男人天堂日韩,中文字幕18页,天天伊人网,成人性生交大片免费视频

高中數(shù)學(xué)說課稿

時間:2024-11-14 10:08:28 志彬 數(shù)學(xué)說課稿 我要投稿

高中數(shù)學(xué)說課稿范文(通用20篇)

  作為一位無私奉獻(xiàn)的人民教師,通常需要準(zhǔn)備好一份說課稿,借助說課稿可以更好地組織教學(xué)活動。那么說課稿應(yīng)該怎么寫才合適呢?下面是小編為大家收集的高中數(shù)學(xué)說課稿范文,希望對大家有所幫助。

高中數(shù)學(xué)說課稿范文(通用20篇)

  高中數(shù)學(xué)說課稿 1

  一、教材分析:

  集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學(xué)的一個重要的基礎(chǔ),一方面,許多重要的數(shù)學(xué)分支,都建立在集合理論的基礎(chǔ)上。另一方面,集合論及其所反映的數(shù)學(xué)思想,在越來越廣泛的領(lǐng)域種得到應(yīng)用。

  二、目標(biāo)分析:

  教學(xué)重點、難點

  重點:集合的含義與表示方法。

  難點:表示法的恰當(dāng)選擇。

  教學(xué)目標(biāo)

  1.知識與技能

 。1)通過實例,了解集合的含義,體會元素與集合的屬于關(guān)系;

 。2)知道常用數(shù)集及其專用記號;

 。3)了解集合中元素的確定性;ギ愋浴o序性;

 。4)會用集合語言表示有關(guān)數(shù)學(xué)對象;

  2. 過程與方法

 。1)讓學(xué)生經(jīng)歷從集合實例中抽象概括出集合共同特征的過程,感知集合的含義。

 。2)讓學(xué)生歸納整理本節(jié)所學(xué)知識。

  3. 情感、態(tài)度與價值觀

  使學(xué)生感受到學(xué)習(xí)集合的必要性,增強學(xué)習(xí)的積極性。

  三、教法分析

  1. 教學(xué)方法:學(xué)生通過閱讀教材,自主學(xué)習(xí)。思考。交流。討論和概括,從而更好地完成本節(jié)課的教學(xué)目標(biāo)。

  2. 教學(xué)手段:在教學(xué)中使用投影儀來輔助教學(xué)。

  四、過程分析

  (一)創(chuàng)設(shè)情景,揭示課題

  1.教師首先提出問題:

 。1)介紹自己的家庭、原來就讀的學(xué)校、現(xiàn)在的班級。

  (2)問題:像"家庭"、"學(xué)校"、"班級"等,有什么共同特征?

  引導(dǎo)學(xué)生互相交流。 與此同時,教師對學(xué)生的活動給予評價。

  2.活動:

 。1)列舉生活中的集合的例子;

 。2)分析、概括各實例的共同特征

  由此引出這節(jié)要學(xué)的內(nèi)容。

  設(shè)計意圖:既激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,又為新知作好鋪墊

  (二)研探新知,建構(gòu)概念

  1.教師利用多媒體設(shè)備向?qū)W生投影出下面7個實例:

  (1)1-20以內(nèi)的所有質(zhì)數(shù);

 。2)我國古代的四大發(fā)明;

 。3)所有的安理會常任理事國;

 。4)所有的正方形;

 。5)海南省在20xx年9月之前建成的所有立交橋;

  (6)到一個角的兩邊距離相等的所有的點;

 。7)國興中學(xué)20xx年9月入學(xué)的高一學(xué)生的全體。

  2.教師組織學(xué)生分組討論:這7個實例的共同特征是什么?

  3.每個小組選出--位同學(xué)發(fā)表本組的討論結(jié)果,在此基礎(chǔ)上,師生共同概括出7個實例的特征,并給出集合的含義。

  一般地,指定的某些對象的全體稱為集合(簡稱為集)。集合中的每個對象叫作這個集合的元素。

  4.教師指出:集合常用大寫字母A,B,C,D,…表示,元素常用小寫字母…表示。

  設(shè)計意圖:通過實例讓學(xué)生感受集合的概念,激發(fā)學(xué)習(xí)的興趣,培養(yǎng)學(xué)生樂于求索的精神

  (三)質(zhì)疑答辯,發(fā)展思維

  1.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,思考:集合中元素有什么特點?并注意個別輔導(dǎo),解答學(xué)生疑難。使學(xué)生明確集合元素的三大特性,即:確定性;ギ愋院蜔o序性。只要構(gòu)成兩個集合的元素是一樣的,我們就稱這兩個集合相等。

  2.教師組織引導(dǎo)學(xué)生思考以下問題:

  判斷以下元素的全體是否組成集合,并說明理由:

 。1)大于3小于11的偶數(shù);

  (2)我國的小河流。

  讓學(xué)生充分發(fā)表自己的`建解。

  3. 讓學(xué)生自己舉出一些能夠構(gòu)成集合的例子以及不能構(gòu)成集合的例子,并說明理由。教師對學(xué)生的學(xué)習(xí)活動給予及時的評價。

  4.教師提出問題,讓學(xué)生思考

 。1)如果用A表示高一(3)班全體學(xué)生組成的集合,用表示高一(3)班的一位同學(xué),是高一(4)班的一位同學(xué),那么與集合A分別有什么關(guān)系?由此引導(dǎo)學(xué)生得出元素與集合的關(guān)系有兩種:屬于和不屬于。

  如果是集合A的元素,就說屬于集合A,記作。

  如果不是集合A的元素,就說不屬于集合A,記作。

  (2)如果用A表示"所有的安理會常任理事國"組成的集合,則中國。日本與集合A的關(guān)系分別是什么?請用數(shù)學(xué)符號分別表示。

  (3)讓學(xué)生完成教材第6頁練習(xí)第1題。

  5.教師引導(dǎo)學(xué)生回憶數(shù)集擴充過程,然后閱讀教材中的相交內(nèi)容,寫出常用數(shù)集的記號。并讓學(xué)生完成習(xí)題1.1A組第1題。

  6.教師引導(dǎo)學(xué)生閱讀教材中的相關(guān)內(nèi)容,并思考。討論下列問題:

  (1)要表示一個集合共有幾種方式?

