的最短路線是什么?

  思路點(diǎn)撥:引導(dǎo)學(xué)生在自制的圓柱側(cè)面上尋找最短路線;提醒學(xué)生將圓柱側(cè)面展開(kāi)成長(zhǎng)方形,引導(dǎo)學(xué)生觀察分析發(fā)現(xiàn)“兩點(diǎn)之間的所有線中,線段最短”。 學(xué)生在自主探索的基礎(chǔ)上興趣高漲,氣氛異常的活躍,他們發(fā)現(xiàn)螞蟻從A點(diǎn)往上爬到B點(diǎn)后順著直徑爬向C點(diǎn)爬行的路線是最短的!我也意外的發(fā)現(xiàn)了這種爬法是正確的,但是課本上是順著側(cè)面往上爬的,我就告訴學(xué)生:“課本中的圓柱體是沒(méi)有上蓋的”。只有這樣課本上的解答才算是完全正確的。例2.(課本P58圖14.2.3)

  思路點(diǎn)撥:廠門的寬度是足夠的,這個(gè)問(wèn)題的關(guān)鍵是觀察當(dāng)卡車位于廠門正中間時(shí)其高度是否小于CH,點(diǎn)D在離廠門中線0.8米處,且CD⊥AB, 與地面交于H,尋找出Rt△OCD,運(yùn)用勾股定理求出2.3m,CD= = =0.6,CH=0.6+2.3=2.9>2.5可見(jiàn)卡車能順利通過(guò) 。詳細(xì)解題過(guò)程看課本 引導(dǎo)學(xué)生完成P58做一做。

  三、課堂小練

  1、課本P58練習(xí)第1,2題。

  2、探究: 一門框的尺寸如圖所示,一塊長(zhǎng)3米,寬2.2米的薄木板是否能從門框內(nèi)通過(guò)?為什么?

  四、小結(jié)

  直角三角形在實(shí)際生活中有更為廣泛的應(yīng)用希望同學(xué)們能緊緊抓住直角三角形的性質(zhì),學(xué)透勾股定理的具體應(yīng)用,那樣就能很輕松的解決現(xiàn)實(shí)生活中的許多問(wèn)題,達(dá)到事倍功半的效果。

  五、布置作業(yè)

  課本P60習(xí)題14.2第1,2,3題。

勾股定理說(shuō)課稿11

  一、 教材分析

 。ㄒ唬┙滩牡匚

  這節(jié)課是九年制義務(wù)教育初級(jí)中學(xué)教材北師大版八年級(jí)第一章第一節(jié)《探索勾股定理》第一課時(shí),它在數(shù)學(xué)的發(fā)展中起過(guò)重要的作用,在現(xiàn)時(shí)世界中也有著廣泛的作用。學(xué)生通過(guò)對(duì)勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對(duì)直角三角形有進(jìn)一步的認(rèn)識(shí)和理解。

 。ǘ┙虒W(xué)目標(biāo)

  知識(shí)與能力:掌握勾股定理,并能運(yùn)用勾股定理解決一些簡(jiǎn)單實(shí)際問(wèn)題.

  過(guò)程與方法:經(jīng)歷探索及驗(yàn)證勾股定理的過(guò)程,了解利用拼圖驗(yàn)證勾股定理的方法,發(fā)展學(xué)生的合情推理意識(shí)、主動(dòng)探究的習(xí)慣,感受數(shù)形結(jié)合和從特殊到一般的思想.

  情感態(tài)度與價(jià)值觀:激發(fā)學(xué)生愛(ài)國(guó)熱情,讓學(xué)生體驗(yàn)自己努力得到結(jié)論的成就感,體驗(yàn)數(shù)學(xué)充滿探索和創(chuàng)造,體驗(yàn)數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡數(shù)學(xué).

 。ㄈ┙虒W(xué)重點(diǎn):經(jīng)歷探索及驗(yàn)證勾股定理的過(guò)程,并能用它來(lái)解決一些簡(jiǎn)單的實(shí)際問(wèn)題。

  教學(xué)難點(diǎn):用面積法(拼圖法)發(fā)現(xiàn)勾股定理。

  突出重點(diǎn)、突破難點(diǎn)的辦法:發(fā)揮學(xué)生的主體作用,通過(guò)學(xué)生動(dòng)手實(shí)驗(yàn),讓學(xué)生在實(shí)驗(yàn)中探索、在探索中領(lǐng)悟、在領(lǐng)悟中理解.

  二、教法與學(xué)法分析:

  學(xué)情分析:八年級(jí)學(xué)生已經(jīng)具備一定的觀察、歸納、猜想和推理的能力.他們?cè)谛W(xué)已學(xué)習(xí)了一些幾何圖形的面積計(jì)算方法(包括割補(bǔ)、拼接),但運(yùn)用面積法和割補(bǔ)思想來(lái)解決問(wèn)題的意識(shí)和能力還不夠.另外,學(xué)生普遍學(xué)習(xí)積極性較高,課堂活動(dòng)參與較主動(dòng),但合作交流的能力還有待加強(qiáng).

  教法分析:結(jié)合八年級(jí)學(xué)生和本節(jié)教材的特點(diǎn),在教學(xué)中采用“問(wèn)題情境----建立模型----解釋應(yīng)用---拓展鞏固”的模式, 選擇引導(dǎo)探索法。把教學(xué)過(guò)程轉(zhuǎn)化為學(xué)生親身觀察,大膽猜想,自主探究,合作交流,歸納總結(jié)的過(guò)程。

  學(xué)法分析:在教師的組織引導(dǎo)下,學(xué)生采用自主探究合作交流的研討式學(xué)習(xí)方式,使學(xué)生真正成為學(xué)習(xí)的主人.

  三、 教學(xué)過(guò)程設(shè)計(jì)

  1.創(chuàng)設(shè)情境,提出問(wèn)題

  2.實(shí)驗(yàn)操作,模型構(gòu)建

  3.回歸生活,應(yīng)用新知

  4.知識(shí)拓展,鞏固深化5.感悟收獲,布置作業(yè)

  (一)創(chuàng)設(shè)情境提出問(wèn)題

  (1)圖片欣賞 勾股定理數(shù)形圖 1955年希臘發(fā)行 美麗的勾股樹(shù) 20xx年國(guó)際數(shù)學(xué) 的一枚紀(jì)念郵票 大會(huì)會(huì)標(biāo) 設(shè)計(jì)意圖:通過(guò)圖形欣賞,感受數(shù)學(xué)美,感受勾股定理的文化價(jià)值.

  (2) 某樓房三樓失火,消防隊(duì)員趕來(lái)救火,了解到每層樓高3米,消防隊(duì)員取來(lái)6.5米長(zhǎng)的云梯,如果梯子的底部離墻基的距離是2.5米,請(qǐng)問(wèn)消防隊(duì)員能否進(jìn)入三樓滅火?

  設(shè)計(jì)意圖:以實(shí)際問(wèn)題為切入點(diǎn)引入新課,反映了數(shù)學(xué)來(lái)源于實(shí)際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識(shí)的發(fā)生過(guò)程,解決問(wèn)題的過(guò)程也是一個(gè)“數(shù)學(xué)化”的過(guò)程,從而引出下面的環(huán)節(jié).

  二、實(shí)驗(yàn)操作模型構(gòu)建

  1.等腰直角三角形(數(shù)格子)

  2.一般直角三角形(割補(bǔ))

  問(wèn)題一:對(duì)于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關(guān)系?

  設(shè)計(jì)意圖:這樣做利于學(xué)生參與探索,利于培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想.

