男人天堂日韩,中文字幕18页,天天伊人网,成人性生交大片免费视频

高中數(shù)學(xué)教案

時間:2022-12-29 11:38:10 數(shù)學(xué)教案 我要投稿
  • 相關(guān)推薦

高中數(shù)學(xué)教案【熱】

  作為一名優(yōu)秀的教育工作者,總歸要編寫教案,借助教案可以更好地組織教學(xué)活動。怎樣寫教案才更能起到其作用呢?以下是小編幫大家整理的高中數(shù)學(xué)教案,歡迎閱讀,希望大家能夠喜歡。

高中數(shù)學(xué)教案【熱】

高中數(shù)學(xué)教案1

  教學(xué)目標(biāo):

  1。理解并掌握瞬時速度的定義;

  2。會運用瞬時速度的定義求物體在某一時刻的瞬時速度和瞬時加速度;

  3。理解瞬時速度的實際背景,培養(yǎng)學(xué)生解決實際問題的能力。

  教學(xué)重點:

  會運用瞬時速度的定義求物體在某一時刻的瞬時速度和瞬時加速度。

  教學(xué)難點:

  理解瞬時速度和瞬時加速度的定義。

  教學(xué)過程:

  一、問題情境

  1。問題情境。

  平均速度:物體的運動位移與所用時間的比稱為平均速度。

  問題一平均速度反映物體在某一段時間段內(nèi)運動的快慢程度。那么如何刻畫物體在某一時刻運動的快慢程度?

  問題二跳水運動員從10m高跳臺騰空到入水的過程中,不同時刻的速度是不同的。假設(shè)t秒后運動員相對于水面的高度為h(t)=-4.9t2+6.5t+10,試確定t=2s時運動員的速度.

  2。探究活動:

  (1)計算運動員在2s到2.1s(t∈)內(nèi)的平均速度。

  (2)計算運動員在2s到(2+?t)s(t∈)內(nèi)的平均速度。

  (3)如何計算運動員在更短時間內(nèi)的平均速度。

  探究結(jié)論:

  時間區(qū)間

  t

  平均速度

  0.1

  -13.59

  0.01

  -13.149

  0.001

  -13.1049

  0.0001

  -13.10049

  0.00001

  -13.100049

  0.000001

  -13.1000049

  當(dāng)?t?0時,?-13.1,

  該常數(shù)可作為運動員在2s時的瞬時速度。

  即t=2s時,高度對于時間的瞬時變化率。

  二、建構(gòu)數(shù)學(xué)

  1。平均速度。

  設(shè)物體作直線運動所經(jīng)過的路程為,以為起始時刻,物體在?t時間內(nèi)的平均速度為。

  可作為物體在時刻的速度的近似值,?t越小,近似的程度就越好。所以當(dāng)?t?0時,極限就是物體在時刻的瞬時速度。

  三、數(shù)學(xué)運用

  例1物體作自由落體運動,運動方程為,其中位移單位是m,時

  間單位是s,,求:

 。1)物體在時間區(qū)間s上的平均速度;

 。2)物體在時間區(qū)間上的平均速度;

 。3)物體在t=2s時的瞬時速度。

  分析

  解

 。1)將?t=0.1代入上式,得:=2.05g=20.5m/s。

 。2)將?t=0.01代入上式,得:=2.005g=20.05m/s。

 。3)當(dāng)?t?0,2+?t?2,從而平均速度的極限為:

  例2設(shè)一輛轎車在公路上作直線運動,假設(shè)時的速度為,

  求當(dāng)時轎車的瞬時加速度。

  解

  ∴當(dāng)?t無限趨于0時,無限趨于,即=。

  練習(xí)

  課本P12—1,2。

  四、回顧小結(jié)

  問題1本節(jié)課你學(xué)到了什么?

  1理解瞬時速度和瞬時加速度的定義;

  2實際應(yīng)用問題中瞬時速度和瞬時加速度的求解;

  問題2解決瞬時速度和瞬時加速度問題需要注意什么?

  注意當(dāng)?t?0時,瞬時速度和瞬時加速度的極限值。

  問題3本節(jié)課體現(xiàn)了哪些數(shù)學(xué)思想方法?

  2極限的思想方法。

  3特殊到一般、從具體到抽象的推理方法。

  五、課外作業(yè)

高中數(shù)學(xué)教案2

  教學(xué)目標(biāo)

  知識與技能目標(biāo):

  本節(jié)的中心任務(wù)是研究導(dǎo)數(shù)的幾何意義及其應(yīng)用,概念的形成分為三個層次:

  (1)通過復(fù)習(xí)舊知“求導(dǎo)數(shù)的兩個步驟”以及“平均變化率與割線斜率的關(guān)系”,解決了平均變化率的幾何意義后,明確探究導(dǎo)數(shù)的幾何意義可以依據(jù)導(dǎo)數(shù)概念的形成尋求解決問題的途徑。

  (2)從圓中割線和切線的變化聯(lián)系,推廣到一般曲線中用割線逼近的方法直觀定義切線。

  (3)依據(jù)割線與切線的變化聯(lián)系,數(shù)形結(jié)合探究函數(shù)導(dǎo)數(shù)的幾何意義教案在導(dǎo)數(shù)的幾何意義教案處的導(dǎo)數(shù)導(dǎo)數(shù)的幾何意義教案的幾何意義,使學(xué)生認識到導(dǎo)數(shù)導(dǎo)數(shù)的幾何意義教案就是函數(shù)導(dǎo)數(shù)的幾何意義教案的圖象在導(dǎo)數(shù)的幾何意義教案處的切線的斜率。即:

  導(dǎo)數(shù)的幾何意義教案=曲線在導(dǎo)數(shù)的幾何意義教案處切線的斜率k

  在此基礎(chǔ)上,通過例題和練習(xí)使學(xué)生學(xué)會利用導(dǎo)數(shù)的幾何意義解釋實際生活問題,加深對導(dǎo)數(shù)內(nèi)涵的理解。在學(xué)習(xí)過程中感受逼近的思想方法,了解“以直代曲”的數(shù)學(xué)思想方法。

  過程與方法目標(biāo):

  (1)學(xué)生通過觀察感知、動手探究,培養(yǎng)學(xué)生的動手和感知發(fā)現(xiàn)的能力。

  (2)學(xué)生通過對圓的切線和割線聯(lián)系的認識,再類比探索一般曲線的情況,完善對切線的認知,感受逼近的思想,體會相切是種局部性質(zhì)的本質(zhì),有助于數(shù)學(xué)思維能力的提高。

  (3)結(jié)合分層的探究問題和分層練習(xí),期望各種層次的學(xué)生都可以憑借自己的能力盡力走在教師的前面,獨立解決問題和發(fā)現(xiàn)新知、應(yīng)用新知。

  情感、態(tài)度、價值觀:

  (1)通過在探究過程中滲透逼近和以直代曲思想,使學(xué)生了解近似與精確間的辨證關(guān)系;通過有限來認識無限,體驗數(shù)學(xué)中轉(zhuǎn)化思想的意義和價值;

  (2)在教學(xué)中向他們提供充分的從事數(shù)學(xué)活動的機會,如:探究活動,讓學(xué)生自主探究新知,例題則采用練在講之前,講在關(guān)鍵處。在活動中激發(fā)學(xué)生的學(xué)習(xí)潛能,促進他們真正理解和掌握基本的數(shù)學(xué)知識技能、數(shù)學(xué)思想方法,獲得廣泛的數(shù)學(xué)活動經(jīng)驗,提高綜合能力,學(xué)會學(xué)習(xí),進一步在意志力、自信心、理性精神等情感與態(tài)度方面得到良好的發(fā)展。

  教學(xué)重點與難點

  重點:理解和掌握切線的新定義、導(dǎo)數(shù)的幾何意義及應(yīng)用于解決實際問題,體會數(shù)形結(jié)合、以直代曲的思想方法。

  難點:發(fā)現(xiàn)、理解及應(yīng)用導(dǎo)數(shù)的幾何意義。

  教學(xué)過程

  一、復(fù)習(xí)提問

  1.導(dǎo)數(shù)的定義是什么?求導(dǎo)數(shù)的三個步驟是什么?求函數(shù)y=x2在x=2處的導(dǎo)數(shù).

  定義:函數(shù)在導(dǎo)數(shù)的幾何意義教案處的導(dǎo)數(shù)導(dǎo)數(shù)的幾何意義教案就是函數(shù)在該點處的瞬時變化率。

  求導(dǎo)數(shù)的步驟:

  第一步:求平均變化率導(dǎo)數(shù)的幾何意義教案;

  第二步:求瞬時變化率導(dǎo)數(shù)的幾何意義教案.

  (即導(dǎo)數(shù)的幾何意義教案,平均變化率趨近于的確定常數(shù)就是該點導(dǎo)數(shù))

  2.觀察函數(shù)導(dǎo)數(shù)的幾何意義教案的圖象,平均變化率導(dǎo)數(shù)的幾何意義教案在圖形中表示什么?

  生:平均變化率表示的是割線PQ的斜率.導(dǎo)數(shù)的幾何意義教案

  師:這就是平均變化率(導(dǎo)數(shù)的幾何意義教案)的幾何意義,

  3.瞬時變化率(導(dǎo)數(shù)的幾何意義教案)在圖中又表示什么呢?

  如圖2-1,設(shè)曲線C是函數(shù)y=f(x)的圖象,點P(x0,y0)是曲線C上一點.點Q(x0+Δx,y0+Δy)是曲線C上與點P鄰近的任一點,作割線PQ,當(dāng)點Q沿著曲線C無限地趨近于點P,割線PQ便無限地趨近于某一極限位置PT,我們就把極限位置上的直線PT,叫做曲線C在點P處的切線.

  導(dǎo)數(shù)的幾何意義教案

  追問:怎樣確定曲線C在點P的切線呢?因為P是給定的,根據(jù)平面解析幾何中直線的點斜式方程的知識,只要求出切線的斜率就夠了.設(shè)割線PQ的傾斜角為導(dǎo)數(shù)的幾何意義教案,切線PT的傾斜角為導(dǎo)數(shù)的幾何意義教案,易知割線PQ的斜率為導(dǎo)數(shù)的幾何意義教案。既然割線PQ的極限位置上的直線PT是切線,所以割線PQ斜率的極限就是切線PT的斜率導(dǎo)數(shù)的幾何意義教案,即導(dǎo)數(shù)的幾何意義教案。

  由導(dǎo)數(shù)的定義知導(dǎo)數(shù)的幾何意義教案導(dǎo)數(shù)的幾何意義教案。

  導(dǎo)數(shù)的幾何意義教案

  由上式可知:曲線f(x)在點(x0,f(x0))處的切線的斜率就是y=f(x)在點x0處的導(dǎo)數(shù)f'(x0).今天我們就來探究導(dǎo)數(shù)的幾何意義。

  C類學(xué)生回答第1題,A,B類學(xué)生回答第2題在學(xué)生回答基礎(chǔ)上教師重點講評第3題,然后逐步引入導(dǎo)數(shù)的幾何意義.

  二、新課

  1、導(dǎo)數(shù)的幾何意義:

  函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f'(x0)的幾何意義,就是曲線y=f(x)在點(x0,f(x0))處切線的斜率.

  即:導(dǎo)數(shù)的幾何意義教案

  口答練習(xí):

  (1)如果函數(shù)y=f(x)在已知點x0處的導(dǎo)數(shù)分別為下列情況f'(x0)=1,f'(x0)=1,f'(x0)=-1,f'(x0)=2.試求函數(shù)圖像在對應(yīng)點的切線的傾斜角,并說明切線各有什么特征。

  (C層學(xué)生做)

  (2)已知函數(shù)y=f(x)的圖象(如圖2-2),分別為以下三種情況的直線,通過觀察確定函數(shù)在各點的導(dǎo)數(shù).(A、B層學(xué)生做)

  導(dǎo)數(shù)的幾何意義教案

  2、如何用導(dǎo)數(shù)研究函數(shù)的增減?

  小結(jié):附近:瞬時,增減:變化率,即研究函數(shù)在該點處的瞬時變化率,也就是導(dǎo)數(shù)。導(dǎo)數(shù)的正負即對應(yīng)函數(shù)的增減。作出該點處的切線,可由切線的升降趨勢,得切線斜率的正負即導(dǎo)數(shù)的正負,就可以判斷函數(shù)的增減性,體會導(dǎo)數(shù)是研究函數(shù)增減、變化快慢的有效工具。

  同時,結(jié)合以直代曲的思想,在某點附近的切線的變化情況與曲線的變化情況一樣,也可以判斷函數(shù)的增減性。都反應(yīng)了導(dǎo)數(shù)是研究函數(shù)增減、變化快慢的有效工具。

  例1函數(shù)導(dǎo)數(shù)的幾何意義教案上有一點導(dǎo)數(shù)的幾何意義教案,求該點處的導(dǎo)數(shù)導(dǎo)數(shù)的幾何意義教案,并由此解釋函數(shù)的增減情況。

  導(dǎo)數(shù)的幾何意義教案

  函數(shù)在定義域上任意點處的瞬時變化率都是3,函數(shù)在定義域內(nèi)單調(diào)遞增。(此時任意點處的切線就是直線本身,斜率就是變化率)

  3、利用導(dǎo)數(shù)求曲線y=f(x)在點(x0,f(x0))處的切線方程.