 。2)試比較自然語言。列舉法和描述法在表示集合時,各自有什么特點?適用的對象是什么?

 。3)如何根據(jù)問題選擇適當(dāng)?shù)募媳硎痉ǎ?/p>

  使學(xué)生弄清楚三種表示方式的優(yōu)缺點和體會它們存在的必要性和適用對象。

  設(shè)計意圖:明確集合元素的三大特性,使學(xué)生弄清楚三種表示方式的優(yōu)缺點,從而突破難點。

  (四)鞏固深化,反饋矯正

  教師投影學(xué)習(xí):

 。1)用自然語言描述集合{1,3,5,7,9};

 。2)用例舉法表示集合

 。3)試選擇適當(dāng)?shù)姆椒ū硎鞠铝屑希航滩牡?頁練習(xí)第2題。

  設(shè)計意圖:使學(xué)生及時鞏固所學(xué)新知,體會三種表示方式存在的必要性和適用對象

  (五)歸納小結(jié),布置作業(yè)

  小結(jié):在師生互動中,讓學(xué)生了解或體會下例問題:

  1.本節(jié)課我們學(xué)習(xí)了哪些知識內(nèi)容?

  2.你認(rèn)為學(xué)習(xí)集合有什么意義?

  3.選擇集合的表示法時應(yīng)注意些什么?

  設(shè)計意圖:通過回顧,對概念的發(fā)生與發(fā)展過程有清晰的認(rèn)識,回顧集合元素的三大特性及集合的三種表示方式。

  作業(yè):

  1.課后書面作業(yè):第13頁習(xí)題1.1A組第4題。

  2. 元素與集合的關(guān)系有多少種?如何表示?類似地集合與集合間的關(guān)系又有多少種呢?如何表示?請同學(xué)們通過預(yù)習(xí)教材。

  高中數(shù)學(xué)說課稿 2

  一、教材分析

  本節(jié)是人教A版高中數(shù)學(xué)必修三第二章《統(tǒng)計》中的第三節(jié) “變量間的相關(guān)關(guān)系” 的第二課時。在上一課時,學(xué)生已經(jīng)懂得根據(jù)兩個相關(guān)變量的數(shù)據(jù)作出散點圖,并利用散點圖直觀認(rèn)識變量間的相關(guān)關(guān)系。這節(jié)課是在上一節(jié)課的基礎(chǔ)上介紹了用線性回歸的方法研究兩個變量的相關(guān)性和最小二乘法的思想。

  從全章的內(nèi)容上看,線性回歸方程的建立不僅是本節(jié)的難點,也是本章內(nèi)容的難點之一。線性回歸是最簡單的回歸分析,學(xué)好回歸分析是學(xué)好統(tǒng)計學(xué)的重要基礎(chǔ)。

  二、教學(xué)目標(biāo)

  根據(jù)課標(biāo)的要求及前面的分析,結(jié)合高二學(xué)生的認(rèn)知特點確定本節(jié)課的教學(xué)目標(biāo)如下:

  知識與技能:

  1. 知道最小二乘法和回歸分析的思想;

  2. 能根據(jù)線性回歸方程系數(shù)公式求出回歸方程

  過程與方法:

  經(jīng)歷線性回歸分析過程,借助圖形計算器得出回歸直線,增強數(shù)學(xué)應(yīng)用和使用技術(shù)的意識。

  情感態(tài)度與價值觀

  通過合作學(xué)習(xí),養(yǎng)成傾聽別人意見和建議的良好品質(zhì)

  三、重點難點分析:

  根據(jù)目標(biāo)分析,確定教學(xué)重點和難點如下:

  教學(xué)重點:

  1. 知道最小二乘法和回歸分析的思想;

  2.會求回歸直線

  教學(xué)難點:

  建立回歸思想,會求回歸直線

  四、教學(xué)設(shè)計

  提出問題

  理論探究

  驗證結(jié)論

  小結(jié)提升

  應(yīng)用實踐

  作業(yè)設(shè)計

  教學(xué)環(huán)節(jié)

  內(nèi)容及說明

  創(chuàng)設(shè)情境

  探究:在一次對人體脂肪含量和年齡關(guān)系的研究中,研究人員獲得了一組樣本數(shù)據(jù):

  問題與引導(dǎo)設(shè)計

  師生活動

  設(shè)計意圖

  問題1. 利用圖形計算器作出散點圖,并指出上面的兩個變量是正相關(guān)還是負(fù)相關(guān)?

  教師提問,學(xué)生

  通過動手操作得

  出散點圖并回答

  以舊“探”新:對舊的'知識進行簡要的提問復(fù)習(xí),為本節(jié)課學(xué)生能夠更好的建構(gòu)新的知識做好充分的準(zhǔn)備;尤其為一些后進生能夠順利的完成本節(jié)課的內(nèi)容提供必要的基礎(chǔ)。

  教師引導(dǎo):通過上節(jié)課的學(xué)習(xí),我們知道散點圖是研究兩個變量相關(guān)關(guān)系的一種重要手段。下面,請同學(xué)們根據(jù)得出的散點圖,思考下面的問題2.

  問題2. 甲同學(xué)判斷某人年齡在65歲時體內(nèi)脂肪含量百分比可能為34,乙同學(xué)判斷可能為25,而丙同學(xué)則判斷可能為37,你對甲,乙,丙三個同學(xué)的判斷有什么看法?