  問(wèn)題二:對(duì)于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個(gè)關(guān)系嗎?(割補(bǔ)法是本節(jié)的難點(diǎn),組織學(xué)生合作交流)

  設(shè)計(jì)意圖:不僅有利于突破難點(diǎn),而且為歸納結(jié)論打下基礎(chǔ),讓學(xué)生的分析問(wèn)題解決問(wèn)題的能力在無(wú)形中得到提高.

  通過(guò)以上實(shí)驗(yàn)歸納總結(jié)勾股定理.

  設(shè)計(jì)意圖:學(xué)生通過(guò)合作交流,歸納出勾股定理的雛形,培養(yǎng)學(xué)生抽象、概括的能力,同時(shí)發(fā)揮了學(xué)生的主體作用,體驗(yàn)了從特殊—— 一般的認(rèn)知規(guī)律.

  三.回歸生活應(yīng)用新知

  讓學(xué)生解決開(kāi)頭情景中的問(wèn)題,前呼后應(yīng),增強(qiáng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識(shí),增加學(xué)以致用的樂(lè)趣和信心.

  四、知識(shí)拓展鞏固深化

  基礎(chǔ)題,情境題,探索題.

  設(shè)計(jì)意圖:給出一組題目,分三個(gè)梯度,由淺入深層層練習(xí),照顧學(xué)生的個(gè)體差異,關(guān)注學(xué)生的個(gè)性發(fā)展.知識(shí)的運(yùn)用得到升華.

  基礎(chǔ)題: 直角三角形的一直角邊長(zhǎng)為3,斜邊為5,另一直角邊長(zhǎng)為X,你可以根據(jù)條件提出多少個(gè)數(shù)學(xué)問(wèn)題?你能解決所提出的問(wèn)題嗎?

  設(shè)計(jì)意圖:這道題立足于雙基.通過(guò)學(xué)生自己創(chuàng)設(shè)情境,鍛煉了發(fā)散思維.

  情境題:小明媽媽買了一部29英寸(74厘米)的電視機(jī).小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長(zhǎng)和46厘米寬,他覺(jué)得一定是售貨員搞錯(cuò)了.你同意他的想法嗎?

  設(shè)計(jì)意圖:增加學(xué)生的生活常識(shí),也體現(xiàn)了數(shù)學(xué)源于生活,并用于生活。

  探索題: 做一個(gè)長(zhǎng),寬,高分別為50厘米,40厘米,30厘米的木箱,一根長(zhǎng)為70厘米的木棒能否放入,為什么?試用今天學(xué)過(guò)的知識(shí)說(shuō)明。

  設(shè)計(jì)意圖:探索題的難度相對(duì)大了些,但教師利用教學(xué)模型和學(xué)生合作交流的方式,拓展學(xué)生的思維、發(fā)展空間想象能力.

  五、感悟收獲布置作業(yè): 這節(jié)課你的收獲是什么?

  作業(yè): 李景萍《探索勾股定理》第一課時(shí)說(shuō)課稿 1、課本習(xí)題2.1 2、搜集有關(guān)勾股定理證明的資料.

  板書(shū)設(shè)計(jì) 探索勾股定理

  如果直角三角形兩直角邊分別為a,b,斜邊為c,那么

  李景萍《探索勾股定理》第一課時(shí)說(shuō)課稿

  設(shè)計(jì)說(shuō)明::1.探索定理采用面積法,為學(xué)生創(chuàng)設(shè)一個(gè)和諧、寬松的情境,讓學(xué)生體會(huì)數(shù)形結(jié)合及從特殊到一般的思想方法.

  2.讓學(xué)生人人參與,注重對(duì)學(xué)生活動(dòng)的評(píng)價(jià),一是學(xué)生在活動(dòng)中的投入程度;二是學(xué)生在活動(dòng)中表現(xiàn)出來(lái)的思維水平、表達(dá)水平.

勾股定理說(shuō)課稿12

  一、說(shuō)教材分析:

(一)本節(jié)內(nèi)容在全書(shū)和章節(jié)的地位

  這節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)(華東版),八年級(jí)第十九章第二節(jié)“勾股定理”第一課時(shí)。勾股定理是學(xué)生在已經(jīng)掌握了直角三角形有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個(gè)三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形的主要依據(jù)之一,在實(shí)際生活中用途很大。教材在編寫時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和觀察分析問(wèn)題的能力;通過(guò)實(shí)際分析,拼圖等活動(dòng),使學(xué)生獲得較為直觀的印象;通過(guò)聯(lián)系比較,理解勾股定理,以便于正確的進(jìn)行運(yùn)用。

  (二)三維教學(xué)目標(biāo):

  1、【知識(shí)與能力目標(biāo)】

  ⒈理解并掌握勾股定理的內(nèi)容和證明,能靈活運(yùn)用勾股定理及其計(jì)算;

 、餐ㄟ^(guò)觀察分析,大膽猜想,并且探索勾股定理,培養(yǎng)學(xué)生動(dòng)手操作、合作交流、邏輯推理的能力。

  2、【過(guò)程與方法目標(biāo)】

  在探索勾股定理的過(guò)程中,讓學(xué)生經(jīng)歷“觀察—猜想—?dú)w納—驗(yàn)證”的數(shù)學(xué)思想,并且體會(huì)數(shù)形結(jié)合和從特殊到一般的思想方法。

  3、【情感態(tài)度與價(jià)值觀】通過(guò)介紹中國(guó)古代勾股方面的成就,激發(fā)學(xué)生熱愛(ài)祖國(guó)和熱愛(ài)祖國(guó)悠久文化的思想感情,培養(yǎng)學(xué)生的民族自豪感和鉆研精神。

 。ㄈ┙虒W(xué)重點(diǎn)、難點(diǎn):

  【教學(xué)重點(diǎn)】勾股定理的證明與運(yùn)用

  【教學(xué)難點(diǎn)】用面積法等方法證明勾股定理

  【難點(diǎn)成因】對(duì)于勾股定理的得出,首先需要學(xué)生通過(guò)動(dòng)手操作,在觀察的基礎(chǔ)上,大膽猜想數(shù)學(xué)結(jié)論,而這需要學(xué)生具備一定的分析、歸納的思維方法和運(yùn)用數(shù)學(xué)的思想意識(shí),但學(xué)生在這一方面的可預(yù)見(jiàn)性和耐挫折能力并不是很成熟,從而形成困難。

  【突破措施】:

 、眲(chuàng)設(shè)情景,激發(fā)思維:創(chuàng)設(shè)生動(dòng)、啟發(fā)性的問(wèn)題情景,激發(fā)學(xué)生的問(wèn)題沖突,讓學(xué)生在感到“有趣”、“有意思”的狀態(tài)下進(jìn)入學(xué)習(xí)過(guò)程;

  ⒉自主探索,敢于猜想:充分讓自己動(dòng)手操作,大膽猜想數(shù)學(xué)問(wèn)題的結(jié)論,老師是整個(gè)活動(dòng)的組織者,更是一位參入者,學(xué)生之間相互交流、協(xié)作,從而形成生動(dòng)的課堂環(huán)境;

 、硰垞P(yáng)個(gè)性,展示風(fēng)采:實(shí)行“小組合作制”,各小組中自己推薦一人擔(dān)任“發(fā)言人”,一人擔(dān)任“書(shū)記員”,在討論結(jié)束后,由小組的“發(fā)言人”匯報(bào)本小組的討論結(jié)果,并可上臺(tái)利用“多媒體視頻展示臺(tái)”展示本組的優(yōu)秀作品,其他小組給予評(píng)價(jià)。這樣既保證討論的有效性,也調(diào)動(dòng)了學(xué)生的學(xué)習(xí)積極性。