  例2求曲線y=x2在點M(2,4)處的切線方程.

  解:導(dǎo)數(shù)的幾何意義教案

  ∴y'|x=2=2×2=4.

  ∴點M(2,4)處的切線方程為y-4=4(x-2),即4x-y-4=0.

  由上例可歸納出求切線方程的兩個步驟:

  (1)先求出函數(shù)y=f(x)在點x0處的導(dǎo)數(shù)f'(x0).

  (2)根據(jù)直線方程的點斜式,得切線方程為y-y0=f'(x0)(x-x0).

  提問:若在點(x0,f(x0))處切線PT的傾斜角為導(dǎo)數(shù)的幾何意義教案導(dǎo)數(shù)的幾何意義教案,求切線方程。(因為這時切線平行于y軸,而導(dǎo)數(shù)不存在,不能用上面方法求切線方程。根據(jù)切線定義可直接得切線方程導(dǎo)數(shù)的幾何意義教案)

  (先由C類學(xué)生來回答,再由A,B補充.)

  例3已知曲線導(dǎo)數(shù)的幾何意義教案上一點導(dǎo)數(shù)的幾何意義教案,求:(1)過P點的切線的斜率;

  (2)過P點的切線的方程。

  解:(1)導(dǎo)數(shù)的幾何意義教案,

  導(dǎo)數(shù)的幾何意義教案

  y'|x=2=22=4. ∴在點P處的切線的斜率等于4.

  (2)在點P處的切線方程為導(dǎo)數(shù)的幾何意義教案即12x-3y-16=0.

  練習(xí):求拋物線y=x2+2在點M(2,6)處的切線方程.

  (答案:y'=2x,y'|x=2=4切線方程為4x-y-2=0).

  B類學(xué)生做題,A類學(xué)生糾錯。

  三、小結(jié)

  1.導(dǎo)數(shù)的幾何意義.(C組學(xué)生回答)

  2.利用導(dǎo)數(shù)求曲線y=f(x)在點(x0,f(x0))處的切線方程的步驟.

  (B組學(xué)生回答)

  四、布置作業(yè)

  1.求拋物線導(dǎo)數(shù)的幾何意義教案在點(1,1)處的切線方程。

  2.求拋物線y=4x-x2在點A(4,0)和點B(2,4)處的切線的斜率,切線的方程.

  3.求曲線y=2x-x3在點(-1,-1)處的切線的傾斜角

  4.已知拋物線y=x2-4及直線y=x+2,求:(1)直線與拋物線交點的坐標(biāo); (2)拋物線在交點處的切線方程;

  (C組學(xué)生完成1,2題;B組學(xué)生完成1,2,3題;A組學(xué)生完成2,3,4題)

  教學(xué)反思:

  本節(jié)內(nèi)容是在學(xué)習(xí)了“變化率問題、導(dǎo)數(shù)的概念”等知識的基礎(chǔ)上,研究導(dǎo)數(shù)的幾何意義,由于新教材未設(shè)計極限,于是我盡量采用形象直觀的方式,讓學(xué)生通過動手作圖,自我感受整個逼近的過程,讓學(xué)生更加深刻地體會導(dǎo)數(shù)的幾何意義及“以直代曲”的思想。

  本節(jié)課主要圍繞著“利用函數(shù)圖象直觀理解導(dǎo)數(shù)的幾何意義”和“利用導(dǎo)數(shù)的幾何意義解釋實際問題”兩個教學(xué)重心展開。先回憶導(dǎo)數(shù)的實際意義、數(shù)值意義,由數(shù)到形,自然引出從圖形的角度研究導(dǎo)數(shù)的幾何意義;然后,類比“平均變化率——瞬時變化率”的研究思路,運用逼近的思想定義了曲線上某點的切線,再引導(dǎo)學(xué)生從數(shù)形結(jié)合的角度思考,獲得導(dǎo)數(shù)的幾何意義——“導(dǎo)數(shù)是曲線上某點處切線的斜率”。

  完成本節(jié)課第一階段的內(nèi)容學(xué)習(xí)后,教師點明,利用導(dǎo)數(shù)的幾何意義,在研究實際問題時,某點附近的曲線可以用過此點的切線近似代替,即“以直代曲”,從而達到“以簡單的對象刻畫復(fù)雜對象”的目的,并通過兩個例題的研究,讓學(xué)生從不同的角度完整地體驗導(dǎo)數(shù)與切線斜率的關(guān)系,并感受導(dǎo)數(shù)應(yīng)用的廣泛性。本節(jié)課注重以學(xué)生為主體,每一個知識、每一個發(fā)現(xiàn),總設(shè)法由學(xué)生自己得出,課堂上給予學(xué)生充足的思考時間和空間,讓學(xué)生在動手操作、動筆演算等活動后,再組織討論,本教師只是在關(guān)鍵處加以引導(dǎo)。從學(xué)生的作業(yè)看來,效果較好。

高中數(shù)學(xué)教案3

  教學(xué)目標(biāo):

  1.結(jié)合實際問題情景,理解分層抽樣的必要性和重要性;

  2.學(xué)會用分層抽樣的方法從總體中抽取樣本;

  3.并對簡單隨機抽樣、系統(tǒng)抽樣及分層抽樣方法進行比較,揭示其相互關(guān)系.

  教學(xué)重點:

  通過實例理解分層抽樣的方法.

  教學(xué)難點:

  分層抽樣的步驟.

  教學(xué)過程:

  一、問題情境

  1.復(fù)習(xí)簡單隨機抽樣、系統(tǒng)抽樣的概念、特征以及適用范圍.

  2.實例:某校高一、高二和高三年級分別有學(xué)生名,為了了解全校學(xué)生的視力情況,從中抽取容量為的樣本,怎樣抽取較為合理?

  二、學(xué)生活動

  能否用簡單隨機抽樣或系統(tǒng)抽樣進行抽樣,為什么?

  指出由于不同年級的學(xué)生視力狀況有一定的差異,用簡單隨機抽樣或系統(tǒng)抽樣進行抽樣不能準(zhǔn)確反映客觀實際,在抽樣時不僅要使每個個體被抽到的機會相等,還要注意總體中個體的層次性.

  由于樣本的容量與總體的個體數(shù)的比為100∶2500=1∶25,

  所以在各年級抽取的個體數(shù)依次是,,,即40,32,28.

  三、建構(gòu)數(shù)學(xué)

  1.分層抽樣:當(dāng)已知總體由差異明顯的幾部分組成時,為了使樣本更客觀地反映總體的情況,常將總體按不同的特點分成層次比較分明的幾部分,然后按各部分在總體中所占的比進行抽樣,這種抽樣叫做分層抽樣,其中所分成的各部分叫“層”.

  說明:①分層抽樣時,由于各部分抽取的個體數(shù)與這一部分個體數(shù)的比等于樣本容量與總體的個體數(shù)的比,每一個個體被抽到的可能性都是相等的;

 、谟捎诜謱映闃映浞掷昧宋覀兯莆盏男畔,使樣本具有較好的代表性,而且在各層抽樣時可以根據(jù)具體情況采取不同的抽樣方法,所以分層抽樣在實踐中有著非常廣泛的應(yīng)用.

  2.三種抽樣方法對照表:

  類別

  共同點

  各自特點

  相互聯(lián)系

  適用范圍

  簡單隨機抽樣

  抽樣過程中每個個體被抽取的概率是相同的

  從總體中逐個抽取

  總體中的個體數(shù)較少

  系統(tǒng)抽樣

  將總體均分成幾個部分,按事先確定的規(guī)則在各部分抽取

  在第一部分抽樣時采用簡單隨機抽樣

  總體中的個體數(shù)較多

  分層抽樣

  將總體分成幾層,分層進行抽取

  各層抽樣時采用簡單隨機抽樣或系統(tǒng)

  總體由差異明顯的幾部分組成

  3.分層抽樣的步驟:

 。1)分層:將總體按某種特征分成若干部分.

  (2)確定比例:計算各層的個體數(shù)與總體的個體數(shù)的比.

 。3)確定各層應(yīng)抽取的樣本容量.

 。4)在每一層進行抽樣(各層分別按簡單隨機抽樣或系統(tǒng)抽樣的方法抽取),綜合每層抽樣,組成樣本.

  四、數(shù)學(xué)運用

  1.例題.

  例1(1)分層抽樣中,在每一層進行抽樣可用_________________.

 。2)①教育局督學(xué)組到學(xué)校檢查工作,臨時在每個班各抽調(diào)2人參加座談;

 、谀嘲嗥谥锌荚囉15人在85分以上,40人在60-84分,1人不及格.現(xiàn)欲從中抽出8人研討進一步改進教和學(xué);

  ③某班元旦聚會,要產(chǎn)生兩名“幸運者”.

  對這三件事,合適的抽樣方法為()

  A.分層抽樣,分層抽樣,簡單隨機抽樣

  B.系統(tǒng)抽樣,系統(tǒng)抽樣,簡單隨機抽樣

  C.分層抽樣,簡單隨機抽樣,簡單隨機抽樣

  D.系統(tǒng)抽樣,分層抽樣,簡單隨機抽樣

  例2某電視臺在因特網(wǎng)上就觀眾對某一節(jié)目的喜愛程度進行調(diào)查,參加調(diào)查的總?cè)藬?shù)為12000人,其中持各種態(tài)度的人數(shù)如表中所示:

  很喜愛

  喜愛

  一般

  不喜愛

  2435

  4567

  3926

  1072

  電視臺為進一步了解觀眾的具體想法和意見,打算從中抽取60人進行更為詳細的調(diào)查,應(yīng)怎樣進行抽樣?

  解:抽取人數(shù)與總的比是60∶12000=1∶200,

  則各層抽取的人數(shù)依次是12.175,22.835,19.63,5.36,

  取近似值得各層人數(shù)分別是12,23,20,5.

  然后在各層用簡單隨機抽樣方法抽取.

  答用分層抽樣的方法抽取,抽取“很喜愛”、“喜愛”、“一般”、“不喜愛”的人

  數(shù)分別為12,23,20,5.

  說明:各層的抽取數(shù)之和應(yīng)等于樣本容量,對于不能取整數(shù)的情況,取其近似值.

 。3)某學(xué)校有160名教職工,其中教師120名,行政人員16名,后勤人員24名.為了了解教職工對學(xué)校在校務(wù)公開方面的某意見,擬抽取一個容量為20的樣本.

  分析:(1)總體容量較小,用抽簽法或隨機數(shù)表法都很方便.

 。2)總體容量較大,用抽簽法或隨機數(shù)表法都比較麻煩,由于人員沒有明顯差異,且剛好32排,每排人數(shù)相同,可用系統(tǒng)抽樣.

 。3)由于學(xué)校各類人員對這一問題的看法可能差異較大,所以應(yīng)采用分層抽樣方法.

  五、要點歸納與方法小結(jié)

  本節(jié)課學(xué)習(xí)了以下內(nèi)容:

  1.分層抽樣的概念與特征;

  2.三種抽樣方法相互之間的區(qū)別與聯(lián)系.

高中數(shù)學(xué)教案4

  教學(xué)目標(biāo)1.進一步理解線性規(guī)劃的概念;會解簡單的線性規(guī)劃問題;

  2.在運用建模和數(shù)形結(jié)合等數(shù)學(xué)思想方法分析、解決問題的過程中;提高解決問題的能力;

  3.進一步提高學(xué)生的合作意識和探究意識。

  教學(xué)重點:線性規(guī)劃的概念及其解法

  教學(xué)難點

  代數(shù)問題幾何化的過程

  教學(xué)方法:啟發(fā)探究式

  教學(xué)手段運用多媒體技術(shù)

  教學(xué)過程:1.實際問題引入。

  問題一:小王和小李合租了一輛小轎車外出旅游.小王駕車平均速度為每小時70公里,平均耗油量為每小時6公升;小李駕車平均速度為每小時50公里,平均耗油量為每小時4公升.現(xiàn)知道油箱內(nèi)油量為60公升,兩人駕車時間累計不能超過12小時.問小王和小李分別駕車多少時間時,行駛路程最遠?