  學(xué)生能夠表達(dá)自己的看法。有的學(xué)生可能會認(rèn)為乙同學(xué)的判斷是錯誤的;有的學(xué)生可能認(rèn)為甲乙丙三個同學(xué)的判斷都是對的,答案不唯一

  該問題具有探究性、啟發(fā)性和開放性。鼓勵學(xué)生大膽表達(dá)自己的看法。通過設(shè)計該問題,引導(dǎo)學(xué)生自己發(fā)現(xiàn)問題,注意到散點圖中點的分布具有一定規(guī)律,體會觀測點與回歸直線的關(guān)系;進而引起學(xué)生的對本節(jié)課內(nèi)容的興趣。

  問題3. 反思問題,你還可以提出哪些問題嗎?小組討論,看哪個小組提出的問題多

  在小組討論的形式下和比較哪個小組提出的問題多,學(xué)生之間會充分的進行交流,提出問題

  通過小組討論比較,調(diào)動學(xué)生的學(xué)習(xí)積極性和興趣,活躍課堂氣氛,達(dá)到學(xué)生自己提出問題的效果,培養(yǎng)學(xué)生的學(xué)生創(chuàng)新思維和問題意識。

  學(xué)生可能提出的問題:

  ①為什么甲、丙同學(xué)的判斷結(jié)果正確的可能性較大,而乙同學(xué)判斷結(jié)果正確的可能性較?

  ②某人年齡在65歲時體內(nèi)脂肪含量百分比最可能是多少?在其它年齡時呢?

 、圻@些樣本數(shù)據(jù)揭示出兩個相關(guān)變量之間怎樣的關(guān)系呢?

  ④怎樣用數(shù)學(xué)的方法研究變量之間的相關(guān)關(guān)系呢?每個問題都是學(xué)生“火熱的思考”成果

  高中數(shù)學(xué)說課稿 3

尊敬的各位老師:

  大家好,今天我向大家說課的題目是《正弦定理》。下面我將從以下幾個方面介紹我這堂課的教學(xué)設(shè)計。

  一、教材分析

  本節(jié)知識是必修五第一章《解三角形》的第一節(jié)內(nèi)容,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時常有解三角形的問題,而且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時?家恍┙獯痤}。因此,正弦定理和余弦定理的知識非常重要。

  根據(jù)上述教材內(nèi)容分析,考慮到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及原有知識水平,制定如下教學(xué)目標(biāo):

  認(rèn)知目標(biāo):通過創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的內(nèi)容,掌握正弦定理的內(nèi)容及其證明方法,使學(xué)生會運用正弦定理解決兩類基本的解三角形問題。

  能力目標(biāo):引導(dǎo)學(xué)生通過觀察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,培養(yǎng)學(xué)生的創(chuàng)新意識和觀察與邏輯思維能力,能體會用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。

  情感目標(biāo):面向全體學(xué)生,創(chuàng)造平等的教學(xué)氛圍,通過學(xué)生之間、師生之間的交流、合作和評價,調(diào)動學(xué)生的主動性和積極性,激發(fā)學(xué)生學(xué)習(xí)的興趣。

  教學(xué)重點:正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。 教學(xué)難點:已知兩邊和其中一邊的對角解三角形時判斷解的個數(shù)。

  二、教法

  根據(jù)教材的內(nèi)容和編排的特點,為是更有效地突出重點,空破難點,以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認(rèn)識規(guī)律,本講遵照以教師為主導(dǎo),以學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想, 采用探究式課堂教學(xué)模式,即在教學(xué)過程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實際為參照對象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。

  三、學(xué)法

  指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個人、小組、集體等多種解難釋疑的嘗試活動,將自己所學(xué)知識應(yīng)用于對任意三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,概括,動手嘗試相結(jié)合,體現(xiàn)學(xué)生的主體地位,增強學(xué)生由特殊到一般的數(shù)學(xué)思維能力,形成了實事求是的科學(xué)態(tài)度,增強了鍥而不舍的求學(xué)精神。

  四、教學(xué)過程

  (一)創(chuàng)設(shè)情境(3分鐘)

  “興趣是最好的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,本節(jié)課由一個實際問題引入,“工人師傅的一個三角形模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不知道AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學(xué)生幫助別人的熱情和學(xué)習(xí)的興趣,從而進入今天的學(xué)習(xí)課題。

  (二)猜想—推理—證明(15分鐘)

  激發(fā)學(xué)生思維,從自身熟悉的`特例(直角三角形)入手進行研究,發(fā)現(xiàn)正弦定理。 提問:那結(jié)論對任意三角形都適用嗎?(讓學(xué)生分小組討論,并得出猜想)

  在三角形中,角與所對的邊滿足關(guān)系

  注意:

  1.強調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的理論證明。

  2.鼓勵學(xué)生通過作高轉(zhuǎn)化為熟悉的直角三角形進行證明。

  3.提示學(xué)生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

  (三)總結(jié)--應(yīng)用(3分鐘)

  1.正弦定理的內(nèi)容,討論可以解決哪幾類有關(guān)三角形的問題。

  2.運用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。自己參與實際問題的解決,能激發(fā)學(xué)生知識后用于實際的價值觀。

  (四)講解例題(8分鐘)

  1.例1. 在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形

  例1簡單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。

  2. 例2. 在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形

  例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中

  一邊的對角時解三角形的各種情形。完了把時間交給學(xué)生。

  (五)課堂練習(xí)(8分鐘)

  在△ABC中,已知下列條件,解三角形

  (1)A=45°,C=30°,c=10cm

  (2)A=60°,B=45°,c=20cm

  2. 在△ABC中,已知下列條件,解三角形.

  (1)a=20cm,b=11cm,B=30°

  (2)c=54cm,b=39cm,C=115°

  學(xué)生板演,老師巡視,及時發(fā)現(xiàn)問題,并解答。

  (六)小結(jié)反思(3分鐘)

  1.它表述了三角形的邊與對角的正弦值的關(guān)系。

  2.定理證明分別從直角、銳角、鈍角出發(fā),運用分類討論的思想。

  3.會用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。

  五、教學(xué)反思

  從實際問題出發(fā),通過猜想、實驗、歸納等思維方法,最后得到了推導(dǎo)出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅收獲著結(jié)論,而且整個探索過程我們也掌握了研究問題的一般方法。在強調(diào)研究性學(xué)習(xí)方法,注重學(xué)生的主體地位,調(diào)動學(xué)生積極性,使數(shù)學(xué)教學(xué)成為數(shù)學(xué)活動的教學(xué)。

  高中數(shù)學(xué)說課稿 4

尊敬的老師:

  大家好!我叫xxx,來自湖南科技大學(xué)。我說課的題目是《算法的概念》,內(nèi)容選自于新課程人教A版必修3第一章第一節(jié),課時安排為兩個課時,本節(jié)課內(nèi)容為第一課時。下面我將從教材分析、教學(xué)目標(biāo)分析、教學(xué)方法分析、學(xué)情分析、教學(xué)過程分析等五大方面來闡述我對這節(jié)課的分析和設(shè)計:

  一、教材分析

  1、教材所處的地位和作用

  現(xiàn)代社會是一個信息技術(shù)發(fā)展很快的社會,算法進入高中數(shù)學(xué)正是反映了時代的需要,它是當(dāng)今社會必備的基礎(chǔ)知識,算法的學(xué)習(xí)是使用計算機處理問題前的一個必要的步驟,它可以讓學(xué)生們知道如何利用現(xiàn)代技術(shù)解決問題。又由于算法的具體實現(xiàn)上可以和信息技術(shù)相結(jié)合。因此,算法的學(xué)習(xí)十分有利于提高學(xué)生的邏輯思維能力,培養(yǎng)學(xué)生的理性精神和實踐能力。

  2、教學(xué)的重點和難點

  重點:初步理解算法的定義,體會算法思想,能夠用自然語言描述算法難點:把自然語言轉(zhuǎn)化為算法語言。

  二、教學(xué)目標(biāo)分析

  1、知識目標(biāo):了解算法的含義,體會算法的思想;能夠用自然語言描述解決具體問題的算法;理解正確的算法應(yīng)滿足的要求。

  2、能力目標(biāo):讓學(xué)生感悟人們認(rèn)識事物的一般規(guī)律:由具體到抽象,再有抽象到具體,培養(yǎng)學(xué)生的觀察能力,表達(dá)能力和邏輯思維能力。

  3、情感目標(biāo):對計算機的算法語言有一個基本的了解,明確算法的要求,認(rèn)識到計算機是人類征服自然的一有力工具,進一步提高探索、認(rèn)識世界的能力。

  三、教學(xué)方法分析

  采用"問題探究式"教學(xué)法,以多媒體為輔助手段,讓學(xué)生主動發(fā)現(xiàn)問題、分析問題、解決問題,培養(yǎng)學(xué)生的探究論證、邏輯思維能力。

  四、學(xué)情分析

  算法這部分的使用性很強,與日常生活聯(lián)系緊密,雖然是新引入的章節(jié),但很容易激發(fā)學(xué)生的學(xué)習(xí)興趣。在教師的引導(dǎo)下,通過多媒體輔助教學(xué),學(xué)生比較容易掌握本節(jié)課的內(nèi)容。

  五、教學(xué)過程分析

  1、創(chuàng)設(shè)情景:我首先向?qū)W生們展示章頭圖,介紹圖中的后景是取自宋朝數(shù)學(xué)家朱世杰的數(shù)學(xué)作品《四元玉鑒》,告訴學(xué)生們章頭圖正是體現(xiàn)了中國古代數(shù)學(xué)與現(xiàn)代計算機科學(xué)的聯(lián)系,它們的基礎(chǔ)都是"算法"。

  「設(shè)計意圖」是為了充分挖掘章頭圖的教學(xué)價值,體現(xiàn):

  1)算法概念的由來;

  2)我們將要學(xué)習(xí)的算法與計算機有關(guān);

  3)展示中國古代數(shù)學(xué)的成就;

  4)激發(fā)學(xué)生學(xué)習(xí)算法的興趣。從而順其自然的過渡到本節(jié)課要討論的話題。(約4分鐘)

  2、引入新課:在這一環(huán)節(jié)我首先和學(xué)生們一起回顧如何解二元一次方程組,并引導(dǎo)他們歸納二元一次方程組的求解步驟,從而讓學(xué)生經(jīng)歷算法分析的基本過程,培養(yǎng)思維的條理性,引導(dǎo)學(xué)生關(guān)注更具一般性解法,形成解法向算法過渡的準(zhǔn)備,為建立算法概念打下基礎(chǔ)。緊接著在此基礎(chǔ)上進一步復(fù)習(xí)回顧解一般的二元一次方程組的步驟,引導(dǎo)學(xué)生分析解題過程的結(jié)構(gòu),寫出求一般的二元一次方程組的解的算法,并把它編成程序,讓學(xué)生輸入數(shù)據(jù),體驗計算機直接給出方程組的解。目的是讓學(xué)生明白算法是用來解決某一類問題的,從而提高學(xué)生對算法的普遍適用性的認(rèn)識,為建立算法的概念做好鋪墊。

  之后,我就向?qū)W生們提出問題:到底什么是算法?如何用語言來表達(dá)算法的涵義?這里讓學(xué)生們根據(jù)剛剛的探索交流、思考并回答,然后老師進行歸納,得出算法的基本概念,并幫助學(xué)生認(rèn)識算法的概念,指出有窮性,確定性,可行性。這樣可以讓學(xué)生們真正參與到算法概念的形成過程中來,體會算法思想。(約8分鐘)

  3、例題講解:在這一環(huán)節(jié)我安排了兩道例題,以幫助學(xué)生們能更好地理解算法的基本概念,并應(yīng)用到實際解決問題中去,而不只是單純的對數(shù)學(xué)思想的領(lǐng)悟。

  這兩道例題均選自課本的例1和例2。

  例1是讓我們設(shè)定一個程序以判斷一個數(shù)是否為質(zhì)數(shù)。質(zhì)數(shù)是我們之前已經(jīng)學(xué)習(xí)的內(nèi)容,為了能更順利地完成解題過程,這里有必要引導(dǎo)學(xué)生們回顧一下質(zhì)數(shù)應(yīng)滿足的條件,然后再根據(jù)這個來探索解題步驟。通過例1讓學(xué)生認(rèn)識到求解結(jié)構(gòu)中存在"重復(fù)"。為導(dǎo)出一般問題的算法創(chuàng)造條件,也為學(xué)習(xí)算法的自然語言表示提供前提。告訴學(xué)生們本算法就是用自然語言的形式描述的。并且設(shè)計算法一定要做到以下要求:

 。1)寫出的算法必須能解決一類問題,并且能夠重復(fù)使用。

 。2)要使算法盡量簡單、步驟盡量少。

 。3)要保證算法正確,且計算機能夠執(zhí)行。

  在例1的基礎(chǔ)上我們繼續(xù)研究例2,例2是要求我們設(shè)計一個利用二分法來求解方程的.近似根的程序。我們首先要對算法作分析,回顧用二分法求解方程近似根的過程,然后設(shè)計出解題步驟。二分法是算法中的經(jīng)典問題,具有明顯的順序和可操作的特點。因此通過例2可以讓學(xué)生進一步了解算法的邏輯結(jié)構(gòu),領(lǐng)會算法的思想,體會算法的的特征。同時也可以鞏固用自然語言描述算法,提高用自然語言描述算法的表達(dá)水平。另外,借助例題加強學(xué)生對算法概念的理解,體會算法具有程序性、有限性、構(gòu)造性、精確性、指向性的特點,算法以問題為載體,泛泛而談沒有意義。(約20分鐘)

  4、課堂小結(jié):

 。1)算法的概念和算法的基本特征

 。2)算法的描述方法,算法可以用自然語言描述。

  (3)能利用算法的思想和方法解決實際問題,并能寫出一此簡單問題的算法課堂小結(jié)是一堂課內(nèi)容的概括和總結(jié),有利于學(xué)生把握本節(jié)課的重點,對所學(xué)知識有一個系統(tǒng)整體的認(rèn)識。(約6分鐘)

  5、布置作業(yè):課本練習(xí)1、2題

  課后作業(yè)的布置是為了檢驗學(xué)生對本節(jié)課內(nèi)容的理解和運用程度以及實際接受情況,并促使學(xué)生進一步鞏固和掌握所學(xué)內(nèi)容。對作業(yè)實施分層設(shè)置,分必做和選做,利于拓展學(xué)生的自主發(fā)展的空間。

  高中數(shù)學(xué)說課稿 5

尊敬的老師:

  大家好!我叫xxx。我說課的題目是《系統(tǒng)抽樣》,內(nèi)容選自于蘇教版必修3第二章第一節(jié),課時安排為一個課時。下面我將從教材分析、教學(xué)目標(biāo)分析、教學(xué)方法與手段分析、教學(xué)過程分析等五大方面來闡述我對這節(jié)課的分析和設(shè)計:

  一、教材分析

  1.教材所處的地位和作用

  學(xué)生已初步了解掌握了簡單隨機抽樣的兩種方法,即抽簽法與隨機數(shù)表法,在此基礎(chǔ)上進一步學(xué)習(xí)系統(tǒng)抽樣,它也是“統(tǒng)計學(xué)”的重要組成部分,通過對系統(tǒng)抽樣的學(xué)習(xí),更加突出統(tǒng)計在日常生活中的應(yīng)用,體現(xiàn)它在中學(xué)數(shù)學(xué)中的地位。

  2 教學(xué)的重點和難點

  重點:正確理解系統(tǒng)抽樣的概念,能夠靈活應(yīng)用系統(tǒng)抽樣的方法解決統(tǒng)計問題。難點:當(dāng) 不是整數(shù)時的處理辦法,個體編號具有某種周期性時,“壞樣本”的理解。

  二、教學(xué)目標(biāo)分析

  1、知識與技能目標(biāo):

 。1)正確理解系統(tǒng)抽樣的概念;

 。2)掌握系統(tǒng)抽樣的一般步驟;

 。3)正確理解系統(tǒng)抽樣與簡單隨機抽樣的關(guān)系;

  2、過程與方法目標(biāo):

  通過對實際問題的探究,歸納應(yīng)用數(shù)學(xué)知識解決實際問題的方法,理解分類討論的數(shù)學(xué)方法高考資源

  3、情感態(tài)度與價值觀目標(biāo):

  通過數(shù)學(xué)活動,感受數(shù)學(xué)對實際生活的需要,體會現(xiàn)實世界和數(shù)學(xué)知識的聯(lián)系

  三、教學(xué)方法與手段分析

  1.教學(xué)方法:為了充分讓學(xué)生自己分析、判斷、自主學(xué)習(xí)、合作交流。因此,我采用討論發(fā)現(xiàn)法教學(xué)。

  2.教學(xué)手段:通過各種教學(xué)媒體(計算機)調(diào)動學(xué)生參與課堂教學(xué)的主動性與積極性。

  四、教學(xué)過程分析

  (一)新課引入

  1、復(fù)習(xí)提問:

  (1)什么是簡單隨機抽樣?有哪兩種方法?

 。2)抽簽法與隨機數(shù)表法的一般步驟是什么?

  (3)簡單隨機抽樣應(yīng)注意哪兩個原則?

  (4)什么樣的總體適合簡單隨機抽樣?為什么?

  [設(shè)計意圖]通過復(fù)習(xí)提問進一步理解掌握簡單隨機抽樣的概念方法和步驟?為新課學(xué)習(xí)打基礎(chǔ)

  2、實例探究

  實例:某學(xué)校為了了解高一年級學(xué)生對教師教學(xué)的意見,打算從高一年級500名學(xué)生中抽取50名進行調(diào)查,除了用簡單隨機抽樣獲取樣本外,你能否設(shè)計其他抽取樣本的`方法?