  二、說(shuō)教法與學(xué)法分析

  【教法分析】數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科,因此在教學(xué)中,不僅要使學(xué)生“知其然”,而且還要使學(xué)生“知其所以然”。針對(duì)初二年級(jí)學(xué)生的認(rèn)知結(jié)構(gòu)和心理特征,本節(jié)課可選擇“引導(dǎo)探索法”,由淺到深,由特殊到一般的提出問(wèn)題。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念緊隨新課改理念,也反映了時(shí)代精神;镜慕虒W(xué)程序是“創(chuàng)設(shè)情景—?jiǎng)邮植僮鳌獨(dú)w納驗(yàn)證—問(wèn)題解決—課堂小結(jié)—布置作業(yè)”六個(gè)方面。

  【學(xué)法分析】新課標(biāo)明確提出要培養(yǎng)“可持續(xù)發(fā)展的學(xué)生”,因此教師要有組織、有目的、有針對(duì)性的引導(dǎo)學(xué)生并且參入到學(xué)習(xí)活動(dòng)中,鼓勵(lì)學(xué)生采用自主探索,合作交流的研討式學(xué)習(xí)方式,培養(yǎng)學(xué)生“動(dòng)手”、“動(dòng)腦”、“動(dòng)口”的習(xí)慣與能力,使得學(xué)生真正的成為學(xué)習(xí)的主人。

  三、說(shuō)教學(xué)過(guò)程設(shè)計(jì)

(一)創(chuàng)設(shè)情景

  多媒體課件演示FLASH小動(dòng)畫片:某樓房三樓失火,消防隊(duì)員趕來(lái)救火,了解到每層樓高3米,消防隊(duì)員取來(lái)6.5米長(zhǎng)的云梯,如果梯子的底部離墻基的距離是2.5米,請(qǐng)問(wèn)消防隊(duì)員能否進(jìn)入三樓滅火?

  問(wèn)題的設(shè)計(jì)有一定的挑戰(zhàn)性,目的是激發(fā)學(xué)生的探究欲望,老師要注意引導(dǎo)學(xué)生將實(shí)際問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,也就是“已知一直角三角形的兩邊,求第三邊?”的問(wèn)題。學(xué)生會(huì)感到一些困難,從而老師指出學(xué)習(xí)了今天的這節(jié)課后,同學(xué)們就會(huì)有辦法解決了。這種以實(shí)際問(wèn)題作為切入點(diǎn)導(dǎo)入新課,不僅自然,而且也反映了“數(shù)學(xué)來(lái)源于生活”,學(xué)習(xí)數(shù)學(xué)是為更好“服務(wù)于生活”。

 。ǘ﹦(dòng)手操作

 、闭n件出示課本P99圖19.2.1:

  觀察圖中用陰影畫出的三個(gè)正方形,你從中能得出什么結(jié)論?

  學(xué)生可能會(huì)考慮到各種不同的思考方法,老師要給予肯定,并且要鼓勵(lì)學(xué)生用語(yǔ)言進(jìn)行描述,引導(dǎo)學(xué)生發(fā)現(xiàn)SP+SQ=SR(此時(shí)讓小組“發(fā)言人”發(fā)言),從而讓學(xué)生通過(guò)正方形的面積之間的關(guān)系發(fā)現(xiàn):對(duì)于等腰直角三角形,其兩直角邊的平方和等于斜邊的平方,即當(dāng)∠C=90°,AC=BC時(shí),則AC2+BC2=AB2。這樣做有利于學(xué)生參與探索,感受數(shù)學(xué)學(xué)習(xí)的過(guò)程,也有利于培養(yǎng)學(xué)生的語(yǔ)言表達(dá)能力,體會(huì)數(shù)形結(jié)合的思想。

 、簿o接著讓學(xué)生思考:上述是在等腰直角三角形中的情況,那么在一般情況下的直角三角形中,是否也存在這一結(jié)論呢?于是再利用多媒體投影出P100圖19.2.2(一般直角三角形)。學(xué)生可以同樣求出正方形P和Q的面積,只是求正方形R的面積有一些困難,這時(shí)可讓學(xué)生在預(yù)先準(zhǔn)備的方格紙上畫出圖形,再剪一剪、拼一拼,通過(guò)小組合作、交流后,學(xué)生就能發(fā)現(xiàn):對(duì)于一般的以整數(shù)為邊長(zhǎng)的直角三角形也存在兩直角邊的平方和等于斜邊的平方。通過(guò)學(xué)生的動(dòng)手操作、合作交流,來(lái)獲取知識(shí),這樣設(shè)計(jì)有利于突破難點(diǎn),也讓學(xué)生體會(huì)到觀察、猜想、歸納的數(shù)學(xué)思想及學(xué)習(xí)過(guò)程,提高學(xué)生的分析問(wèn)題和解決問(wèn)題的能力。

 、吃賳(wèn):當(dāng)邊長(zhǎng)不為整數(shù)的直角三角形是否也是存在這一結(jié)論呢?投影例題:一個(gè)邊長(zhǎng)分別為1.5,3.6,3.9這種含有小數(shù)的直角三角形,讓學(xué)生計(jì)算。這樣設(shè)計(jì)的目的是讓學(xué)生體會(huì)到“從特殊到一般”的情形,這樣歸納的結(jié)論更具有一般性。

(三)歸納驗(yàn)證

  【歸納】通過(guò)動(dòng)手操作、合作交流,探索邊長(zhǎng)為整數(shù)的等腰直角三角形到一般的直角三角形,再到邊長(zhǎng)為小數(shù)的直角三角形的兩直角邊與斜邊的關(guān)系,讓學(xué)生在整個(gè)學(xué)習(xí)過(guò)程中感受學(xué)數(shù)學(xué)的樂(lè)趣,,使學(xué)生學(xué)會(huì)“文字語(yǔ)言”與“數(shù)學(xué)語(yǔ)言”這兩種表達(dá)方式,各小組“發(fā)言人”的積極表現(xiàn),整一堂課充分發(fā)揮學(xué)生的主體作用,真正獲取知識(shí),解決問(wèn)題。

  【驗(yàn)證】先后的三次驗(yàn)證“勾股定理”這一結(jié)論,期間學(xué)生動(dòng)手進(jìn)行了畫圖、剪圖、拼圖,還有測(cè)量、計(jì)算等活動(dòng),使學(xué)生從中體會(huì)到數(shù)形結(jié)合和從特殊到一般的數(shù)學(xué)思想,而且這一過(guò)程也是有利于培養(yǎng)學(xué)生嚴(yán)謹(jǐn)、科學(xué)的學(xué)習(xí)態(tài)度。

 。ㄋ模﹩(wèn)題解決

 、弊寣W(xué)生解決開(kāi)始上課前所提出的問(wèn)題,前后呼應(yīng),讓學(xué)生體會(huì)到成功的快樂(lè)。

  ⒉自學(xué)課本P101例1,然后完成P102練習(xí)。

 。ㄎ澹┱n堂小結(jié)

  1.小組成員從內(nèi)容、數(shù)學(xué)思想方法、獲取知識(shí)的途徑進(jìn)行小結(jié),后由“發(fā)言人”匯報(bào),小組間要互相比一比,看看哪一個(gè)小組表現(xiàn)最佳。

  2.教師用多媒體介紹“勾股定理史話”

 、佟吨荀滤銖健罚何髦艿纳谈撸ü磺Ф嗄昵埃┌l(fā)現(xiàn)了“勾三股四弦五”這一規(guī)律。

 、诳滴鯏(shù)學(xué)專著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是其獨(dú)創(chuàng)。

  目的是對(duì)學(xué)生進(jìn)行愛(ài)國(guó)主義教育,激勵(lì)學(xué)生要奮發(fā)向上。

 。┎贾米鳂I(yè)

  課本P104習(xí)題19.2中的第1.2.3題。目的一方面是鞏固“勾股定理”,另一方面是讓學(xué)生進(jìn)一步體會(huì)定理與實(shí)際生活的聯(lián)系。