  2.探究和討論下列問題。

  (1)實際問題轉(zhuǎn)化為一個怎樣的數(shù)學(xué)問題?

  (2)滿足不等式組①的條件的點構(gòu)成的區(qū)域如何表示?

  (3)關(guān)于x、y的一個表達式z=70x+50y的幾何意義是什么?

  (4)z的幾何意義是什么?

  (5)z的最大值如何確定?

  讓學(xué)生達成以下共識:小王駕車時間x和小李駕車時間y受到時間(12小時)和油量(60公升)的限制,即

  x+y≤12

  6x+4y≤60 ①

  x≥0

  y≥0

  行駛路程可以表示成關(guān)于x、y的一個表達式:z=70x+50y 由數(shù)形結(jié)合可知:經(jīng)過點B(6,6)的直線所對應(yīng)的z最大.

  則zmax=6×70+6×50=720

  結(jié)論:小王和小李分別駕車6小時時,行駛路程最遠為720公里.

  解題反思:

  問題解決過程中體現(xiàn)了那些重要的數(shù)學(xué)思想?

  3.線性規(guī)劃的有關(guān)概念。

  什么是“線性規(guī)劃問題”?涉及約束條件、線性約束條件、目標(biāo)函數(shù)、線性目標(biāo)函數(shù)、可行解、可行域和最優(yōu)解等概念.

  4.進一步探究線性規(guī)劃問題的解。

  問題二:若小王和小李駕車平均速度為每小時60公里和40公里,其它條件不變,問小王和小李分別駕車多少時間時,行駛路程最遠?

  要求:請你寫出約束條件、目標(biāo)函數(shù),作出可行域,求出最優(yōu)解。

  問題三:如果把不等式組①中的兩個“≤”改為“≥”,是否存在最優(yōu)解?

  5.小結(jié)。

  (1)數(shù)學(xué)知識;(2)數(shù)學(xué)思想。

  6.作業(yè)。

  (1)閱讀教材:P.60-63;

  (2)課后練習(xí):教材P.65-2,3;

  (3)在自己生活中尋找一個簡單的線性規(guī)劃問題,寫出約束條件,確定目標(biāo)函數(shù),作出可行域,并求出最優(yōu)解。

  《一個數(shù)列的研究》教學(xué)設(shè)計

  教學(xué)目標(biāo):

  1.進一步理解和掌握數(shù)列的有關(guān)概念和性質(zhì);

  2.在對一個數(shù)列的探究過程中,提高提出問題、分析問題和解決問題的能力;

  3.進一步提高問題探究意識、知識應(yīng)用意識和同伴合作意識。

  教學(xué)重點:

  問題的提出與解決

  教學(xué)難點:

  如何進行問題的探究

  教學(xué)方法:

  啟發(fā)探究式

  教學(xué)過程:

  問題:已知{an}是首項為1,公比為 的無窮等比數(shù)列。對于數(shù)列{an},提出你的問題,并進行研究,你能得到一些什么樣的結(jié)論?

  研究方向提示:

  1.?dāng)?shù)列{an}是一個等比數(shù)列,可以從等比數(shù)列角度來進行研究;

  2.研究所給數(shù)列的項之間的關(guān)系;

  3.研究所給數(shù)列的子數(shù)列;

  4.研究所給數(shù)列能構(gòu)造的新數(shù)列;

  5.?dāng)?shù)列是一種特殊的函數(shù),可以從函數(shù)性質(zhì)角度來進行研究;

  6.研究所給數(shù)列與其它知識的聯(lián)系(組合數(shù)、復(fù)數(shù)、圖形、實際意義等)。

  針對學(xué)生的研究情況,對所提問題進行歸類,選擇部分類型問題共同進行研究、分析與解決。

  課堂小結(jié):

  1.研究一個數(shù)列可以從哪些方面提出問題并進行研究?

  2.你最喜歡哪位同學(xué)的研究?為什么?

  課后思考題: 1.將{an}推廣為一般的無窮等比數(shù)列:1,q,q2,…,qn-1,… ,上述一些研究結(jié)論會有什么變化?

  2.若將{an}改為等差數(shù)列:1,1+d,2+d,…,1+(n-1)d,… ,是否可以進行類比研究?

  開展研究性學(xué)習(xí),培養(yǎng)問題解決能力

  一、對“研究性學(xué)習(xí)”和“問題解決”的認識 研究性學(xué)習(xí)是一種與接受性學(xué)習(xí)相對應(yīng)的學(xué)習(xí)方式,泛指學(xué)生主動探究問題的學(xué)習(xí)。研究性學(xué)習(xí)也可以說是一種學(xué)習(xí)活動:學(xué)生在教師指導(dǎo)下,在自己的學(xué)習(xí)生活和社會生活中選擇課題,以類似科學(xué)研究的方式去主動地獲取知識、應(yīng)用知識、解決問題。

  “問題解決”(problem solving)是美國數(shù)學(xué)教育界在二十世紀八十年代的主要口號,即認為應(yīng)當(dāng)以“問題解決”作為學(xué)校數(shù)學(xué)教育的中心。

  問題解決能力是一種重要的數(shù)學(xué)能力,其核心是“創(chuàng)新精神”與“實踐能力”。在數(shù)學(xué)教學(xué)活動中開展研究性學(xué)習(xí)是培養(yǎng)問題解決能力的主要途徑。

  二、“問題解決”課堂教學(xué)模式的建構(gòu)與實踐 以研究性學(xué)習(xí)活動為載體,以培養(yǎng)問題解決能力為核心的課堂教學(xué)模式(以下簡稱為“問題解決”課堂教學(xué)模式)試圖通過問題情境創(chuàng)設(shè),激發(fā)學(xué)生的求知欲,以獨立思考和交流討論的形式,發(fā)現(xiàn)、分析并解決問題,培養(yǎng)處理信息、獲取新知、應(yīng)用知識的能力,提高合作意識、探究意識和創(chuàng)新意識。

  (一)關(guān)于“問題解決”課堂教學(xué)模式

  通過實施“問題解決”課堂教學(xué)模式,希望能夠達到以下的功能目標(biāo):學(xué)習(xí)發(fā)現(xiàn)問題的方法,開掘創(chuàng)造性思維潛力,培養(yǎng)主動參與、團結(jié)協(xié)作精神,增進師生、同伴之間的情感交流,形成自覺運用數(shù)學(xué)基礎(chǔ)知識、基本技能和數(shù)學(xué)思想方法分析問題、解決問題的能力和意識。

 。ǘ⿺(shù)學(xué)學(xué)科中的問題解決能力的培養(yǎng)目標(biāo)

  數(shù)學(xué)問題解決能力培養(yǎng)的目標(biāo)可以有不同層次的要求:會審題,會建模,會轉(zhuǎn)化,會歸類,會反思,會編題。

 。ㄈ皢栴}解決”課堂教學(xué)模式的教學(xué)流程

  (四)“問題解決”課堂教學(xué)評價標(biāo)準(zhǔn)

  1. 教學(xué)目標(biāo)的確定;

  2. 教學(xué)方法的選擇;

  3. 問題的選擇;

  4. 師生主體意識的體現(xiàn);

  5.教學(xué)策略的運用。

 。ㄎ澹┝私鈱W(xué)生的數(shù)學(xué)問題解決能力的途徑

 。╅_展研究性學(xué)習(xí)活動對教師的能力要求

高中數(shù)學(xué)教案5

  教學(xué)準(zhǔn)備

  1.教學(xué)目標(biāo)

  1、知識與技能:

  函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型.高中階段不僅把函數(shù)看成變量之間的依

  賴關(guān)系,同時還用集合與對應(yīng)的語言刻畫函數(shù),高中階段更注重函數(shù)模型化的思想與意識.

  2、過程與方法:

 。1)通過實例,進一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;

 。2)了解構(gòu)成函數(shù)的要素;

  (3)會求一些簡單函數(shù)的定義域和值域;

 。4)能夠正確使用“區(qū)間”的符號表示函數(shù)的定義域;

  3、情感態(tài)度與價值觀,使學(xué)生感受到學(xué)習(xí)函數(shù)的必要性和重要性,激發(fā)學(xué)習(xí)的積極性.

  教學(xué)重點/難點

  重點:理解函數(shù)的模型化思想,用集合與對應(yīng)的語言來刻畫函數(shù);

  難點:符號“y=f(x)”的含義,函數(shù)定義域和值域的區(qū)間表示;

  教學(xué)用具

  多媒體

  4.標(biāo)簽

  函數(shù)及其表示

  教學(xué)過程

 。ㄒ唬﹦(chuàng)設(shè)情景,揭示課題

  1、復(fù)習(xí)初中所學(xué)函數(shù)的概念,強調(diào)函數(shù)的模型化思想;

  2、閱讀課本引例,體會函數(shù)是描述客觀事物變化規(guī)律的數(shù)學(xué)模型的思想:

  (1)炮彈的射高與時間的變化關(guān)系問題;

 。2)南極臭氧空洞面積與時間的變化關(guān)系問題;

  (3)“八五”計劃以來我國城鎮(zhèn)居民的恩格爾系數(shù)與時間的變化關(guān)系問題.

  3、分析、歸納以上三個實例,它們有什么共同點;

  4、引導(dǎo)學(xué)生應(yīng)用集合與對應(yīng)的語言描述各個實例中兩個變量間的依賴關(guān)系;

  5、根據(jù)初中所學(xué)函數(shù)的概念,判斷各個實例中的兩個變量間的關(guān)系是否是函數(shù)關(guān)系.

 。ǘ┭刑叫轮

  1、函數(shù)的有關(guān)概念

 。1)函數(shù)的概念:

  設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個函數(shù)(function).

  記作:y=f(x),x∈A.

  其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域(domain);與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域(range).

  注意:

 、佟皔=f(x)”是函數(shù)符號,可以用任意的字母表示,如“y=g(x)”;

 、诤瘮(shù)符號“y=f(x)”中的f(x)表示與x對應(yīng)的函數(shù)值,一個數(shù),而不是f乘x.

 。2)構(gòu)成函數(shù)的三要素是什么?

  定義域、對應(yīng)關(guān)系和值域

 。3)區(qū)間的概念

 、賲^(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;

 、跓o窮區(qū)間;

 、蹍^(qū)間的數(shù)軸表示.

 。4)初中學(xué)過哪些函數(shù)?它們的定義域、值域、對應(yīng)法則分別是什么?

  通過三個已知的函數(shù):y=ax+b(a≠0)

  y=ax2+bx+c(a≠0)

  y=(k≠0)比較描述性定義和集合,與對應(yīng)語言刻畫的定義,談?wù)勼w會.

  師:歸納總結(jié)

  (三)質(zhì)疑答辯,排難解惑,發(fā)展思維。

  1、如何求函數(shù)的定義域

  例1:已知函數(shù)f(x)=+

  (1)求函數(shù)的定義域;

  (2)求f(-3),f()的值;

 。3)當(dāng)a>0時,求f(a),f(a-1)的值.

  分析:函數(shù)的定義域通常由問題的實際背景確定,如前所述的三個實例.如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,那么函數(shù)的定義域就是指能使這個式子有意義的實數(shù)的集合,函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.

  例2、設(shè)一個矩形周長為80,其中一邊長為x,求它的面積關(guān)于x的函數(shù)的解析式,并寫出定義域.

  分析:由題意知,另一邊長為x,且邊長x為正數(shù),所以0<x<40.

  所以s==(40-x)x(0<x<40)

  引導(dǎo)學(xué)生小結(jié)幾類函數(shù)的定義域:

  (1)如果f(x)是整式,那么函數(shù)的定義域是實數(shù)集R.

  2)如果f(x)是分式,那么函數(shù)的定義域是使分母不等于零的實數(shù)的集合.

  (3)如果f(x)是二次根式,那么函數(shù)的定義域是使根號內(nèi)的式子大于或等于零的實數(shù)的集合.

 。4)如果f(x)是由幾個部分的數(shù)學(xué)式子構(gòu)成的,那么函數(shù)定義域是使各部分式子都有意義的實數(shù)集合.(即求各集合的交集)

  (5)滿足實際問題有意義.

  鞏固練習(xí):課本P19第1

  2、如何判斷兩個函數(shù)是否為同一函數(shù)

  例3、下列函數(shù)中哪個與函數(shù)y=x相等?

  分析:

  1構(gòu)成函數(shù)三個要素是定義域、對應(yīng)關(guān)系和值域.由于值域是由定義域和對應(yīng)關(guān)系決定的,所以,如果兩個函數(shù)的定義域和對應(yīng)關(guān)系完全一致,即稱這兩個函數(shù)相等(或為同一函數(shù))

  2兩個函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。

  解:

  課本P18例2

 。ㄋ模w納小結(jié)

  ①從具體實例引入了函數(shù)的概念,用集合與對應(yīng)的語言描述了函數(shù)的定義及其相關(guān)概念;②初步介紹了求函數(shù)定義域和判斷同一函數(shù)的基本方法,同時引出了區(qū)間的概念.