  當(dāng)總體數(shù)量較多時,應(yīng)當(dāng)如何抽?結(jié)合具體事例探究問題,設(shè)計你的抽取樣本的方法。抽取的樣本公平性與代表性如何?學(xué)生自主探究后小組討論回答。

  [設(shè)計意圖]通過設(shè)置問題情境,讓學(xué)生參與問題解決的全過程,引導(dǎo)學(xué)生探究發(fā)現(xiàn)新知識新方法,完成從總體中抽取樣本,并發(fā)現(xiàn)“等距抽樣”的特性,從而形成感性的系統(tǒng)抽樣的概念與方法。這樣做既充分體現(xiàn)學(xué)生的主體地位和教師的主導(dǎo)作用,同時也較好地貫徹新課程所倡導(dǎo)“自主探究、合作交流”的學(xué)習(xí)方式。

 。ǘ┬抡n講授

  1、系統(tǒng)抽樣的概念方法步驟

  (學(xué)生閱讀課本上的內(nèi)容,教師引導(dǎo)學(xué)生總結(jié)歸納得出“系統(tǒng)抽樣”的概念,并點明課題)

  [設(shè)計意圖]經(jīng)歷實例探究過程,學(xué)生對系統(tǒng)抽樣的概念方法步驟應(yīng)有大致了解,輔以教師引導(dǎo),從具體到一般,本節(jié)新課題的學(xué)習(xí)便水到渠成。

  2、典型例題精析

  例1、某校高中三年級的300名學(xué)生已經(jīng)編號為1,2,……,300,為了了解學(xué)生的學(xué)習(xí)情況,要按10%的比例抽取一個樣本,請用系統(tǒng)抽樣的方法進行抽取,并寫出過程。

 。ń處燁}意分析,引導(dǎo)學(xué)生應(yīng)用新知識新方法,學(xué)生分析思考,探究解題,小組討論后口述解題過程)

  [設(shè)計意圖]實例鞏固,在得出新課的有關(guān)知識之后,再次讓學(xué)生在解決實際問題的過程中,進一步理解掌握系統(tǒng)抽樣的方法步驟,達(dá)到學(xué)以致用的技能,培養(yǎng)“學(xué)數(shù)學(xué),用數(shù)學(xué)”的意識。

  例2、某單位在職職工共624人,為了調(diào)查工人用于上班途中的時間,決定抽取10%的工人進行調(diào)查,試采用系統(tǒng)抽樣方法抽取所需的樣本。

  [設(shè)計意圖]當(dāng) 不是整數(shù)時,設(shè)置本題讓學(xué)生嘗試回答,并形成一般思路與方法。

  (三) 練習(xí)鞏固

  1、將全班學(xué)生按男女生交替排成一路縱隊,用擲骰的方法在前6名學(xué)生中任選一名,用 表示該名學(xué)生在隊列中的序號,將隊列中序號為 ,(k=1,2,3,…)的學(xué)生抽出作為樣本,這種抽樣方法叫做系統(tǒng)抽樣嗎?為什么?其樣本的代表性與公平性如何?

  2、若按體重大小次序排成一路縱隊呢?

  [設(shè)計意圖]配合課本第60頁“邊空”問題:“請將這種抽樣方法與簡單隨機抽樣做一個比較,你認(rèn)為系統(tǒng)抽樣能提高樣本的代表性嗎?為什么?”,幫助理解個體編號具有某種周期性時,樣本代表性較差的特點。同時分析系統(tǒng)抽樣的優(yōu)點與缺點。

 。ㄋ模┗仡櫺〗Y(jié)

  1、師生共同回顧系統(tǒng)抽樣的概念方法與步驟

  2、與簡單隨機抽樣比較,系統(tǒng)抽樣適合怎樣的總體情況?

  3、當(dāng) 不是整數(shù)時,一般步驟是什么?此時樣本的公平性與代表性如何?

  (五)布置作業(yè)

  課本第61頁的練習(xí)第1,2,3題

  設(shè)計意圖:課后作業(yè)的布置是為了檢驗學(xué)生對本節(jié)課內(nèi)容的理解和運用程度以及實際接受情況,并促使學(xué)生進一步鞏固和掌握所學(xué)內(nèi)容。

  高中數(shù)學(xué)說課稿 6

  一、教學(xué)背景分析

 。ㄒ唬┙滩牡匚环治觯骸稒E圓及其標(biāo)準(zhǔn)方程》是繼學(xué)習(xí)圓以后運用“曲線與方程”思想解決二次曲線問題的又一實例,從知識上說,本節(jié)課是對坐標(biāo)法研究幾何問題的又一次實際運用,同時也是進一步研究橢圓幾何性質(zhì)的基礎(chǔ);從方法上說,它為進一步研究雙曲線、拋物線提供了基本模式和理論基礎(chǔ),因此本節(jié)課起到了承上啟下的重要作用、

 。ǘ┲攸c、難點分析:本節(jié)課的重點是橢圓的定義及其標(biāo)準(zhǔn)方程,標(biāo)準(zhǔn)方程的推導(dǎo)是本節(jié)課的難點,要突破這一難點,關(guān)鍵是引導(dǎo)學(xué)生正確選擇去根式的策略、

  (三)學(xué)情分析:在學(xué)習(xí)本節(jié)課前,學(xué)生已經(jīng)學(xué)習(xí)了直線與圓的方程,對曲線和方程的思想方法有了一些了解和運用的經(jīng)驗,對坐標(biāo)法研究幾何問題也有了初步的認(rèn)識,因此,學(xué)生已經(jīng)具備探究有關(guān)點的軌跡問題的知識基礎(chǔ)和學(xué)習(xí)能力,但由于學(xué)生學(xué)習(xí)解析幾何還不長、學(xué)習(xí)程度也較淺,并且還受到這一年齡段學(xué)習(xí)心理和認(rèn)知結(jié)構(gòu)的影響,在學(xué)習(xí)過程中難免會有些困難、如:由于學(xué)生對運用坐標(biāo)法解決幾何問題掌握還不夠,因此從研究圓到橢圓,學(xué)生思維上會存在障礙、

  二、教學(xué)目標(biāo)設(shè)計

  (一)知識目標(biāo):掌握橢圓的定義及其標(biāo)準(zhǔn)方程;會根據(jù)條件寫出橢圓的標(biāo)準(zhǔn)方程;通過對橢圓標(biāo)準(zhǔn)方程的探求,再次熟悉求曲線方程的一般方法、

 。ǘ┠芰δ繕(biāo):學(xué)生通過動手畫橢圓、分組討論探究橢圓定義、推導(dǎo)橢圓標(biāo)準(zhǔn)方程等過程,提高動手能力、學(xué)習(xí)能力和運用知識解決實際問題的能力、

 。ㄈ┣楦心繕(biāo):在形成知識、提高能力的過程中,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,提高學(xué)生的審美情趣,培養(yǎng)學(xué)生勇于探索、敢于創(chuàng)新的、