勾股定理說(shuō)課稿13

  一、教材分析

  勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個(gè)三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計(jì)算問(wèn)題,是解直角三角形的主要根據(jù)之一,在實(shí)際生活中用途很大。教材在編寫時(shí)注意培養(yǎng)學(xué)生的動(dòng)手操作能力和分析問(wèn)題的能力,通過(guò)實(shí)際分析、拼圖等活動(dòng),使學(xué)生獲得較為直觀的印象;通過(guò)聯(lián)系和比較,理解勾股定理,以利于正確的進(jìn)行運(yùn)用。

  據(jù)此,制定教學(xué)目標(biāo)如下:

  1、理解并掌握勾股定理及其證明。

  2、能夠靈活地運(yùn)用勾股定理及其計(jì)算。

  3、培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。

  4、通過(guò)介紹中國(guó)古代勾股方面的成就,激發(fā)學(xué)生熱愛(ài)祖國(guó)與熱愛(ài)祖國(guó)悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。

  教學(xué)重點(diǎn):勾股定理的證明和應(yīng)用。

  教學(xué)難點(diǎn):勾股定理的證明。

  二、教法和學(xué)法

  教法和學(xué)法是體現(xiàn)在整個(gè)教學(xué)過(guò)程中的,本課的教法和學(xué)法體現(xiàn)如下特點(diǎn):

  1、以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運(yùn)用各種手段激發(fā)學(xué)生學(xué)習(xí)欲望和興趣,組織學(xué)生活動(dòng),讓學(xué)生主動(dòng)參與學(xué)習(xí)全過(guò)程。

  2、切實(shí)體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過(guò)觀察、分析、討論、操作、歸納,理解定理,提高學(xué)生動(dòng)手操作能力,以及分析問(wèn)題和解決問(wèn)題的能力。

  3、通過(guò)演示實(shí)物,引導(dǎo)學(xué)生觀察、操作、分析、證明,使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。

  三、教學(xué)程序

  本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生動(dòng)手、動(dòng)腦方面,根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)計(jì)如下:

 。ㄒ唬﹦(chuàng)設(shè)情境 以古引新

  1、由故事引入,3000多年前有個(gè)叫商高的人對(duì)周公說(shuō),把一根直尺折成直角,兩端連接得到一個(gè)直角三角形。如果勾是3,股是4,那么弦等于5。這樣引起學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生求知欲。

  2、是不是所有的直角三角形都有這個(gè)性質(zhì)呢?教師要善于激疑,使學(xué)生進(jìn)入樂(lè)學(xué)狀態(tài)。

  3、板書(shū)課題,出示學(xué)習(xí)目標(biāo)。

  (二)初步感知 理解教材

  教師指導(dǎo)學(xué)生自學(xué)教材,通過(guò)自學(xué)感悟理解新知。體現(xiàn)了學(xué)生的自主學(xué)習(xí)意識(shí),鍛煉學(xué)生主動(dòng)探究知識(shí),養(yǎng)成良好的自學(xué)習(xí)慣。

 。ㄈ┵|(zhì)疑解難 討論歸納

  1、教師設(shè)疑或?qū)W生提疑。如:怎樣證明勾股定理?學(xué)生通過(guò)自學(xué),中等以上的學(xué)生基本掌握,這時(shí)能激發(fā)學(xué)生的表現(xiàn)欲。

  2、教師引導(dǎo)學(xué)生按照要求進(jìn)行拼圖,觀察并分析;

 。1)這兩個(gè)圖形有什么特點(diǎn)?

  (2)你能寫出這兩個(gè)圖形的面積嗎?

  (3)如何運(yùn)用勾股定理?是否還有其他形式?

  這時(shí)教師組織學(xué)生分組討論,調(diào)動(dòng)全體學(xué)生的積極性,達(dá)到人人參與的效果,接著全班交流;先有某一組代表發(fā)言,說(shuō)明本組對(duì)問(wèn)題的理解程度,其他各組作評(píng)價(jià)和補(bǔ)充。教師及時(shí)進(jìn)行富有啟發(fā)性的點(diǎn)撥。最后,師生共同歸納,形成一致意見(jiàn),最終解決疑難。

  (四)鞏固練習(xí) 強(qiáng)化提高

  1、出示練習(xí),學(xué)生分組解答,并由學(xué)生總結(jié)解題規(guī)律。課堂教學(xué)中動(dòng)靜結(jié)合,以免引起學(xué)生的疲勞。

  2、出示例1學(xué)生試解,師生共同評(píng)價(jià),以加深對(duì)例題的理解與運(yùn)用。針對(duì)例題再次出現(xiàn)鞏固練習(xí),進(jìn)一步提高學(xué)生運(yùn)用知識(shí)的能力,對(duì)練習(xí)中出現(xiàn)的情況可采取互評(píng)、互議的形式,在互評(píng)互議中出現(xiàn)的具有代表性的問(wèn)題,教師可以采取全班討論的形式予以解決,以此突出教學(xué)重點(diǎn)。

 。ㄎ澹w納總結(jié) 練習(xí)反饋

  引導(dǎo)學(xué)生對(duì)知識(shí)要點(diǎn)進(jìn)行總結(jié),梳理學(xué)習(xí)思路。分發(fā)自我反饋練習(xí),學(xué)生獨(dú)立完成。

  本課意在創(chuàng)設(shè)愉悅和諧的樂(lè)學(xué)氣氛,優(yōu)化教學(xué)手段,借助電教手段提高課堂教學(xué)效率,建立平等、民主、和諧的師生關(guān)系。加強(qiáng)師生間的合作,營(yíng)造一種學(xué)生敢想、感說(shuō)、感問(wèn)的課堂氣氛,讓全體學(xué)生都能生動(dòng)活潑、積極主動(dòng)地教學(xué)活動(dòng),在學(xué)習(xí)中創(chuàng)新精神和實(shí)踐能力得到培養(yǎng)。

勾股定理說(shuō)課稿14

  各位老師、評(píng)委:大家好﹗

  今天我說(shuō)課的題目是選自人教版八年級(jí)數(shù)學(xué)第十八章第一節(jié)的內(nèi)容:勾股定理。

  我將從以下這幾個(gè)方面進(jìn)行本節(jié)課的闡述:教材分析、學(xué)情分析、教法、學(xué)法指導(dǎo)、教學(xué)過(guò)程設(shè)計(jì)以及教學(xué)反思。

  下面請(qǐng)大家和我共同走進(jìn)教材。

  (一)教材分析

 、苯滩牡牡匚缓妥饔

  《勾股定理》是人教版新課標(biāo)八年級(jí)數(shù)學(xué)第十八章第一節(jié)第一課時(shí)內(nèi)容,勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進(jìn)行學(xué)習(xí)的,是中學(xué)數(shù)學(xué)幾個(gè)重要定理之一。它揭示了一個(gè)直角三角形三條邊之間的數(shù)量關(guān)系,是解直角三角形的主要根據(jù)之一,在實(shí)際生活中用途很大。勾股定理的發(fā)現(xiàn)、驗(yàn)證和應(yīng)用蘊(yùn)含著豐富的文化價(jià)值,它在理論上占有重要地位,學(xué)好本節(jié)至關(guān)重要。

 、步虒W(xué)目標(biāo)

  根據(jù)新課程標(biāo)準(zhǔn)對(duì)學(xué)生知識(shí)、能力的要求,結(jié)合八年級(jí)學(xué)生實(shí)際水平、認(rèn)知特點(diǎn)制定以下教學(xué)目標(biāo)。