 。ㄎ澹┰O(shè)置問題,留下懸念

  1、課本P24習(xí)題1.2(A組)第1—7題(B組)第1題

  2、舉出生活中函數(shù)的例子(三個以上),并用集合與對應(yīng)的語言來描述函數(shù),同時說出函數(shù)的定義域、值域和對應(yīng)關(guān)系.

  課堂小結(jié)

高中數(shù)學(xué)教案6

  1.課題

  填寫課題名稱(高中代數(shù)類課題)

  2.教學(xué)目標(biāo)

  (1)知識與技能:

  通過本節(jié)課的學(xué)習(xí),掌握......知識,提高學(xué)生解決實際問題的能力;

  (2)過程與方法:

  通過......(討論、發(fā)現(xiàn)、探究),提高......(分析、歸納、比較和概括)的能力;

  (3)情感態(tài)度與價值觀:

  通過本節(jié)課的學(xué)習(xí),增強學(xué)生的學(xué)習(xí)興趣,將數(shù)學(xué)應(yīng)用到實際生活中,增加學(xué)生數(shù)學(xué)學(xué)習(xí)的樂趣。

  3.教學(xué)重難點

  (1)教學(xué)重點:本節(jié)課的知識重點

  (2)教學(xué)難點:易錯點、難以理解的知識點

  4.教學(xué)方法(一般從中選擇3個就可以了)

  (1)討論法

  (2)情景教學(xué)法

  (3)問答法

  (4)發(fā)現(xiàn)法

  (5)講授法

  5.教學(xué)過程

  (1)導(dǎo)入

  簡單敘述導(dǎo)入課題的方式和方法(例:復(fù)習(xí)、類比、情境導(dǎo)出本節(jié)課的課題)

  (2)新授課程(一般分為三個小步驟)

  ①簡單講解本節(jié)課基礎(chǔ)知識點(例:奇函數(shù)的定義)。

 、跉w納總結(jié)該課題中的重點知識內(nèi)容,尤其對該注意的一些情況設(shè)置易錯點,進行強調(diào)?梢栽O(shè)計分組討論環(huán)節(jié)(分組判斷幾組函數(shù)圖像是否為奇函數(shù),并歸納奇函數(shù)圖像的特點。設(shè)置定義域不關(guān)于原點對稱的函數(shù)是否為奇函數(shù)的易錯點)。

 、弁卣寡由,將所學(xué)知識拓展延伸到實際題目中,去解決實際生活中的問題。

 。ㄔ谛率谡n里面一定要表下出講課的大體流程,但是不必太過詳細。)

  (3)課堂小結(jié)

  教師提問,學(xué)生回答本節(jié)課的收獲。

  (4)作業(yè)提高

  布置作業(yè)(盡量與實際生活相聯(lián)系,有所創(chuàng)新)。

  6.教學(xué)板書

  2.高中數(shù)學(xué)教案格式

  一.課題(說明本課名稱)

  二.教學(xué)目的(或稱教學(xué)要求,或稱教學(xué)目標(biāo),說明本課所要完成的教學(xué)任務(wù))

  三.課型(說明屬新授課,還是復(fù)習(xí)課)

  四.課時(說明屬第幾課時)

  五.教學(xué)重點(說明本課所必須解決的關(guān)鍵性問題)

  六.教學(xué)難點(說明本課的學(xué)習(xí)時易產(chǎn)生困難和障礙的知識傳授與能力培養(yǎng)點)

  七.教學(xué)方法要根據(jù)學(xué)生實際,注重引導(dǎo)自學(xué),注重啟發(fā)思維

  八.教學(xué)過程(或稱課堂結(jié)構(gòu),說明教學(xué)進行的內(nèi)容、方法步驟)

  九.作業(yè)處理(說明如何布置書面或口頭作業(yè))

  十.板書設(shè)計(說明上課時準(zhǔn)備寫在黑板上的內(nèi)容)

  十一.教具(或稱教具準(zhǔn)備,說明輔助教學(xué)手段使用的工具)

  十二.教學(xué)反思:(教者對該堂課教后的感受及學(xué)生的收獲、改進方法)

  3.高中數(shù)學(xué)教案范文

  【教學(xué)目標(biāo)】

  1.知識與技能

  (1)理解等差數(shù)列的定義,會應(yīng)用定義判斷一個數(shù)列是否是等差數(shù)列:

  (2)賬務(wù)等差數(shù)列的通項公式及其推導(dǎo)過程:

  (3)會應(yīng)用等差數(shù)列通項公式解決簡單問題。

  2.過程與方法

  在定義的理解和通項公式的推導(dǎo)、應(yīng)用過程中,培養(yǎng)學(xué)生的觀察、分析、歸納能力和嚴密的邏輯思維的能力,體驗從特殊到一般,一般到特殊的認知規(guī)律,提高熟悉猜想和歸納的能力,滲透函數(shù)與方程的思想。

  3.情感、態(tài)度與價值觀

  通過教師指導(dǎo)下學(xué)生的自主學(xué)習(xí)、相互交流和探索活動,培養(yǎng)學(xué)生主動探索、用于發(fā)現(xiàn)的求知精神,激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生感受到成功的喜悅。在解決問題的過程中,使學(xué)生養(yǎng)成細心觀察、認真分析、善于總結(jié)的良好習(xí)慣。

  【教學(xué)重點】

  ①等差數(shù)列的概念;

 、诘炔顢(shù)列的通項公式

  【教學(xué)難點】

 、倮斫獾炔顢(shù)列“等差”的特點及通項公式的含義;

  ②等差數(shù)列的通項公式的推導(dǎo)過程.

  【學(xué)情分析】

  我所教學(xué)的學(xué)生是我校高一(7)班的學(xué)生(平行班學(xué)生),經(jīng)過一年的高中數(shù)學(xué)學(xué)習(xí),大部分學(xué)生知識經(jīng)驗已較為豐富,他們的智力發(fā)展已到了形式運演階段,具備了較強的抽象思維能力和演繹推理能力,但也有一部分學(xué)生的基礎(chǔ)較弱,學(xué)習(xí)數(shù)學(xué)的興趣還不是很濃,所以我在授課時注重從具體的生活實例出發(fā),注重引導(dǎo)、啟發(fā)、研究和探討以符合這類學(xué)生的心理發(fā)展特點,從而促進思維能力的進一步發(fā)展。

  【設(shè)計思路】

  1、教法

 、賳l(fā)引導(dǎo)法:這種方法有利于學(xué)生對知識進行主動建構(gòu);有利于突出重點,突破難點;有利于調(diào)動學(xué)生的主動性和積極性,發(fā)揮其創(chuàng)造性.

 、诜纸M討論法:有利于學(xué)生進行交流,及時發(fā)現(xiàn)問題,解決問題,調(diào)動學(xué)生的積極性.

 、壑v練結(jié)合法:可以及時鞏固所學(xué)內(nèi)容,抓住重點,突破難點.

  2、學(xué)法

  引導(dǎo)學(xué)生首先從三個現(xiàn)實問題(數(shù)數(shù)問題、水庫水位問題、儲蓄問題)概括出數(shù)組特點并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點,推導(dǎo)出等差數(shù)列的通項公式;可以對各種能力的同學(xué)引導(dǎo)認識多元的推導(dǎo)思維方法.

  【教學(xué)過程】

  一、創(chuàng)設(shè)情境,引入新課

  1、從0開始,將5的倍數(shù)按從小到大的順序排列,得到的數(shù)列是什么?

  2、水庫管理人員為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,用定期放水清庫的辦法清理水庫中的雜魚.如果一個水庫的水位為18m,自然放水每天水位降低2.5m,最低降至5m.那么從開始放水算起,到可以進行清理工作的那天,水庫每天的水位(單位:m)組成一個什么數(shù)列?

  3、我國現(xiàn)行儲蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本息計算下一期的利息.按照單利計算本利和的公式是:本利和=本金×(1+利率×存期).按活期存入10000元錢,年利率是0.72%,那么按照單利,5年內(nèi)各年末的本利和(單位:元)組成一個什么數(shù)列?

  教師:以上三個問題中的數(shù)蘊涵著三列數(shù).

  學(xué)生:

 、0,5,10,15,20,25,….

 、18,15.5,13,10.5,8,5.5.

 、10072,10144,10216,10288,10360.

  (設(shè)置意圖:從實例引入,實質(zhì)是給出了等差數(shù)列的現(xiàn)實背景,目的是讓學(xué)生感受到等差數(shù)列是現(xiàn)實生活中大量存在的數(shù)學(xué)模型.通過分析,由特殊到一般,激發(fā)學(xué)生學(xué)習(xí)探究知識的自主性,培養(yǎng)學(xué)生的歸納能力.

  二、觀察歸納,形成定義

 、0,5,10,15,20,25,….

 、18,15.5,13,10.5,8,5.5.

 、10072,10144,10216,10288,10360.

  思考1上述數(shù)列有什么共同特點?

  思考2根據(jù)上數(shù)列的共同特點,你能給出等差數(shù)列的一般定義嗎?

  思考3你能將上述的文字語言轉(zhuǎn)換成數(shù)學(xué)符號語言嗎?

  教師:引導(dǎo)學(xué)生思考這三列數(shù)具有的共同特征,然后讓學(xué)生抓住數(shù)列的特征,歸納得出等差數(shù)列概念.

  學(xué)生:分組討論,可能會有不同的答案:前數(shù)和后數(shù)的差符合一定規(guī)律;這些數(shù)都是按照一定順序排列的…只要合理教師就要給予肯定.

  教師引導(dǎo)歸納出:等差數(shù)列的定義;另外,教師引導(dǎo)學(xué)生從數(shù)學(xué)符號角度理解等差數(shù)列的定義.

  (設(shè)計意圖:通過對一定數(shù)量感性材料的觀察、分析,提煉出感性材料的本質(zhì)屬性;使學(xué)生體會到等差數(shù)列的規(guī)律和共同特點;一開始抓。骸皬牡诙椘穑恳豁椗c它的前一項的差為同一常數(shù)”,落實對等差數(shù)列概念的準(zhǔn)確表達.)

  三、舉一反三,鞏固定義

  1、判定下列數(shù)列是否為等差數(shù)列?若是,指出公差d.

  (1)1,1,1,1,1;

  (2)1,0,1,0,1;

  (3)2,1,0,-1,-2;

  (4)4,7,10,13,16.

  教師出示題目,學(xué)生思考回答.教師訂正并強調(diào)求公差應(yīng)注意的問題.

  注意:公差d是每一項(第2項起)與它的前一項的差,防止把被減數(shù)與減數(shù)弄顛倒,而且公差可以是正數(shù),負數(shù),也可以為0.

  (設(shè)計意圖:強化學(xué)生對等差數(shù)列“等差”特征的理解和應(yīng)用).

  2、思考4:設(shè)數(shù)列{an}的通項公式為an=3n+1,該數(shù)列是等差數(shù)列嗎?為什么?

  (設(shè)計意圖:強化等差數(shù)列的證明定義法)

  四、利用定義,導(dǎo)出通項

  1、已知等差數(shù)列:8,5,2,…,求第200項?

  2、已知一個等差數(shù)列{an}的首項是a1,公差是d,如何求出它的任意項an呢?

  教師出示問題,放手讓學(xué)生探究,然后選擇列式具有代表性的上去板演或投影展示.根據(jù)學(xué)生在課堂上的具體情況進行具體評價、引導(dǎo),總結(jié)推導(dǎo)方法,體會歸納思想以及累加求通項的方法;讓學(xué)生初步嘗試處理數(shù)列問題的常用方法.

  (設(shè)計意圖:引導(dǎo)學(xué)生觀察、歸納、猜想,培養(yǎng)學(xué)生合理的推理能力.學(xué)生在分組合作探究過程中,可能會找到多種不同的解決辦法,教師要逐一點評,并及時肯定、贊揚學(xué)生善于動腦、勇于創(chuàng)新的品質(zhì),激發(fā)學(xué)生的創(chuàng)造意識.鼓勵學(xué)生自主解答,培養(yǎng)學(xué)生運算能力)

  五、應(yīng)用通項,解決問題

  1、判斷100是不是等差數(shù)列2,9,16,…的項?如果是,是第幾項?

  2、在等差數(shù)列{an}中,已知a5=10,a12=31,求a1,d和an.

  3、求等差數(shù)列3,7,11,…的第4項和第10項

  教師:給出問題,讓學(xué)生自己操練,教師巡視學(xué)生答題情況.