  三、教法學(xué)法設(shè)計

  為了更好地培養(yǎng)學(xué)生自主學(xué)習(xí)能力,提高學(xué)生的綜合素質(zhì),我主要采用探究式教學(xué)方法、一方面我通過設(shè)置情境、問題誘導(dǎo)充分發(fā)揮主導(dǎo)作用;另一方面學(xué)生通過對我提供的素材進行直觀觀察→動手操作→討論探究→歸納抽象→總結(jié)規(guī)律的過程充分體現(xiàn)主體地位、使用多媒體輔助教學(xué)與自制教具相結(jié)合的設(shè)計,實現(xiàn)多媒體快捷、形象、大容量的優(yōu)勢與自制教具直觀、的優(yōu)勢的結(jié)合,既突出了知識的產(chǎn)生過程,又增加了課堂的趣味性、

  1、掌握橢圓的定義,掌握橢圓標(biāo)準(zhǔn)方程的兩種形式及其推導(dǎo)過程;

  2、能根據(jù)條件確定橢圓的標(biāo)準(zhǔn)方程,掌握運用待定系數(shù)法求橢圓的標(biāo)準(zhǔn)方程;

  3、通過對橢圓概念的引入教學(xué),培養(yǎng)學(xué)生的觀察能力和探索能力;

  4、通過橢圓的標(biāo)準(zhǔn)方程的推導(dǎo),使學(xué)生進一步掌握求曲線方程的一般方法,并滲透數(shù)形結(jié)合和等價轉(zhuǎn)化的思想方法,提高運用坐標(biāo)法解決幾何問題的能力;

  5、通過讓學(xué)生大膽探索橢圓的定義和標(biāo)準(zhǔn)方程,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極性,培養(yǎng)學(xué)生的學(xué)習(xí)興趣和創(chuàng)新意識、

  四、教學(xué)建議

  教材分析

  1、知識結(jié)構(gòu)

  2、重點難點分析

  重點是橢圓的定義及橢圓標(biāo)準(zhǔn)方程的兩種形式、難點是橢圓標(biāo)準(zhǔn)方程的建立和推導(dǎo)、關(guān)鍵是掌握建立坐標(biāo)系與根式化簡的方法。

  橢圓及其標(biāo)準(zhǔn)方程這一節(jié)教材整體來看是兩大塊內(nèi)容:一是橢圓的定義;二是橢圓的標(biāo)準(zhǔn)方程、橢圓是圓錐曲線這一章所要研究的三種圓錐曲線中首先遇到的`,所以教材把對橢圓的研究放在了重點,在雙曲線和拋物線的教學(xué)中鞏固和應(yīng)用、先講橢圓也與第七章的圓的方程銜接自然、學(xué)好橢圓對于學(xué)生學(xué)好圓錐曲線是非常重要的。

 。1)對于橢圓的定義的理解,要抓住橢圓上的點所要滿足的條件,即橢圓上點的幾何性質(zhì),可以對比圓的定義來理解、

  另外要注意到定義中對“常數(shù)”的限定即常數(shù)要大于、這樣規(guī)定是為了避免出現(xiàn)兩種特殊情況,即:“當(dāng)常數(shù)等于時軌跡是一條線段;當(dāng)常數(shù)小于時無軌跡”。這樣有利于集中精力進一步研究橢圓的標(biāo)準(zhǔn)方程和幾何性質(zhì)、但講解橢圓的定義時注意不要忽略這兩種特殊情況,以保證對橢圓定義的準(zhǔn)確性。

 。2)根據(jù)橢圓的定義求標(biāo)準(zhǔn)方程,應(yīng)注意下面幾點:

  ①曲線的方程依賴于坐標(biāo)系,建立適當(dāng)?shù)淖鴺?biāo)系,是求曲線方程首先應(yīng)該注意的地方、應(yīng)讓學(xué)生觀察橢圓的圖形或根據(jù)橢圓的定義進行推理,發(fā)現(xiàn)橢圓有兩條互相垂直的對稱軸,以這兩條對稱軸作為坐標(biāo)系的兩軸,不但可以使方程的推導(dǎo)過程變得,而且也可以使最終得出的方程形式整齊和簡潔。

 、谠O(shè)橢圓的焦距為,橢圓上任一點到兩個焦點的距離為,令,這些措施,都是為了簡化推導(dǎo)過程和最后得到的方程形式整齊、簡潔,要讓學(xué)生認(rèn)真領(lǐng)會、

 、墼诜匠痰耐茖(dǎo)過程中遇到了無理方程的化簡,這既是我們今后在求軌跡方程時經(jīng)常遇到的問題,又是學(xué)生的難點、要注意說明這類方程的化簡方法:①方程中只有一個根式時,需將它單獨留在方程的一側(cè),把其他項移至另一側(cè);②方程中有兩個根式時,需將它們分別放在方程的兩側(cè),并使其中一側(cè)只有一項、

 、芙炭茣蠈E圓標(biāo)準(zhǔn)方程的推導(dǎo),實際上只給出了“橢圓上點的坐標(biāo)都適合方程“而沒有證明,”方程的解為坐標(biāo)的點都在橢圓上”、這實際上是方程的同解變形問題,難度較大,對同學(xué)們不作要求。

 。3)兩種標(biāo)準(zhǔn)方程的橢圓異同點

  中心在原點、焦點分別在軸上,軸上的橢圓標(biāo)準(zhǔn)方程分別為:它們的相同點是:形狀相同、大小相同,不同點是:兩種橢圓相對于坐標(biāo)系的位置不同,它們的焦點坐標(biāo)也不同、橢圓的焦點在軸上標(biāo)準(zhǔn)方程中項的分母較大;橢圓的焦點在軸上標(biāo)準(zhǔn)方程中項的分母較大、另外,形如中,只要,同號,就是橢圓方程,它可以化為。

 。4)教科書上通過例3介紹了另一種求軌跡方程的常用方法——中間變量法、例3有三個作用:是教給學(xué)生利用中間變量求點的軌跡的方法;第二是向?qū)W生說明,如果求得的點的軌跡的方程形式與橢圓的標(biāo)準(zhǔn)方程相同,那么這個軌跡是橢圓;第三是使學(xué)生知道,一個圓按某一個方向作伸縮變換可以得到橢圓。

  高中數(shù)學(xué)說課稿 7

尊敬的老師:

  大家好!