  知識(shí)與技能:了解勾股定理的文化背景,體驗(yàn)勾股定理的探索過(guò)程,能夠靈活地運(yùn)用勾股定理及其計(jì)算。

  過(guò)程與方法:讓學(xué)生經(jīng)歷“觀察-猜想-歸納-驗(yàn)證”的數(shù)學(xué)過(guò)程,并從中體會(huì)數(shù)形結(jié)合及從特殊到一般的數(shù)學(xué)思想。培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。

  情感態(tài)度與價(jià)值觀:通過(guò)介紹我國(guó)古代在研究勾股定理方面取得的偉大成就,激發(fā)學(xué)生熱愛(ài)祖國(guó)與熱愛(ài)祖國(guó)悠久文化的思想感情,培養(yǎng)他們的民族自豪感,在探索問(wèn)題的過(guò)程中,培養(yǎng)學(xué)生的合作交流意識(shí)和探索精神。

  3.重點(diǎn)和難點(diǎn)

  勾股定理的學(xué)習(xí)是建立在掌握一般三角形的性質(zhì)、直角三角形以及三角形全等的基礎(chǔ)上, 是直角三角形性質(zhì)的拓展。本節(jié)課主要是對(duì)勾股定理的探索和勾股定理的證明。勾股定理的證明方法很多,本節(jié)課介紹的是等積法。通過(guò)本節(jié)課的教學(xué),引領(lǐng)學(xué)生從不同的角度發(fā)現(xiàn)問(wèn)題、用多樣化策略解決問(wèn)題,從而提高學(xué)生分析、解決問(wèn)題的能力。

  因此本節(jié)課的重點(diǎn):是勾股定理的發(fā)現(xiàn)、驗(yàn)證和應(yīng)用。

  八年級(jí)學(xué)生已初步具備幾何的觀察能力和說(shuō)理能力,也有了一定的空間想象和動(dòng)手操作能力,但是他們的推理能力較弱、抽象思維能力不足。而本節(jié)課采用的是等積法證明。由于學(xué)生之前沒(méi)有接觸過(guò)等積法證明,他們對(duì)這種證明方法感到很陌生,尤其是覺(jué)得推理根據(jù)不明確,不象證明,沒(méi)有教師的啟發(fā)引領(lǐng),學(xué)生不容易獨(dú)立想到。

  因此本節(jié)課的難點(diǎn):是用拼圖方法、面積法證明勾股定理。

  (二)學(xué)情分析

  八年級(jí)學(xué)生已初步具有幾何圖形的觀察,幾何證明的理論思維能力。希望老師預(yù)設(shè)便于他們進(jìn)行觀察的幾何環(huán)境,給他們發(fā)表自己見(jiàn)解和表現(xiàn)自己才華的機(jī)會(huì),希望老師滿足他們的創(chuàng)造愿望,讓他們實(shí)際操作,使他們獲得施展自己創(chuàng)造才能的機(jī)會(huì)。

  (三)說(shuō)教學(xué)方法

  數(shù)學(xué)是一門培養(yǎng)人的思維,發(fā)展人的思維的重要學(xué)科,因此,在教學(xué)中,要展現(xiàn)獲取知識(shí)和方法的思維過(guò)程, 針對(duì)八年級(jí)學(xué)生的知識(shí)結(jié)構(gòu)和心理特征,本節(jié)課采取引導(dǎo)探索法,由淺入深,由特殊到一般地提出問(wèn)題。以導(dǎo)為主,采用設(shè)疑的形式,讓學(xué)生通過(guò)觀察、分析、討論、操作、歸納,理解定理,提高學(xué)生動(dòng)手操作能力,以及分析問(wèn)題和解決問(wèn)題的能力。使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知。并利用教具與多媒體進(jìn)行教學(xué)。

  (四)說(shuō)學(xué)習(xí)方法

  我們常說(shuō):“現(xiàn)代的文盲不是不識(shí)字的人, 而是沒(méi)有掌握學(xué)習(xí)方法的人”, 因而在教學(xué)中要特別重視學(xué)法的指導(dǎo), 我采用了如下的學(xué)法指導(dǎo):

  在教師的組織引導(dǎo)下,采用自主探索、合作交流的研討式學(xué)習(xí)方式,讓學(xué)生思考問(wèn)題,獲取知識(shí),掌握方法,借此培養(yǎng)學(xué)生動(dòng)手、動(dòng)腦、動(dòng)口的能力,使學(xué)生真正成為學(xué)習(xí)的主體。

  (五)說(shuō)教學(xué)過(guò)程

  根據(jù)學(xué)生的認(rèn)知規(guī)律和學(xué)習(xí)心理,本節(jié)課分六個(gè)活動(dòng)進(jìn)行學(xué)習(xí),為了擴(kuò)大課堂容量節(jié)省時(shí)間提高課堂效率,擬采用多媒體教學(xué)。

  【活動(dòng)1】:(多媒體展示)欣賞圖片 了解歷史

  第一幅圖片配上文字說(shuō)明。

  設(shè)計(jì)意圖:這樣的導(dǎo)入富有科學(xué)特色和濃郁的數(shù)學(xué)氣息,激起學(xué)生強(qiáng)烈的興趣和求知欲。

  第二幅圖片為20xx年在我國(guó)北京召開(kāi)的第24屆國(guó)際數(shù)學(xué)家大會(huì)的場(chǎng)景,值得一提的是這次大會(huì)的會(huì)徽,為著名的趙爽弦圖。

  設(shè)計(jì)意圖:在學(xué)生欣賞趙爽弦圖的過(guò)程中,進(jìn)行愛(ài)國(guó)主義教育,可以讓他們充分體會(huì)到我國(guó)古代在數(shù)學(xué)研究方面取得的偉大成就,從而激發(fā)學(xué)生的愛(ài)國(guó)熱情和民族自豪感。

  第三幅圖片為介紹古代勾和股。

  設(shè)計(jì)意圖:簡(jiǎn)單介紹勾股定理的歷史,引出勾股定理這一課題。

  學(xué)生,讀一讀和觀察。

  【活動(dòng)2】:探索勾股定理

  首先講述畢達(dá)哥拉斯到朋友家做客的故事。(多媒體展示)

  然后提出兩個(gè)問(wèn)題,讓學(xué)生沿著畢達(dá)哥拉斯的足跡去探尋勾股定理。

  {問(wèn)題一}:在圖中你能發(fā)現(xiàn)那些基本圖形?

  {問(wèn)題二}:與等腰直角三角形相鄰的正方形面積之間有怎樣的關(guān)系?

  (多媒體展示)探究一

  {問(wèn)題三}:如圖,每個(gè)小方格的面積為1個(gè)單位,你能寫出正方形A、B、C的面積嗎?

  {問(wèn)題四}:由此你可以得出等腰直角三角形三邊存在著一種怎樣特殊的數(shù)量關(guān)系嗎?

  學(xué)生在獨(dú)立探究的基礎(chǔ)上觀察圖片,計(jì)算面積,分組交流, 猜想和歸納。

  教師參與學(xué)生小組活動(dòng),指導(dǎo),傾聽(tīng)學(xué)生交流。針對(duì)不同認(rèn)識(shí)水平的學(xué)生,引導(dǎo)其用不同的方法得出大正方形的面積。在計(jì)算C的面積時(shí)可能有一定的難度,此時(shí)就要用到數(shù)學(xué)當(dāng)中常見(jiàn)的割補(bǔ)法。因此需要教師的引導(dǎo)。

  設(shè)計(jì)意圖:通過(guò)講傳說(shuō)故事來(lái)激發(fā)學(xué)生學(xué)習(xí)興趣,引導(dǎo)學(xué)生進(jìn)入學(xué)習(xí)狀態(tài)。學(xué)生會(huì)很積極的投入到探索這個(gè)問(wèn)題的實(shí)踐中。讓學(xué)生并且嘗試了從不同角度尋求解決問(wèn)題的有效方法,并通過(guò)對(duì)方法的反思,獲得解決問(wèn)題的經(jīng)驗(yàn)。

  “問(wèn)題是思維的起點(diǎn)”,通過(guò)層層設(shè)問(wèn),引導(dǎo)學(xué)生發(fā)現(xiàn)新知。

  (多媒體展示)探究二

  {問(wèn)題五}:等腰直角三角形三邊具有這樣的特殊關(guān)系,那么一般的直角三角形呢?如圖,每個(gè)小方格的面積為1個(gè)單位,你能寫出正方形A、B、C的面積嗎?