  學(xué)生:教師叫學(xué)生代表總結(jié)此類題型的解題思路,教師補充:已知等差數(shù)列的首項和公差就可以求出其通項公式

  (設(shè)計意圖:主要是熟悉公式,使學(xué)生從中體會公式與方程之間的聯(lián)系.初步認識“基本量法”求解等差數(shù)列問題.)

  六、反饋練習(xí):教材13頁練習(xí)1

  七、歸納總結(jié):

  1、一個定義:

  等差數(shù)列的定義及定義表達式

  2、一個公式:

  等差數(shù)列的通項公式

  3、二個應(yīng)用:

  定義和通項公式的應(yīng)用

  教師:讓學(xué)生思考整理,找?guī)讉代表發(fā)言,最后教師給出補充

  (設(shè)計意圖:引導(dǎo)學(xué)生去聯(lián)想本節(jié)課所涉及到的各個方面,溝通它們之間的聯(lián)系,使學(xué)生能在新的高度上去重新認識和掌握基本概念,并靈活運用基本概念.)

  【設(shè)計反思】

  本設(shè)計從生活中的數(shù)列模型導(dǎo)入,有助于發(fā)揮學(xué)生學(xué)習(xí)的主動性,增強學(xué)生學(xué)習(xí)數(shù)列的興趣.在探索的過程中,學(xué)生通過分析、觀察,歸納出等差數(shù)列定義,然后由定義導(dǎo)出通項公式,強化了由具體到抽象,由特殊到一般的思維過程,有助于提高學(xué)生分析問題和解決問題的能力.本節(jié)課教學(xué)采用啟發(fā)方法,以教師提出問題、學(xué)生探討解決問題為途徑,以相互補充展開教學(xué),總結(jié)科學(xué)合理的知識體系,形成師生之間的良性互動,提高課堂教學(xué)效率.

高中數(shù)學(xué)教案7

  教學(xué)目標(biāo):

  1.了解反函數(shù)的概念,弄清原函數(shù)與反函數(shù)的定義域和值域的關(guān)系.

  2.會求一些簡單函數(shù)的反函數(shù).

  3.在嘗試、探索求反函數(shù)的過程中,深化對概念的認識,總結(jié)出求反函數(shù)的一般步驟,加深對函數(shù)與方程、數(shù)形結(jié)合以及由特殊到一般等數(shù)學(xué)思想方法的認識.

  4.進一步完善學(xué)生思維的深刻性,培養(yǎng)學(xué)生的逆向思維能力,用辯證的觀點分析問題,培養(yǎng)抽象、概括的能力.

  教學(xué)重點:求反函數(shù)的方法.

  教學(xué)難點:反函數(shù)的概念.

  教學(xué)過程

  教學(xué)活動

  設(shè)計意圖一、創(chuàng)設(shè)情境,引入新課

  1.復(fù)習(xí)提問

  ①函數(shù)的概念

 、趛=f(x)中各變量的意義

  2.同學(xué)們在物理課學(xué)過勻速直線運動的位移和時間的函數(shù)關(guān)系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是時間t的函數(shù);在t=中,時間t是位移S的函數(shù).在這種情況下,我們說t=是函數(shù)S=vt的反函數(shù).什么是反函數(shù),如何求反函數(shù),就是本節(jié)課學(xué)習(xí)的內(nèi)容.

  3.板書課題

  由實際問題引入新課,激發(fā)了學(xué)生學(xué)習(xí)興趣,展示了教學(xué)目標(biāo).這樣既可以撥去"反函數(shù)"這一概念的神秘面紗,也可使學(xué)生知道學(xué)習(xí)這一概念的必要性.

  二、實例分析,組織探究

  1.問題組一:

  (用投影給出函數(shù)與;與()的圖象)

  (1)這兩組函數(shù)的圖像有什么關(guān)系?這兩組函數(shù)有什么關(guān)系?(生答:與的圖像關(guān)于直線y=x對稱;與()的圖象也關(guān)于直線y=x對稱.是求一個數(shù)立方的運算,而是求一個數(shù)立方根的運算,它們互為逆運算.同樣,與()也互為逆運算.)

  (2)由,已知y能否求x?

  (3)是否是一個函數(shù)?它與有何關(guān)系?

  (4)與有何聯(lián)系?

  2.問題組二:

  (1)函數(shù)y=2x 1(x是自變量)與函數(shù)x=2y 1(y是自變量)是否是同一函數(shù)?

  (2)函數(shù)(x是自變量)與函數(shù)x=2y 1(y是自變量)是否是同一函數(shù)?

  (3)函數(shù) ()的定義域與函數(shù)()的值域有什么關(guān)系?

  3.滲透反函數(shù)的概念.

  (教師點明這樣的函數(shù)即互為反函數(shù),然后師生共同探究其特點)

  從學(xué)生熟知的函數(shù)出發(fā),抽象出反函數(shù)的概念,符合學(xué)生的認知特點,有利于培養(yǎng)學(xué)生抽象、概括的能力.

  通過這兩組問題,為反函數(shù)概念的引出做了鋪墊,利用舊知,引出新識,在"最近發(fā)展區(qū)"設(shè)計問題,使學(xué)生對反函數(shù)有一個直觀的粗略印象,為進一步抽象反函數(shù)的概念奠定基礎(chǔ).

  三、師生互動,歸納定義

  1.(根據(jù)上述實例,教師與學(xué)生共同歸納出反函數(shù)的定義)

  函數(shù)y=f(x)(x∈A) 中,設(shè)它的值域為 C.我們根據(jù)這個函數(shù)中x,y的關(guān)系,用 y 把 x 表示出來,得到 x = j (y) .如果對于y在C中的任何一個值,通過x = j (y),x在A中都有的值和它對應(yīng),那么, x = j (y)就表示y是自變量,x是自變量 y 的函數(shù).這樣的函數(shù) x = j (y)(y ∈C)叫做函數(shù)y=f(x)(x∈A)的反函數(shù).記作: .考慮到"用 x表示自變量, y表示函數(shù)"的習(xí)慣,將中的x與y對調(diào)寫成.

  2.引導(dǎo)分析:

  1)反函數(shù)也是函數(shù);

  2)對應(yīng)法則為互逆運算;

  3)定義中的"如果"意味著對于一個任意的函數(shù)y=f(x)來說不一定有反函數(shù);

  4)函數(shù)y=f(x)的定義域、值域分別是函數(shù)x=f(y)的值域、定義域;

  5)函數(shù)y=f(x)與x=f(y)互為反函數(shù);

  6)要理解好符號f;

  7)交換變量x、y的原因.

  3.兩次轉(zhuǎn)換x、y的對應(yīng)關(guān)系

  (原函數(shù)中的自變量x與反函數(shù)中的函數(shù)值y 是等價的,原函數(shù)中的函數(shù)值y與反函數(shù)中的自變量x是等價的)

  4.函數(shù)與其反函數(shù)的關(guān)系

  函數(shù)y=f(x)

  函數(shù)

  定義域

  A

  C

  值 域

  C

  A

  四、應(yīng)用解題,總結(jié)步驟

  1.(投影例題)

  【例1】求下列函數(shù)的反函數(shù)

  (1)y=3x-1 (2)y=x 1

  【例2】求函數(shù)的反函數(shù).

  (教師板書例題過程后,由學(xué)生總結(jié)求反函數(shù)步驟.)

  2.總結(jié)求函數(shù)反函數(shù)的步驟:

  1° 由y=f(x)反解出x=f(y).

  2° 把x=f(y)中 x與y互換得.

  3° 寫出反函數(shù)的定義域.

  (簡記為:反解、互換、寫出反函數(shù)的定義域)【例3】(1)有沒有反函數(shù)?

  (2)的反函數(shù)是________.

  (3)(x<0)的反函數(shù)是__________.

  在上述探究的基礎(chǔ)上,揭示反函數(shù)的定義,學(xué)生有針對性地體會定義的特點,進而對定義有更深刻的認識,與自己的預(yù)設(shè)產(chǎn)生矛盾沖突,體會反函數(shù).在剖析定義的過程中,讓學(xué)生體會函數(shù)與方程、一般到特殊的數(shù)學(xué)思想,并對數(shù)學(xué)的符號語言有更好的把握.

  通過動畫演示,表格對照,使學(xué)生對反函數(shù)定義從感性認識上升到理性認識,從而消化理解.

  通過對具體例題的講解分析,在解題的步驟上和方法上為學(xué)生起示范作用,并及時歸納總結(jié),培養(yǎng)學(xué)生分析、思考的習(xí)慣,以及歸納總結(jié)的能力.

  題目的設(shè)計遵循了從了解到理解,從掌握到應(yīng)用的不同層次要求,由淺入深,循序漸進.并體現(xiàn)了對定義的反思理解.學(xué)生思考練習(xí),師生共同分析糾正.

  五、鞏固強化,評價反饋

  1.已知函數(shù) y=f(x)存在反函數(shù),求它的反函數(shù) y =f( x)

  (1)y=-2x 3(xR) (2)y=-(xR,且x)

  ( 3 ) y=(xR,且x)

  2.已知函數(shù)f(x)=(xR,且x)存在反函數(shù),求f(7)的值.

  五、反思小結(jié),再度設(shè)疑

  本節(jié)課主要研究了反函數(shù)的定義,以及反函數(shù)的求解步驟.互為反函數(shù)的兩個函數(shù)的圖象到底有什么特點呢?為什么具有這樣的特點呢?我們將在下節(jié)研究.

  (讓學(xué)生談一下本節(jié)課的學(xué)習(xí)體會,教師適時點撥)

  進一步強化反函數(shù)的概念,并能正確求出反函數(shù).反饋學(xué)生對知識的掌握情況,評價學(xué)生對學(xué)習(xí)目標(biāo)的落實程度.具體實踐中可采取同學(xué)板演、分組競賽等多種形式調(diào)動學(xué)生的積極性."問題是數(shù)學(xué)的心臟"學(xué)生帶著問題走進課堂又帶著新的問題走出課堂.

  六、作業(yè)

  習(xí)題2.4第1題,第2題

  進一步鞏固所學(xué)的知識.

  教學(xué)設(shè)計說明

  "問題是數(shù)學(xué)的心臟".一個概念的形成是螺旋式上升的,一般要經(jīng)過具體到抽象,感性到理性的過程.本節(jié)教案通過一個物理學(xué)中的具體實例引入反函數(shù),進而又通過若干函數(shù)的圖象進一步加以誘導(dǎo)剖析,最終形成概念.

  反函數(shù)的概念是教學(xué)中的難點,原因是其本身較為抽象,經(jīng)過兩次代換,又采用了抽象的符號.由于沒有一一映射,逆映射等概念的支撐,使學(xué)生難以從本質(zhì)上去把握反函數(shù)的概念.為此,我們大膽地使用教材,把互為反函數(shù)的兩個函數(shù)的圖象關(guān)系預(yù)先揭示,進而探究原因,尋找規(guī)律,程序是從問題出發(fā),研究性質(zhì),進而得出概念,這正是數(shù)學(xué)研究的順序,符合學(xué)生認知規(guī)律,有助于概念的建立與形成.另外,對概念的剖析以及習(xí)題的配備也很精當(dāng),通過不同層次的問題,滿足學(xué)生多層次需要,起到評價反饋的作用.通過對函數(shù)與方程的分析,互逆探索,動畫演示,表格對照、學(xué)生討論等多種形式的教學(xué)環(huán)節(jié),充分調(diào)動了學(xué)生的探求欲,在探究與剖析的過程中,完善學(xué)生思維的深刻性,培養(yǎng)學(xué)生的逆向思維.使學(xué)生自然成為學(xué)習(xí)的主人。

高中數(shù)學(xué)教案8

  1.教學(xué)目標(biāo)

  (1)知識目標(biāo): 1.在平面直角坐標(biāo)系中,探索并掌握圓的標(biāo)準(zhǔn)方程;

  2.會由圓的方程寫出圓的半徑和圓心,能根據(jù)條件寫出圓的方程.

  (2)能力目標(biāo): 1.進一步培養(yǎng)學(xué)生用解析法研究幾何問題的能力;

  2.使學(xué)生加深對數(shù)形結(jié)合思想和待定系數(shù)法的理解;

  3.增強學(xué)生用數(shù)學(xué)的意識.

  (3)情感目標(biāo):培養(yǎng)學(xué)生主動探究知識、合作交流的意識,在體驗數(shù)學(xué)美的過程中激發(fā)學(xué)生的學(xué)習(xí)興趣.

  2.教學(xué)重點.難點

  (1)教學(xué)重點:圓的標(biāo)準(zhǔn)方程的求法及其應(yīng)用.