  將一般的直角三角形放入到網(wǎng)格中,并使得直角三角形的兩條直角邊為正整數(shù),讓學(xué)生去計(jì)算圖1和圖2中六個(gè)正方形的面積。關(guān)注學(xué)生能否用不同的方法得到大正方形的面積。

  學(xué)生計(jì)算,觀察,猜想,語(yǔ)言表達(dá)猜想結(jié)論。

  教師參與學(xué)生小組活動(dòng),指導(dǎo),傾聽(tīng)學(xué)生交流。針對(duì)不同認(rèn)識(shí)水平的學(xué)生,引導(dǎo)其用不同的方法得出大正方形的面積。在計(jì)算C的面積時(shí)可能有一定的難度,此時(shí)又用到數(shù)學(xué)當(dāng)中常見(jiàn)的割補(bǔ)法。因此需要教師的引導(dǎo)。

  設(shè)計(jì)意圖:學(xué)生通過(guò)探究A、B、C三個(gè)正方形之間的面積關(guān)系,進(jìn)而發(fā)現(xiàn)、猜想勾股定理,并用自己的語(yǔ)言表達(dá)出來(lái)。這樣的設(shè)計(jì)滲透了從特殊到一般的數(shù)學(xué)思想。發(fā)揮學(xué)生的主體作用,培養(yǎng)學(xué)生類比遷移能力及探索問(wèn)題的能力,使學(xué)生在相互欣賞,爭(zhēng)辯,互助中得到提高。

  (多媒體展示)猜想:

  如果直角三角形兩直角邊分別為a、b,斜邊為c,那么a2 b2=c2。

  即直角三角形兩直角邊的平方和等于斜邊的平方。

  {問(wèn)題六}:是不是所有的直角三角形都有這樣的特點(diǎn)呢?

  【活動(dòng)3】:證明勾股定理

  師:這就需要我們對(duì)一個(gè)一般的直角三角形進(jìn)行證明。到目前為止,對(duì)這個(gè)命題的證明方法已有幾百種之多。下面我們就來(lái)看一看我國(guó)數(shù)學(xué)家趙爽是怎樣證明這個(gè)命題的。

  {問(wèn)題七}:請(qǐng)同學(xué)們拿出課前準(zhǔn)備好的四個(gè)全等的直角三角形,記三邊分別為a,b,c,然后拼一拼、擺一擺,看看能否得到一個(gè)含有以斜邊c為邊長(zhǎng)的正方形?

  學(xué)生獨(dú)立思考的基礎(chǔ)上以小組為單位,用準(zhǔn)備好的四個(gè)全等直角三角形動(dòng)手拼接。學(xué)生展示分割,拼接的過(guò)程。

  教師深入小組參與活動(dòng),傾聽(tīng)學(xué)生的交流,幫助指導(dǎo)學(xué)生完成拼圖活動(dòng)。并請(qǐng)小組代表到黑板演示拼圖過(guò)程,鼓勵(lì)學(xué)生敢于發(fā)表自己的見(jiàn)解。

  設(shè)計(jì)意圖:通過(guò)這些實(shí)際操作,調(diào)動(dòng)學(xué)生思維積極性,同時(shí)使學(xué)生對(duì)定理的理解更加深刻,學(xué)生能夠進(jìn)一步加深對(duì)數(shù)形結(jié)合的理解,拼圖也會(huì)產(chǎn)生感性認(rèn)識(shí),也為論證勾股定理做好準(zhǔn)備。

  {問(wèn)題八}:它們的面積分別怎樣表示?它們有什么關(guān)系呢?

  (多媒體展示)拼接圖,面積計(jì)算

  學(xué)生觀察,計(jì)算,小組討論。

  在計(jì)算過(guò)程中,我重點(diǎn)在于引導(dǎo)學(xué)生分析圖中面積之間的關(guān)系,得出結(jié)論:大正方形的面積= 4個(gè)全等的直角三角形的面積 小正方形的面積,從而運(yùn)用等積法證明勾股定理。(這樣,既突破了難點(diǎn),讓學(xué)生感受到用等積法證明勾股定理的奧妙。)

  設(shè)計(jì)意圖:給學(xué)生充分的時(shí)間和空間參與到數(shù)學(xué)活動(dòng)中來(lái),并發(fā)揮他們的主觀能動(dòng)性,可以進(jìn)一步提高學(xué)生的學(xué)習(xí)興趣。利用分組討論,加強(qiáng)學(xué)生的合作意識(shí)。

  師:我們現(xiàn)在通過(guò)推理證實(shí)了我們的猜想的正確性,經(jīng)過(guò)證明被確認(rèn)正確的命題叫做定理。猜想與直角三角形的邊有關(guān),我國(guó)把它稱為勾股定理。“趙爽弦圖”表現(xiàn)了我國(guó)古人對(duì)數(shù)學(xué)的鉆研精神和聰明才智,它是我古代數(shù)學(xué)的驕傲。正因如此,這個(gè)圖案被選為20xx年在北京召開(kāi)的國(guó)際數(shù)學(xué)大會(huì)的會(huì)徽。

  【活動(dòng)4】:應(yīng)用勾股定理(多媒體展示)

  (小組選擇,采用競(jìng)答方式)

  填空

  P的面積= ,

  AB= X=

  BC=

  BC=

  2、求下列圖中表示邊的未知數(shù)x、y、z的值。

  3求下列直角三角形中未知邊的長(zhǎng):

  設(shè)計(jì)意圖:首先是幾道填空題和勾股定理的直接應(yīng)用,這幾道題既有類似又有不同,通過(guò)變式訓(xùn)練,強(qiáng)調(diào)應(yīng)用勾股定理時(shí)應(yīng)注意的問(wèn)題。一是勾股定理要應(yīng)用于直角三角形當(dāng)中,二是要注意哪一條邊為斜邊。

  4、求出下列直角三角形中未知邊的長(zhǎng)度。

  設(shè)計(jì)意圖:規(guī)范解題過(guò)程。

  5、小明的媽媽買了一部29英寸(74厘米)的電視機(jī),小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長(zhǎng)和46厘米寬,他覺(jué)得一定是售貨員搞錯(cuò)了。你能解釋這是為什么嗎?(我們通過(guò)所說(shuō)的29英寸或74厘米的電視機(jī),是指其屏幕對(duì)角線的長(zhǎng)度。)

  設(shè)計(jì)意圖:這是一道和學(xué)生生活密切相關(guān)的應(yīng)用題,讓學(xué)生充分體會(huì)到數(shù)學(xué)是來(lái)源于生活,應(yīng)用于生活。

  【活動(dòng)5】:總結(jié)勾股定理(多媒體展示)

  1.這節(jié)課你的收獲是什么?

  2.理解“勾股定理”應(yīng)該注意什么問(wèn)題?

  3.你覺(jué)得“勾股定理”有用嗎?

  學(xué)生談?wù)勥@節(jié)課的收獲是什么,讓學(xué)生暢所欲言。

  教師進(jìn)行補(bǔ)充,總結(jié),為下節(jié)課做好鋪墊。

  設(shè)計(jì)意圖:通過(guò)小結(jié)為學(xué)生創(chuàng)造交流的空間,調(diào)動(dòng)學(xué)生的積極性,即引導(dǎo)學(xué)生培養(yǎng)學(xué)生從面積的角度理解勾股定理,又從能力,情感,態(tài)度等方面關(guān)注學(xué)生的整體感受。

  【活動(dòng)6】:布置作業(yè)(多媒體展示)

  1.閱讀教材第71頁(yè)的閱讀與思考-----《勾股定理的證明》。

  2.收集有關(guān)勾股定理的證明方法,下節(jié)展示交流。

  3.做一棵奇妙的勾股樹(shù)(選做)

  設(shè)計(jì)的意圖:給學(xué)生留有繼續(xù)學(xué)習(xí)的空間和興趣。

  (六)說(shuō)教學(xué)反思

  本課意在創(chuàng)設(shè)愉悅和諧的樂(lè)學(xué)氣氛,始終面向全體學(xué)生“以學(xué)生的發(fā)展為本” 的教育理念,課堂教學(xué)充分體現(xiàn)學(xué)生的主體性,給學(xué)生留下最大化的思維空間。注重?cái)?shù)學(xué)思想方法的滲透,整個(gè)勾股定理的探索、發(fā)現(xiàn)、證明都著意滲透數(shù)形結(jié)合,又從一般到特殊,從特殊回歸到一般的數(shù)學(xué)思想方法。重視數(shù)學(xué)史教育,激發(fā)學(xué)生的愛(ài)國(guó)情感。數(shù)學(xué)問(wèn)題生活化,用數(shù)學(xué)知識(shí)解決生活中的實(shí)際問(wèn)題,關(guān)鍵在于把生活問(wèn)題轉(zhuǎn)化為數(shù)學(xué)問(wèn)題,讓生活問(wèn)題數(shù)學(xué)化,然后才能得以解決。在這個(gè)過(guò)程中,很多時(shí)候需要老師幫助學(xué)生去理解、轉(zhuǎn)化,而更多時(shí)候需要學(xué)生自己去探索、嘗試,并在失敗中尋找成功的途徑。教學(xué)中,如果能讓學(xué)生自己反思答案與方法的合理性,那么效果會(huì)更好了。

  板書(shū)設(shè)計(jì):

  18.1 勾股定理

  勾股定理:

  如果直角三角形兩直角邊分別為a,b,

  斜邊為c,那么a2 b2=c2

勾股定理說(shuō)課稿15

  一、教材分析

 。ㄒ唬⒈竟(jié)課在教材中的地位作用

  “勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個(gè)直角三角形的判斷定理,它是前面知識(shí)的繼續(xù)和深化,勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時(shí)在應(yīng)用中滲透了利用代數(shù)計(jì)算的方法證明幾何問(wèn)題的思想,為將來(lái)學(xué)習(xí)解析幾何埋下了伏筆,所以本節(jié)也是本章的重要內(nèi)容之一。課標(biāo)要求學(xué)生必須掌握。

 。ǘ⒔虒W(xué)目標(biāo)

  1、知識(shí)技能:1理解并會(huì)證明勾股定理的逆定理;

  2會(huì)應(yīng)用勾股定理的逆定理判定一個(gè)三角形是否為直角三角形; 3知道什么叫勾股數(shù),記住一些覺(jué)見(jiàn)的勾股數(shù).

  2、過(guò)程與方法:通過(guò)對(duì)勾股定理的逆定理的探索和證明,經(jīng)歷知識(shí)的發(fā)生,發(fā)展與形成的過(guò)程,體驗(yàn)“數(shù)形結(jié)合”方法的應(yīng)用。

  3、情感、態(tài)度價(jià)值觀 培養(yǎng)數(shù)學(xué)思維以及合情推理意識(shí),感悟勾股定理和逆定理的應(yīng)用價(jià)值。滲透與他人交流、合作的意識(shí)和探究精神,體驗(yàn)數(shù)與形的內(nèi)在聯(lián)系,感受定理與逆定理之間的和諧及辯證統(tǒng)一的關(guān)系。

 。ㄈ、學(xué)情分析:

  盡管已到初二下學(xué)期學(xué)生知識(shí)增多,能力增強(qiáng),但思維的局限性還很大,能力也有差距,而勾股定理的逆定理的證明方法學(xué)生第一次見(jiàn)到,它要求根據(jù)已知條件構(gòu)造一個(gè)直角三角形,根據(jù)學(xué)生的智能狀況,學(xué)生不容易想到,因此勾股定理的逆定理的證明又是本節(jié)的難點(diǎn),這樣就確定了本節(jié)課的重點(diǎn)、難點(diǎn)。 教學(xué)重點(diǎn):勾股定理逆定理的應(yīng)用

  教學(xué)難點(diǎn):勾股定理逆定理的證明

  二、教學(xué)過(guò)程

  本節(jié)課的設(shè)計(jì)原則是:使學(xué)生在動(dòng)手操作的基礎(chǔ)上和合作交流的良好氛圍中,通過(guò)巧妙而自然地在學(xué)生的認(rèn)識(shí)結(jié)構(gòu)與幾何知識(shí)結(jié)構(gòu)之間筑了一個(gè)信息流通渠道,進(jìn)而達(dá)到完善學(xué)生的數(shù)學(xué)認(rèn)識(shí)結(jié)構(gòu)的目的。

 。ㄒ唬⿵(fù)習(xí)回顧

  復(fù)習(xí)回顧與直角三角形、勾股定理有關(guān)的內(nèi)容,建立新舊知識(shí)之間的聯(lián)系。

 。ǘ﹦(chuàng)設(shè)問(wèn)題情境

  一開(kāi)課我就提出了與本節(jié)課關(guān)系密切、學(xué)生用現(xiàn)有的知識(shí)可探索卻又解決不好的問(wèn)題,去提示本節(jié)課的探究宗旨。(演示)古代埃及人把一根長(zhǎng)繩打上等距離的13個(gè)結(jié),然后用樁釘如圖那樣的三角形,便得到一個(gè)直角三角形。這是為什么?。這個(gè)問(wèn)題一出現(xiàn)馬上激起學(xué)生已有知識(shí)與待研究知識(shí)的認(rèn)識(shí)沖突,引起了學(xué)生的重視,激發(fā)了學(xué)生的興趣,因而全身心地投入到學(xué)習(xí)中來(lái),創(chuàng)

  造了我要學(xué)的氣氛,同時(shí)也說(shuō)明了幾何知識(shí)來(lái)源于實(shí)踐,不失時(shí)機(jī)地讓學(xué)生感到數(shù)學(xué)就在身邊。

 。ㄈ⿲W(xué)生在教師的指導(dǎo)下嘗試解決問(wèn)題,總結(jié)規(guī)律(包括難點(diǎn)突破)

  因?yàn)閹缀蝸?lái)源于現(xiàn)實(shí)生活,對(duì)初二學(xué)生來(lái)說(shuō)選擇適當(dāng)?shù)臅r(shí)機(jī),讓他們從個(gè)體實(shí)踐經(jīng)驗(yàn)中開(kāi)始學(xué)習(xí),可以提高學(xué)習(xí)的主動(dòng)性和參與意識(shí),所以勾股定理的逆定理不是由教師直接給出的,而是讓學(xué)生通過(guò)動(dòng)手畫圖在具體的實(shí)踐中觀察滿足條件的三角形直觀感覺(jué)上是什么三角形,再用直角三角形插入去驗(yàn)證猜想。