  (2)教學(xué)難點:會根據(jù)不同的已知條件,利用待定系數(shù)法求圓的標(biāo)準(zhǔn)方程以及選擇恰

  當(dāng)?shù)淖鴺?biāo)系解決與圓有關(guān)的實際問題.

  3.教學(xué)過程

  (一)創(chuàng)設(shè)情境(啟迪思維)

  問題一:已知隧道的截面是半徑為4m的半圓,車輛只能在道路中心線一側(cè)行駛,一輛寬為2.7m,高為3m的貨車能不能駛?cè)脒@個隧道?

  [引導(dǎo)] 畫圖建系

  [學(xué)生活動]:嘗試寫出曲線的方程(對求曲線的方程的步驟及圓的定義進行提示性復(fù)習(xí))

  解:以某一截面半圓的圓心為坐標(biāo)原點,半圓的直徑ab所在直線為x軸,建立直角坐標(biāo)系,則半圓的方程為x2 y2=16(y≥0)

  將x=2.7代入,得 .

  即在離隧道中心線2.7m處,隧道的高度低于貨車的高度,因此貨車不能駛?cè)脒@個隧道。

  (二)深入探究(獲得新知)

  問題二:1.根據(jù)問題一的探究能不能得到圓心在原點,半徑為 的圓的方程?

  答:x2 y2=r2

  2.如果圓心在 ,半徑為 時又如何呢?

  [學(xué)生活動] 探究圓的方程。

  [教師預(yù)設(shè)] 方法一:坐標(biāo)法

  如圖,設(shè)m(x,y)是圓上任意一點,根據(jù)定義點m到圓心c的距離等于r,所以圓c就是集合p={m||mc|=r}

  由兩點間的距離公式,點m適合的條件可表示為 ①

  把①式兩邊平方,得(x―a)2 (y―b)2=r2

  方法二:圖形變換法

  方法三:向量平移法

  (三)應(yīng)用舉例(鞏固提高)

  i.直接應(yīng)用(內(nèi)化新知)

  問題三:1.寫出下列各圓的方程(課本p77練習(xí)1)

  (1)圓心在原點,半徑為3;

  (2)圓心在 ,半徑為 ;

  (3)經(jīng)過點 ,圓心在點 .

  2.根據(jù)圓的方程寫出圓心和半徑

  (1) ; (2) .

  ii.靈活應(yīng)用(提升能力)

  問題四:1.求以 為圓心,并且和直線 相切的圓的方程.

  [教師引導(dǎo)]由問題三知:圓心與半徑可以確定圓.

  2.已知圓的方程為 ,求過圓上一點 的切線方程.

  [學(xué)生活動]探究方法

  [教師預(yù)設(shè)]

  方法一:待定系數(shù)法(利用幾何關(guān)系求斜率-垂直)

  方法二:待定系數(shù)法(利用代數(shù)關(guān)系求斜率-聯(lián)立方程)

  方法三:軌跡法(利用勾股定理列關(guān)系式) [多媒體課件演示]

  方法四:軌跡法(利用向量垂直列關(guān)系式)

  3.你能歸納出具有一般性的結(jié)論嗎?

  已知圓的方程是 ,經(jīng)過圓上一點 的切線的方程是: .

  iii.實際應(yīng)用(回歸自然)

  問題五:如圖是某圓拱橋的一孔圓拱的示意圖,該圓拱跨度ab=20m,拱高op=4m,在建造時每隔4m需用一個支柱支撐,求支柱 的長度(精確到0.01m).

  [多媒體課件演示創(chuàng)設(shè)實際問題情境]

  (四)反饋訓(xùn)練(形成方法)

  問題六:1.求以c(-1,-5)為圓心,并且和y軸相切的圓的方程.

  2.已知點a(-4,-5),b(6,-1),求以ab為直徑的圓的方程.

  3.求圓x2 y2=13過點(-2,3)的切線方程.

  4.已知圓的方程為 ,求過點 的切線方程.

高中數(shù)學(xué)教案9

  1. 你能遵守學(xué)校的規(guī)章制度,按時上學(xué),按時完成作業(yè),書寫比較端正,課堂上你也坐得比較端正。如果在學(xué)習(xí)上能夠更加主動一些,尋找適合自己的學(xué)習(xí)

  2. 你尊敬老師、團結(jié)同學(xué)、熱愛勞動、關(guān)心集體,所以大家都喜歡你。能嚴格遵守學(xué)校的各項規(guī)章制度。學(xué)習(xí)不夠刻苦,有畏難情緒。學(xué)習(xí)方法有待改進,掌握知識不夠牢固,思維能力要進一步培養(yǎng)和提高。學(xué)習(xí)成績比上學(xué)期有一定的進步。平時能積極參加體育鍛煉和有益的文娛活動。今后如果能注意分配好學(xué)習(xí)時間,各科全面發(fā)展,均衡提高,相信一定會成為一名更加出色的'學(xué)生。

  3. 你性格活潑開朗,總是帶著甜甜的笑容,你能與同學(xué)友愛相處,待人有禮,能虛心接受老師的教導(dǎo)。大多數(shù)的時候你都能遵守紀律,偶爾會犯一些小錯誤。有時上課不夠留心,還有些小動作,你能想辦法控制自己嗎?一開學(xué)老師就發(fā)現(xiàn)你的作業(yè)干凈又整齊,你的字清秀又漂亮。但學(xué)習(xí)成績不容樂觀,需努力提高學(xué)習(xí)成績。希望能從根本上認識到自己的不足,在課堂上能認真聽講,開動腦筋,遇到問題敢于請教。

  4. 你熱情大方,為人豪爽,身上透露出女生少有的霸氣,作為班干部,你會提醒同學(xué)們及時安靜,對學(xué)習(xí)態(tài)度端正,及時完成作業(yè),但是少了點耐心,試著把心沉下來,上課集中注意力,跟著老師的思路走,一步一個腳印,一定能走出你自己絢麗的人生!

  5. 學(xué)習(xí)態(tài)度端正,效率高,合理分配時間,學(xué)習(xí)生活兩不誤,善良熱情,熱愛生活,樂于助人,與周圍同學(xué)相處關(guān)系融洽。能嚴格遵守學(xué)校的各項規(guī)章制度。上課能專心聽講,認真做好筆記,課后能按時完成作業(yè)。記憶力好,自學(xué)能力較強。希望你能更主動地學(xué)習(xí),多思,多問,多練,大膽向老師和同學(xué)請教,注意采用科學(xué)的學(xué)習(xí)方法,提高學(xué)習(xí)效率,一定能取得滿意的成績!

  6. 作為本班的班長,你對待班級工作能夠認真負責(zé),積極配合老師和班委工作,集體榮譽感很強,人際關(guān)系很好,待人真誠,熱心幫助人,老師十分欣賞你的善良和聰明,希望在以后能夠積極發(fā)揮自己的所長,帶領(lǐng)全班不僅在班級管理上有進步,而且能在學(xué)習(xí)上也能成為全班的領(lǐng)頭雁,在下學(xué)期能取得更大的進步!

  7. 身為班委的你,對工作認真負責(zé),以身作則,性格和善,與同學(xué)關(guān)系融洽,積極參加各項活動,不太張揚的你顯得穩(wěn)重和踏實,在學(xué)習(xí)上,你認真聽課,及時完成各科作業(yè),但是我總覺得你的學(xué)習(xí)還不夠主動,沒有形成自己的一套方法,若從被動的學(xué)習(xí)中解脫出來,應(yīng)該穩(wěn)定在班級前五名啊!加油!

  8. 你是個懂禮貌明事理的孩子,你能嚴格遵守班級紀律,熱愛集體,對待學(xué)習(xí)態(tài)度端正,上課能夠?qū)P穆犞v,課下能夠認真完成作業(yè)。你的學(xué)習(xí)方法有待改進,若能做到學(xué)習(xí)時心無旁騖就好了,掌握知識也不夠牢固,思維能力要進一步培養(yǎng)和提高。只要有恒心,有毅力,老師相信你會在各方面取得長足進步!

  9. 你為人熱情大方,能和同學(xué)友好相處。你為人正直誠懇,尊敬老師,關(guān)心班集體,待人有禮,能認真聽從老師的教導(dǎo),自覺遵守學(xué)校的各項規(guī)章制度,抵制各種不良思想。有集體榮譽感,樂于為集體做事。學(xué)習(xí)刻苦,成績有所提高。上課能專心聽講,思維活躍,積極回答問題,積極思考,認真做好筆記。今后如果能注意分配好學(xué)習(xí)時間,各科全面發(fā)展,均衡提高,相信一定會成為一名更加出色的學(xué)生。

  10. 記得和你說過,你是個太聰明的孩子,你反應(yīng)敏捷,活潑靈動。但是做學(xué)問是需要靜下心來老老實實去鉆研的,容不得賣弄小聰明和半點頑皮話。要知道,學(xué)如逆水行舟,不進則退;心似平原野馬,易放難收!望你下學(xué)期重新抖擻精神早日進入狀態(tài),不辜負關(guān)愛你的人對你的殷殷期盼。

高中數(shù)學(xué)教案10

  一、教學(xué)目標(biāo)

  【知識與技能】

  在掌握圓的標(biāo)準(zhǔn)方程的基礎(chǔ)上,理解記憶圓的一般方程的代數(shù)特征,由圓的一般方程確定圓的圓心半徑,掌握方程x+y+Dx+Ey+F=0表示圓的條件。

  【過程與方法】

  通過對方程x+y+Dx+Ey+F=0表示圓的的條件的探究,學(xué)生探索發(fā)現(xiàn)及分析解決問題的實際能力得到提高。

  【情感態(tài)度與價值觀】

  滲透數(shù)形結(jié)合、化歸與轉(zhuǎn)化等數(shù)學(xué)思想方法,提高學(xué)生的整體素質(zhì),激勵學(xué)生創(chuàng)新,勇于探索。

  二、教學(xué)重難點

  【重點】

  掌握圓的一般方程,以及用待定系數(shù)法求圓的一般方程。

  【難點】

  二元二次方程與圓的一般方程及標(biāo)準(zhǔn)圓方程的關(guān)系。

  三、教學(xué)過程

  (一)復(fù)習(xí)舊知,引出課題

  1、復(fù)習(xí)圓的標(biāo)準(zhǔn)方程,圓心、半徑。

  2、提問1:已知圓心為(1,—2)、半徑為2的圓的方程是什么?

高中數(shù)學(xué)教案11

  教學(xué)目標(biāo):

  1、理解并掌握曲線在某一點處的切線的概念;

  2、理解并掌握曲線在一點處的切線的斜率的定義以及切線方程的求法;

  3、理解切線概念實際背景,培養(yǎng)學(xué)生解決實際問題的能力和培養(yǎng)學(xué)生轉(zhuǎn)化

  問題的能力及數(shù)形結(jié)合思想。

  教學(xué)重點:

  理解并掌握曲線在一點處的切線的斜率的定義以及切線方程的求法。

  教學(xué)難點:

  用“無限逼近”、“局部以直代曲”的思想理解某一點處切線的斜率。

  教學(xué)過程:

  一、問題情境

  1、問題情境。

  如何精確地刻畫曲線上某一點處的變化趨勢呢?

  如果將點P附近的曲線放大,那么就會發(fā)現(xiàn),曲線在點P附近看上去有點像是直線。

  如果將點P附近的曲線再放大,那么就會發(fā)現(xiàn),曲線在點P附近看上去幾乎成了直線。事實上,如果繼續(xù)放大,那么曲線在點P附近將逼近一條確定的直線,該直線是經(jīng)過點P的所有直線中最逼近曲線的一條直線。

  因此,在點P附近我們可以用這條直線來代替曲線,也就是說,點P附近,曲線可以看出直線(即在很小的范圍內(nèi)以直代曲)。

  2、探究活動。

  如圖所示,直線l1,l2為經(jīng)過曲線上一點P的兩條直線,

 。1)試判斷哪一條直線在點P附近更加逼近曲線;

  (2)在點P附近能作出一條比l1,l2更加逼近曲線的直線l3嗎?

  (3)在點P附近能作出一條比l1,l2,l3更加逼近曲線的直線嗎?

  二、建構(gòu)數(shù)學(xué)

  切線定義: 如圖,設(shè)Q為曲線C上不同于P的一點,直線PQ稱為曲線的割線。 隨著點Q沿曲線C向點P運動,割線PQ在點P附近逼近曲線C,當(dāng)點Q無限逼近點P時,直線PQ最終就成為經(jīng)過點P處最逼近曲線的直線l,這條直線l也稱為曲線在點P處的切線。這種方法叫割線逼近切線。

  思考:如上圖,P為已知曲線C上的一點,如何求出點P處的切線方程?