  這樣設(shè)計(jì)是因?yàn)楣垂啥ɡ砟娑ɡ淼淖C明方法是學(xué)生第一次見(jiàn)到,它要求按照已知條件作一個(gè)直角三角形,根據(jù)學(xué)生的智能狀況學(xué)生是不容易想到的,為了突破這個(gè)難點(diǎn),我讓學(xué)生動(dòng)手畫出了一個(gè)兩直角邊與所給三角形兩條較小邊相等的直角三角形,通過(guò)操作驗(yàn)證兩三角形全等,從而不僅顯示了符合條件的三角形是直角三角形,還孕育了輔助線的添法,為后面進(jìn)行邏輯推理論證提供了直觀的數(shù)學(xué)模型。

  接下來(lái)就是利用這個(gè)數(shù)學(xué)模型,從理論上證明這個(gè)定理。從動(dòng)手操作到證明,學(xué)生自然地聯(lián)想到了全等三角形的性質(zhì),證明它與一個(gè)直角三角形全等,順利作出了輔助直角三角形,整個(gè)證明過(guò)程自然、無(wú)神秘感,實(shí)現(xiàn)了從生動(dòng)直觀向抽象思維的轉(zhuǎn)化,同時(shí)學(xué)生親身體會(huì)了動(dòng)手操作——觀察——猜測(cè)——探索——論證的全過(guò)程,這樣學(xué)生不是被動(dòng)接受勾股定理的逆定理,因而使學(xué)生感到自然、親切,學(xué)生的學(xué)習(xí)興趣和學(xué)習(xí)積極性有所提高。使學(xué)生確實(shí)在學(xué)習(xí)過(guò)程中享受到自我創(chuàng)造的快樂(lè)。

  在同學(xué)們完成證明之后,同時(shí)讓學(xué)生總結(jié)互逆命題、互逆定理的關(guān)系,并舉例指出哪些為互逆定理。然后讓他們對(duì)照課本把證明過(guò)程嚴(yán)格的閱讀一遍,充分發(fā)揮教課書(shū)的作用,養(yǎng)成學(xué)生看書(shū)的習(xí)慣,這也是在培養(yǎng)學(xué)生的自學(xué)能力。

  (四)組織變式訓(xùn)練

  本著由淺入深的原則,安排了兩個(gè)例題。(演示)第一題比較簡(jiǎn)單,讓學(xué)生口答,讓所有的學(xué)生都能完成。第二題則進(jìn)了一層,不僅判斷是否為直接三角形,還繞了一個(gè)彎,指出哪一個(gè)角是直角。這樣既可以檢查本課知識(shí),又可以提高靈活運(yùn)用以往知識(shí)的能力。例題講解后安排了三個(gè)練習(xí),循序漸進(jìn),由淺入深。培養(yǎng)了學(xué)生靈活轉(zhuǎn)換、舉一反三的能力,發(fā)展了學(xué)生的思維,提高了課堂教學(xué)的效果和利用率。讓學(xué)生知道勾股逆定理的用途,激發(fā)學(xué)生的學(xué)習(xí)興趣。我還采用講、說(shuō)、練結(jié)合的方法,教師通過(guò)觀察、提問(wèn)、巡視、談話等活動(dòng)、及時(shí)了解學(xué)生的學(xué)習(xí)過(guò)程,隨時(shí)反饋,調(diào)節(jié)教法,同時(shí)注意加強(qiáng)有針對(duì)性的個(gè)別指導(dǎo),把發(fā)展學(xué)生的思維和隨時(shí)把握學(xué)生的學(xué)習(xí)效果結(jié)合起來(lái)。

 。ㄎ澹w納小結(jié),納入知識(shí)體系

  本節(jié)課小結(jié)先讓學(xué)生歸納本節(jié)知識(shí)和技能,然后教師作必要的補(bǔ)充,尤其是注意總結(jié)思想方法,培養(yǎng)能力方面,比如輔助線的添法,數(shù)形結(jié)合的思想,并

  告訴同學(xué)今天的勾股定理逆定理是同學(xué)們通過(guò)自己親手實(shí)踐發(fā)現(xiàn)并證明的,這種討論問(wèn)題的方法是培養(yǎng)我們發(fā)現(xiàn)問(wèn)題認(rèn)識(shí)問(wèn)題的好方法,希望同學(xué)在課外練習(xí)時(shí)注意用這種方法,這都是教給學(xué)習(xí)方法。

  (六)作業(yè)布置

  由于學(xué)生的思維素質(zhì)存在一定的差異,教學(xué)要貫徹“因材施教”的原則,為此我安排了兩題作業(yè)。第一題是基本的思維訓(xùn)練項(xiàng)目,全體都要做,這樣有利于學(xué)生學(xué)習(xí)習(xí)慣的培養(yǎng),以及提高他們學(xué)好數(shù)學(xué)的信心。第二題適當(dāng)加大難度,拓寬知識(shí),供有能力又有興趣的學(xué)生做,日積月累,對(duì)訓(xùn)練和培養(yǎng)他們的思維素質(zhì),發(fā)展學(xué)生的個(gè)性有積極作用。

  三、說(shuō)教法學(xué)法與教學(xué)手段

  為貫徹實(shí)施素質(zhì)教育提出的面向全體學(xué)生,使學(xué)生全面發(fā)展主動(dòng)發(fā)展的精神和培養(yǎng)創(chuàng)新活動(dòng)的要求,根據(jù)本節(jié)課的教學(xué)內(nèi)容、教學(xué)要求以及初二學(xué)生的年齡和心理特征以及學(xué)生的認(rèn)知規(guī)律和認(rèn)知水平,本節(jié)課我主要采用了以學(xué)生為主體,引導(dǎo)發(fā)現(xiàn)、操作探究的教學(xué)方法,即不違反科學(xué)性又符合可接受性原則,這樣有利于培養(yǎng)學(xué)生的學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)生的學(xué)習(xí)積極性,發(fā)展學(xué)生的思維;有利于培養(yǎng)學(xué)生動(dòng)手、觀察、分析、猜想、驗(yàn)證、推理能力和創(chuàng)新能力;有利于學(xué)生從感性認(rèn)識(shí)上升到理性認(rèn)識(shí),加深對(duì)所學(xué)知識(shí)的理解和掌握;有利于突破難點(diǎn)和突出重點(diǎn)。

  此外,本節(jié)課我還采用了理論聯(lián)系實(shí)際的教學(xué)原則,以教師為主導(dǎo)、學(xué)生為主體的教學(xué)原則,通過(guò)聯(lián)系學(xué)生現(xiàn)有的經(jīng)驗(yàn)和感性認(rèn)識(shí),由最鄰近的知識(shí)去向本節(jié)課遷移,通過(guò)動(dòng)手操作讓學(xué)生獨(dú)立探討、主動(dòng)獲取知識(shí)。

  總之,本節(jié)課遵循從生動(dòng)直觀到抽象思維的認(rèn)識(shí)規(guī)律,力爭(zhēng)最大限度地調(diào)動(dòng)學(xué)生學(xué)習(xí)的積極性;力爭(zhēng)把教師教的過(guò)程轉(zhuǎn)化為學(xué)生親自探索、發(fā)現(xiàn)知識(shí)的過(guò)程;力爭(zhēng)使學(xué)生在獲得知識(shí)的過(guò)程中得到能力的培養(yǎng)。

【勾股定理說(shuō)課稿】相關(guān)文章:

勾股定理說(shuō)課稿,勾股定理說(shuō)課稿范文08-16

勾股定理的說(shuō)課稿07-30

勾股定理說(shuō)課稿04-27

《勾股定理》說(shuō)課稿02-14

勾股定理的說(shuō)課稿06-10

勾股定理說(shuō)課稿06-11

勾股定理說(shuō)課稿精選06-13

《勾股定理》的說(shuō)課稿06-08

勾股定理的說(shuō)課稿01-30

《勾股定理》說(shuō)課稿11-11