  三、數(shù)學(xué)運用

  例1 試求在點(2,4)處的切線斜率。

  解法一 分析:設(shè)P(2,4),Q(xQ,f(xQ)),

  則割線PQ的斜率為:

  當(dāng)Q沿曲線逼近點P時,割線PQ逼近點P處的切線,從而割線斜率逼近切線斜率;

  當(dāng)Q點橫坐標(biāo)無限趨近于P點橫坐標(biāo)時,即xQ無限趨近于2時,kPQ無限趨近于常數(shù)4。

  從而曲線f(x)=x2在點(2,4)處的切線斜率為4。

  解法二 設(shè)P(2,4),Q(xQ,xQ2),則割線PQ的斜率為:

  當(dāng)?x無限趨近于0時,kPQ無限趨近于常數(shù)4,從而曲線f(x)=x2,在點(2,4)處的切線斜率為4。

  練習(xí) 試求在x=1處的切線斜率。

  解:設(shè)P(1,2),Q(1+Δx,(1+Δx)2+1),則割線PQ的斜率為:

  當(dāng)?x無限趨近于0時,kPQ無限趨近于常數(shù)2,從而曲線f(x)=x2+1在x=1處的切線斜率為2。

  小結(jié) 求曲線上一點處的切線斜率的一般步驟:

 。1)找到定點P的坐標(biāo),設(shè)出動點Q的坐標(biāo);

  (2)求出割線PQ的斜率;

  (3)當(dāng)時,割線逼近切線,那么割線斜率逼近切線斜率。

  思考 如上圖,P為已知曲線C上的一點,如何求出點P處的切線方程?

  解 設(shè)

  所以,當(dāng)無限趨近于0時,無限趨近于點處的切線的斜率。

  變式訓(xùn)練

  1。已知,求曲線在處的切線斜率和切線方程;

  2。已知,求曲線在處的切線斜率和切線方程;

  3。已知,求曲線在處的切線斜率和切線方程。

  課堂練習(xí)

  已知,求曲線在處的切線斜率和切線方程。

  四、回顧小結(jié)

  1、曲線上一點P處的切線是過點P的所有直線中最接近P點附近曲線的直線,則P點處的變化趨勢可以由該點處的切線反映(局部以直代曲)。

  2、根據(jù)定義,利用割線逼近切線的方法, 可以求出曲線在一點處的切線斜率和方程。

  五、課外作業(yè)

高中數(shù)學(xué)教案12

  教學(xué)目標(biāo):

  1。了解反函數(shù)的概念,弄清原函數(shù)與反函數(shù)的定義域和值域的關(guān)系。

  2。會求一些簡單函數(shù)的反函數(shù)。

  3。在嘗試、探索求反函數(shù)的過程中,深化對概念的認識,總結(jié)出求反函數(shù)的一般步驟,加深對函數(shù)與方程、數(shù)形結(jié)合以及由特殊到一般等數(shù)學(xué)思想方法的認識。

  4。進一步完善學(xué)生思維的深刻性,培養(yǎng)學(xué)生的逆向思維能力,用辯證的觀點分析問題,培養(yǎng)抽象、概括的能力。

  教學(xué)重點:

  求反函數(shù)的方法。

  教學(xué)難點:

  反函數(shù)的概念。

  教學(xué)過程:

  教學(xué)活動

  設(shè)計意圖一、創(chuàng)設(shè)情境,引入新課

  1。復(fù)習(xí)提問

 、俸瘮(shù)的概念

  ②y=f(x)中各變量的意義

  2。同學(xué)們在物理課學(xué)過勻速直線運動的位移和時間的函數(shù)關(guān)系,即S=vt和t=(其中速度v是常量),在S=vt 中位移S是時間t的函數(shù);在t=中,時間t是位移S的函數(shù)。在這種情況下,我們說t=是函數(shù)S=vt的反函數(shù)。什么是反函數(shù),如何求反函數(shù),就是本節(jié)課學(xué)習(xí)的內(nèi)容。

  3。板書課題

  由實際問題引入新課,激發(fā)了學(xué)生學(xué)習(xí)興趣,展示了教學(xué)目標(biāo)。這樣既可以撥去"反函數(shù)"這一概念的神秘面紗,也可使學(xué)生知道學(xué)習(xí)這一概念的必要性。

  二、實例分析,組織探究

  1。問題組一:

 。ㄓ猛队敖o出函數(shù)與;與()的圖象)

 。1)這兩組函數(shù)的圖像有什么關(guān)系?這兩組函數(shù)有什么關(guān)系?(生答:與的圖像關(guān)于直線y=x對稱;與()的圖象也關(guān)于直線y=x對稱。是求一個數(shù)立方的運算,而是求一個數(shù)立方根的運算,它們互為逆運算。同樣,與()也互為逆運算。)

 。2)由,已知y能否求x?

 。3)是否是一個函數(shù)?它與有何關(guān)系?

 。4)與有何聯(lián)系?

  2。問題組二:

  (1)函數(shù)y=2x 1(x是自變量)與函數(shù)x=2y 1(y是自變量)是否是同一函數(shù)?

  (2)函數(shù)(x是自變量)與函數(shù)x=2y 1(y是自變量)是否是同一函數(shù)?

  (3)函數(shù) ()的定義域與函數(shù)()的值域有什么關(guān)系?

  3。滲透反函數(shù)的概念。

  (教師點明這樣的函數(shù)即互為反函數(shù),然后師生共同探究其特點)

  從學(xué)生熟知的函數(shù)出發(fā),抽象出反函數(shù)的概念,符合學(xué)生的認知特點,有利于培養(yǎng)學(xué)生抽象、概括的能力。

  通過這兩組問題,為反函數(shù)概念的引出做了鋪墊,利用舊知,引出新識,在"最近發(fā)展區(qū)"設(shè)計問題,使學(xué)生對反函數(shù)有一個直觀的粗略印象,為進一步抽象反函數(shù)的概念奠定基礎(chǔ)。

  三、師生互動,歸納定義

  1。(根據(jù)上述實例,教師與學(xué)生共同歸納出反函數(shù)的定義)

  函數(shù)y=f(x)(x∈A) 中,設(shè)它的值域為 C。我們根據(jù)這個函數(shù)中x,y的關(guān)系,用 y 把 x 表示出來,得到 x = j (y) 。如果對于y在C中的任何一個值,通過x = j (y),x在A中都有的值和它對應(yīng),那么, x = j (y)就表示y是自變量,x是自變量 y 的函數(shù)。這樣的函數(shù) x = j (y)(y ∈C)叫做函數(shù)y=f(x)(x∈A)的反函數(shù)。記作: ?紤]到"用 x表示自變量, y表示函數(shù)"的習(xí)慣,將中的x與y對調(diào)寫成。

  2。引導(dǎo)分析:

  1)反函數(shù)也是函數(shù);

  2)對應(yīng)法則為互逆運算;

  3)定義中的"如果"意味著對于一個任意的函數(shù)y=f(x)來說不一定有反函數(shù);

  4)函數(shù)y=f(x)的定義域、值域分別是函數(shù)x=f(y)的值域、定義域;

  5)函數(shù)y=f(x)與x=f(y)互為反函數(shù);

  6)要理解好符號f;

  7)交換變量x、y的原因。

  3。兩次轉(zhuǎn)換x、y的對應(yīng)關(guān)系

 。ㄔ瘮(shù)中的自變量x與反函數(shù)中的函數(shù)值y 是等價的,原函數(shù)中的函數(shù)值y與反函數(shù)中的自變量x是等價的)

  4。函數(shù)與其反函數(shù)的關(guān)系

  函數(shù)y=f(x)

  函數(shù)

  定義域

  A

  C

  值 域

  C

  A

  四、應(yīng)用解題,總結(jié)步驟

  1。(投影例題)

  【例1】求下列函數(shù)的反函數(shù)

 。1)y=3x—1 (2)y=x 1

  【例2】求函數(shù)的反函數(shù)。

 。ń處煱鍟}過程后,由學(xué)生總結(jié)求反函數(shù)步驟。)

  2?偨Y(jié)求函數(shù)反函數(shù)的步驟:

  1° 由y=f(x)反解出x=f(y)。

  2° 把x=f(y)中 x與y互換得。

  3° 寫出反函數(shù)的定義域。

 。ê営洖椋悍唇狻⒒Q、寫出反函數(shù)的定義域)【例3】(1)有沒有反函數(shù)?

 。2)的反函數(shù)是________。

 。3)(x<0)的反函數(shù)是__________。

  在上述探究的基礎(chǔ)上,揭示反函數(shù)的定義,學(xué)生有針對性地體會定義的特點,進而對定義有更深刻的認識,與自己的預(yù)設(shè)產(chǎn)生矛盾沖突,體會反函數(shù)。在剖析定義的過程中,讓學(xué)生體會函數(shù)與方程、一般到特殊的數(shù)學(xué)思想,并對數(shù)學(xué)的符號語言有更好的把握。

  通過動畫演示,表格對照,使學(xué)生對反函數(shù)定義從感性認識上升到理性認識,從而消化理解。

  通過對具體例題的講解分析,在解題的步驟上和方法上為學(xué)生起示范作用,并及時歸納總結(jié),培養(yǎng)學(xué)生分析、思考的習(xí)慣,以及歸納總結(jié)的能力。

  題目的設(shè)計遵循了從了解到理解,從掌握到應(yīng)用的不同層次要求,由淺入深,循序漸進。并體現(xiàn)了對定義的反思理解。學(xué)生思考練習(xí),師生共同分析糾正。

  五、鞏固強化,評價反饋

  1。已知函數(shù) y=f(x)存在反函數(shù),求它的反函數(shù) y =f( x)

  (1)y=—2x 3(xR) (2)y=—(xR,且x)

 。 3 ) y=(xR,且x)

  2。已知函數(shù)f(x)=(xR,且x)存在反函數(shù),求f(7)的值。

  五、反思小結(jié),再度設(shè)疑

  本節(jié)課主要研究了反函數(shù)的定義,以及反函數(shù)的求解步驟。互為反函數(shù)的兩個函數(shù)的圖象到底有什么特點呢?為什么具有這樣的特點呢?我們將在下節(jié)研究。

 。ㄗ寣W(xué)生談一下本節(jié)課的學(xué)習(xí)體會,教師適時點撥)

  進一步強化反函數(shù)的概念,并能正確求出反函數(shù)。反饋學(xué)生對知識的掌握情況,評價學(xué)生對學(xué)習(xí)目標(biāo)的落實程度。具體實踐中可采取同學(xué)板演、分組競賽等多種形式調(diào)動學(xué)生的積極性。"問題是數(shù)學(xué)的心臟"學(xué)生帶著問題走進課堂又帶著新的問題走出課堂。

  六、作業(yè)

  習(xí)題2。4 第1題,第2題

  進一步鞏固所學(xué)的知識。

  教學(xué)設(shè)計說明

  "問題是數(shù)學(xué)的心臟"。一個概念的形成是螺旋式上升的,一般要經(jīng)過具體到抽象,感性到理性的過程。本節(jié)教案通過一個物理學(xué)中的具體實例引入反函數(shù),進而又通過若干函數(shù)的圖象進一步加以誘導(dǎo)剖析,最終形成概念。

  反函數(shù)的概念是教學(xué)中的難點,原因是其本身較為抽象,經(jīng)過兩次代換,又采用了抽象的符號。由于沒有一一映射,逆映射等概念的支撐,使學(xué)生難以從本質(zhì)上去把握反函數(shù)的概念。為此,我們大膽地使用教材,把互為反函數(shù)的兩個函數(shù)的圖象關(guān)系預(yù)先揭示,進而探究原因,尋找規(guī)律,程序是從問題出發(fā),研究性質(zhì),進而得出概念,這正是數(shù)學(xué)研究的順序,符合學(xué)生認知規(guī)律,有助于概念的建立與形成。另外,對概念的剖析以及習(xí)題的配備也很精當(dāng),通過不同層次的問題,滿足學(xué)生多層次需要,起到評價反饋的作用。通過對函數(shù)與方程的分析,互逆探索,動畫演示,表格對照、學(xué)生討論等多種形式的教學(xué)環(huán)節(jié),充分調(diào)動了學(xué)生的探求欲,在探究與剖析的過程中,完善學(xué)生思維的深刻性,培養(yǎng)學(xué)生的逆向思維。使學(xué)生自然成為學(xué)習(xí)的主人。

高中數(shù)學(xué)教案13

  一、教材分析:

  1、教材的地位與作用。

  本節(jié)資料是在學(xué)生學(xué)習(xí)了"事件的可能性的基礎(chǔ)上來學(xué)習(xí)如何預(yù)測不確定事件(隨機事件)發(fā)生的可能性的大小。"用概率預(yù)測隨機發(fā)生的可能性大小,在日常生活、自然、科技領(lǐng)域有著廣泛的應(yīng)用,學(xué)習(xí)本單元知識,無論是今后繼續(xù)深造(高中學(xué)習(xí)概率的乘法定理)還是參加社會實踐活動都是十分必要的。概率的概念比較抽象,概率的定義學(xué)生較難理解。

  在教材的處理上,采取小單元教學(xué),本節(jié)課安排讓學(xué)生了解求隨機事件概率的兩種方法,目的是讓學(xué)生能夠比較系統(tǒng)地理解概率的意義及求概率的方法,為下面學(xué)習(xí)求比較復(fù)雜的情景的概率打下基礎(chǔ)。

  2、重點與難點。

  重點:對概率意義的理解,經(jīng)過多次重復(fù)實驗,用頻率預(yù)測概率的方法,以及用列舉法求概率的方法。

  難點:對概率意義的理解和用列舉法求概率過程中在各種可能性相同條件下某一事件可能發(fā)生的總數(shù)及總的結(jié)果數(shù)的分析。

  二、目的分析:

  知識與技能:掌握用頻率預(yù)測概率和用列舉法求概率方法。

  過程與方法:組織學(xué)生自主探究,合作交流,引導(dǎo)學(xué)生觀察試驗和統(tǒng)計的結(jié)果,進而進行分析、歸納、總結(jié),了解并感受概率的定義的過程,引導(dǎo)學(xué)生從數(shù)學(xué)的視角觀察客觀世界,用數(shù)學(xué)的思維思考客觀世界,以數(shù)學(xué)的語言描述客觀世界。

  情感態(tài)度價值觀:學(xué)生經(jīng)歷觀察、分析、歸納、確認等數(shù)學(xué)活動,感受數(shù)學(xué)活動充滿了探索性與創(chuàng)造性,感受量變與質(zhì)變的對立統(tǒng)一規(guī)律,同時為概率的精準(zhǔn)、新穎、獨特的思維方法所震撼,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情,增強對數(shù)學(xué)價值觀的認識。

  三、教法、學(xué)法分析:

  引導(dǎo)學(xué)生自主探究、合作交流、觀察分析、歸納總結(jié),讓學(xué)生經(jīng)歷知識(概率定義計算公式)的產(chǎn)生和發(fā)展過程,讓學(xué)生在數(shù)學(xué)活動中學(xué)習(xí)數(shù)學(xué)、掌握數(shù)學(xué),并能應(yīng)用數(shù)學(xué)解決現(xiàn)實生活中的實際問題,教師是學(xué)生學(xué)習(xí)的組織者、合作者和指導(dǎo)者,精心設(shè)計教學(xué)情境,有序組織學(xué)生活動,讓課堂充滿生機活力,體現(xiàn)"教"為"學(xué)"服務(wù)這一宗旨。

  四、教學(xué)過程分析:

  1、引導(dǎo)學(xué)生探究

  精心設(shè)計問題一,學(xué)生經(jīng)過對問題一的探究,一方面復(fù)習(xí)前面學(xué)過的"確定事件和不確定事件"的知識,為學(xué)好本節(jié)資料理清知識障礙,二是讓學(xué)生明確為什么要學(xué)習(xí)概率(如何預(yù)測隨機事件可能性發(fā)生大。。引導(dǎo)學(xué)生對問題二的探究與觀察實驗數(shù)據(jù),使學(xué)生了解概率這一重要概念的實際背景,感受并相信隨機事件的發(fā)生中存在著統(tǒng)計規(guī)律性,感受數(shù)學(xué)規(guī)律的真實的發(fā)現(xiàn)過程。

  2、歸納概括

  學(xué)生從試驗中得到的統(tǒng)計數(shù)字及概率呈現(xiàn)穩(wěn)定在某一數(shù)值附近這一規(guī)律,讓學(xué)生明確概率定義的由來。

  引導(dǎo)學(xué)生重新對問題一和問題二的探究,分析某事件發(fā)生的各種可能性在全部可能發(fā)生結(jié)果中所占比例,得到用列舉法求概率的公式,引導(dǎo)學(xué)生進行理性思維,邏輯分析,既培養(yǎng)學(xué)生的分析問題本事,又讓學(xué)生明確用列舉法求概率這一簡便快捷方法的合理性。

  3、舉例應(yīng)用

  ⑴引導(dǎo)學(xué)生對教材書例題、問題一、問題二中問題的進一步分析與探究,讓學(xué)生掌握用列舉法求概率的方法。

 、埔龑(dǎo)學(xué)生對練習(xí)中的問題思考與探究,鞏固對概率公式的應(yīng)用及加深對概率意義的理解。

  4、深化發(fā)展

 、旁O(shè)置3個小題目,引導(dǎo)學(xué)生歸納、分析、總結(jié),加深對知識與方法的理解,并學(xué)會靈活運用。

  ⑵讓學(xué)生設(shè)計活動資料,對知識進行升華和拓展,引導(dǎo)學(xué)生創(chuàng)造性地運用知識思考問題和解決問題,從而培養(yǎng)學(xué)生的創(chuàng)新意識和創(chuàng)新本事。

高中數(shù)學(xué)教案14

  一、教學(xué)目標(biāo):

  掌握向量的概念、坐標(biāo)表示、運算性質(zhì),做到融會貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。

  二、教學(xué)重點:

  向量的性質(zhì)及相關(guān)知識的綜合應(yīng)用。

  三、教學(xué)過程:

 。ㄒ唬┲饕R:

  1、掌握向量的概念、坐標(biāo)表示、運算性質(zhì),做到融會貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。

 。ǘ├}分析:略

  四、小結(jié):

  1、進一步熟練有關(guān)向量的運算和證明;能運用解三角形的知識解決有關(guān)應(yīng)用問題,

  2、滲透數(shù)學(xué)建模的思想,切實培養(yǎng)分析和解決問題的能力。

  五、作業(yè):

  略

高中數(shù)學(xué)教案15

  教學(xué)目標(biāo)

  1.了解映射的概念,象與原象的概念,和一一映射的概念.

 。1)明確映射是特殊的對應(yīng)即由集合 ,集合 和對應(yīng)法則f三者構(gòu)成的一個整體,知道映射的特殊之處在于必須是多對一和一對一的對應(yīng);

 。2)能準(zhǔn)確使用數(shù)學(xué)符號表示映射, 把握映射與一一映射的區(qū)別;

 。3)會求給定映射的指定元素的象與原象,了解求象與原象的方法.

  2.在概念形成過程中,培養(yǎng)學(xué)生的觀察,比較和歸納的能力.

  3.通過映射概念的學(xué)習(xí),逐步提高學(xué)生對知識的探究能力.

  教學(xué)建議

  教材分析

  (1)知識結(jié)構(gòu)

  映射是一種特殊的對應(yīng),一一映射又是一種特殊的映射,而且函數(shù)也是特殊的映射,它們之間的關(guān)系可以通過下圖表示出來,如圖:

  由此我們可從集合的包含關(guān)系中幫助我們把握相關(guān)概念間的區(qū)別與聯(lián)系.

 。2)重點,難點分析

  本節(jié)的教學(xué)重點和難點是映射和一一映射概念的形成與認識.

 、儆成涞母拍钍潜容^抽象的概念,它是在初中所學(xué)對應(yīng)的基礎(chǔ)上發(fā)展而來.教學(xué)中應(yīng)特別強調(diào)對應(yīng)集合 B中的唯一這點要求的理解;

  映射是學(xué)生在初中所學(xué)的對應(yīng)的基礎(chǔ)上學(xué)習(xí)的,對應(yīng)本身就是由三部分構(gòu)成的整體,包括集 合A和集合B及對應(yīng)法則f,由于法則的不同,對應(yīng)可分為一對一,多對一,一對多和多對多. 其中只有一對一和多對一的能構(gòu)成映射,由此可以看到映射必是“對B中之唯一”,而只要是對應(yīng)就必須保證讓A中之任一與B中元素相對應(yīng),所以滿足一對一和多對一的對應(yīng)就能體現(xiàn)出“任一對唯一”.

  ②而一一映射又在映射的基礎(chǔ)上增加新的要求,決定了它在學(xué)習(xí)中是比較困難的.

  教法建議

 。1)在映射概念引入時,可先從學(xué)生熟悉的對應(yīng)入手, 選擇一些具體的生活例子,然后再舉一些數(shù)學(xué)例子,分為一對多、多對一、多對一、一對一四種情況,讓學(xué)生認真觀察,比較,再引導(dǎo)學(xué)生發(fā)現(xiàn)其中一對一和多對一的對應(yīng)是映射,逐步歸納概括出映射的基本特征,讓學(xué)生的認識從感性認識到理性認識.

 。2)在剛開始學(xué)習(xí)映射時,為了能讓學(xué)生看清映射的構(gòu)成,可以選擇用圖形表示映射,在集合的選擇上可選擇能用列舉法表示的有限集,法則盡量用語言描述,這樣的表示方法讓學(xué)生可以比較直觀的認識映射,而后再選擇用抽象的數(shù)學(xué)符號表示映射,比如:

 。3)對于學(xué)生層次較高的學(xué)?梢栽诮o出定義后讓學(xué)生根據(jù)自己的理解舉出映射的例子,教師也給出一些映射的例子,讓學(xué)生從中發(fā)現(xiàn)映射的特點,并用自己的語言描述出來,最后教師加以概括,再從中引出一一映射概念;對于學(xué)生層次較低的學(xué)校,則可以由教師給出一些例子讓學(xué)生觀察,教師引導(dǎo)學(xué)生發(fā)現(xiàn)映射的特點,一起概括.最后再讓學(xué)生舉例,并逐步增加要求向一一映射靠攏,引出一一映射概念.

  (4)關(guān)于求象和原象的問題,應(yīng)在計算的過程中總結(jié)方法,特別是求原象的方法是解方程或方程組,還可以通過方程組解的不同情況(有唯一解,無解或有無數(shù)解)加深對映射的認識.

  (5)在教學(xué)方法上可以采用啟發(fā),討論的形式,讓學(xué)生在實例中去觀察,比較,啟發(fā)學(xué)生尋找共性,共同討論映射的特點,共同舉例,計算,最后進行小結(jié),教師要起到點撥和深化的作用.

  教學(xué)設(shè)計方案

  2.1映射

  教學(xué)目標(biāo)(1)了解映射的概念,象與原象及一一映射的概念.

  (2)在概念形成過程中,培養(yǎng)學(xué)生的觀察,分析對比,歸納的能力.

  (3)通過映射概念的學(xué)習(xí),逐步提高學(xué)生的探究能力.

  教學(xué)重點難點::映射概念的形成與認識.

  教學(xué)用具:實物投影儀

  教學(xué)方法:啟發(fā)討論式

  教學(xué)過程:

  一、引入

  在初中,我們已經(jīng)初步探討了函數(shù)的定義并研究了幾類簡單的常見函數(shù).在高中,將利用前面集合有關(guān)知識,利用映射的觀點給出函數(shù)的定義.那么映射是什么呢?這就是我們今天要詳細的概念.

  二、新課

  在前一章集合的初步知識中,我們學(xué)習(xí)了元素與集合及集合與集合之間的關(guān)系,而映射是重點研究兩個集合的元素與元素之間的對應(yīng)關(guān)系.這要先從我們熟悉的對應(yīng)說起(用投影儀打出一些對應(yīng)關(guān)系,共6個)

  我們今天要研究的是一類特殊的對應(yīng),特殊在什么地方呢?

  提問1:在這些對應(yīng)中有哪些是讓A中元素就對應(yīng)B中唯一一個元素?

  讓學(xué)生仔細觀察后由學(xué)生回答,對有爭議的,或漏選,多選的可詳細說明理由進行討論.最后得出(1),(2),(5),(6)是符合條件的(用投影儀將這幾個集中在一起)

  提問2:能用自己的語言描述一下這幾個對應(yīng)的共性嗎?

  經(jīng)過師生共同推敲,將映射的定義引出.(主體內(nèi)容由學(xué)生完成,教師做必要的補充)

【高中數(shù)學(xué)教案】相關(guān)文章:

高中數(shù)學(xué)教案07-11

高中數(shù)學(xué)教案12-29

高中數(shù)學(xué)教案07-20

高中數(shù)學(xué)教案模板11-18

高中數(shù)學(xué)教案范文07-20

【精】高中數(shù)學(xué)教案12-29

【熱】高中數(shù)學(xué)教案12-29

【薦】高中數(shù)學(xué)教案12-29

【熱門】高中數(shù)學(xué)教案12-29

高中數(shù)學(xué)教案【推薦】12-29