  我叫李xx,來自甘肅省嘉峪關(guān)市第一中學(xué)。今天我說課的課題是《一元二次不等式的解法》(第一課時)。下面我將圍繞本節(jié)課"教什么?"、"怎樣教?"以及"為什么這樣教?"三個問題,從教材內(nèi)容分析、教法學(xué)法分析、教學(xué)過程分析和課堂意外預(yù)案等幾個方面逐一加以分析和說明。

  一、教材內(nèi)容分析:

  1.本節(jié)課內(nèi)容在整個教材中的地位和作用。

  概括地講,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性。一元二次不等式的解法是初中一元一次不等式或一元一次不等式組的延續(xù)和深化,對已學(xué)習(xí)過的集合知識的鞏固和運用具有重要的作用,也與后面的函數(shù)、數(shù)列、三角函數(shù)、線形規(guī)劃、直線與圓錐曲線以及導(dǎo)數(shù)等內(nèi)容密切相關(guān)。許多問題的解決都會借助一元二次不等式的解法。因此,一元二次不等式的解法在整個高中數(shù)學(xué)教學(xué)中具有很強的基礎(chǔ)性,體現(xiàn)出很大的工具作用。

  2.教學(xué)目標(biāo)定位。

  根據(jù)教學(xué)大綱要求、高考考試大綱說明、新課程標(biāo)準(zhǔn)精神、高一學(xué)生已有的知識儲備狀況和學(xué)生心理認(rèn)知特征,我確定了四個層面的教學(xué)目標(biāo)。第一層面是面向全體學(xué)生的知識目標(biāo):熟練掌握一元二次不等式的兩種解法,正確理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系。第二層面是能力目標(biāo),培養(yǎng)學(xué)生運用數(shù)形結(jié)合與等價轉(zhuǎn)化等數(shù)學(xué)思想方法解決問題的能力,提高運算和作圖能力。第三層面是德育目標(biāo),通過對解不等式過程中等與不等對立統(tǒng)一關(guān)系的認(rèn)識,向?qū)W生逐步滲透辨證唯物主義思想。第四層面是情感目標(biāo),在教師的啟發(fā)引導(dǎo)下,學(xué)生自主探究,交流討論,培養(yǎng)學(xué)生的合作意識和創(chuàng)新精神。

  3.教學(xué)重點、難點確定。

  本節(jié)課是在復(fù)習(xí)了一次不等式的解法之后,利用二次函數(shù)的圖象研究一元二次不等式的解法。只要學(xué)生能夠理解一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系,并利用其關(guān)系解不等式即可。因此,我確定本節(jié)課的教學(xué)重點為一元二次不等式的解法,關(guān)鍵是一元二次方程、一元二次不等式和二次函數(shù)三者的關(guān)系。

  二、教法學(xué)法分析:

  數(shù)學(xué)是發(fā)展學(xué)生思維、培養(yǎng)學(xué)生良好意志品質(zhì)和美好情感的重要學(xué)科,在教學(xué)中,我們不僅要使學(xué)生獲得知識、提高解題能力,還要讓學(xué)生在教師的啟發(fā)引導(dǎo)下學(xué)會學(xué)習(xí)、樂于學(xué)習(xí),感受數(shù)學(xué)學(xué)科的人文思想,使學(xué)生在學(xué)習(xí)中培養(yǎng)堅強的意志品質(zhì)、形成良好的道德情感。為了更好地體現(xiàn)課堂教學(xué)中"教師為主導(dǎo),學(xué)生為主體"的教學(xué)關(guān)系和"以人為本,以學(xué)定教"的教學(xué)理念,在本節(jié)課的教學(xué)過程中,我將緊緊圍繞教師組織——啟發(fā)引導(dǎo),學(xué)生探究——交流發(fā)現(xiàn),組織開展教學(xué)活動。我設(shè)計了:

  ①創(chuàng)設(shè)情景——引入新課

 、诮涣魈骄俊l(fā)現(xiàn)規(guī)律

 、蹎l(fā)引導(dǎo)——形成結(jié)論

 、芫毩(xí)小結(jié)——深化鞏固

 、菟季S拓展——提高能力,五個環(huán)環(huán)相扣、層層深入的教學(xué)環(huán)節(jié),在教學(xué)中注意關(guān)注整個過程和全體學(xué)生,充分調(diào)動學(xué)生積極參與教學(xué)過程的每個環(huán)節(jié)。

  三、教學(xué)過程分析:

  1.創(chuàng)設(shè)情景——引入新課。我們常說"興趣是最好的老師",長期以來,學(xué)生對學(xué)習(xí)數(shù)學(xué)缺乏興趣,甚至失去信心,一個重要的原因,是老師在教學(xué)中不重視學(xué)生對學(xué)習(xí)的情感體驗,教學(xué)應(yīng)該充分考慮學(xué)生的情感和需要,想方設(shè)法讓學(xué)生在學(xué)習(xí)中樹立信心,感受學(xué)習(xí)的樂趣。根據(jù)教材內(nèi)容的安排,我以學(xué)生熟悉的畫一次函數(shù)圖象、求一次方程和一次不等式的解為背景知識切入,設(shè)置一個練習(xí)題組,一方面讓學(xué)生總結(jié)復(fù)習(xí)已有知識,為后面學(xué)習(xí)二次不等式的解法打下基礎(chǔ),做好鋪墊,另一方面,使學(xué)生在自己熟悉的問題中首先獲得解題成功的快樂體驗,然后以2004年江蘇省的一道高考試題為引子,引入本節(jié)課的新授內(nèi)容。對于本題,引導(dǎo)學(xué)生,利用上面解練習(xí)題組1的方法,畫出二次函數(shù)圖象來解答。二次函數(shù)是初中數(shù)學(xué)的重要內(nèi)容,本題又給出了函數(shù)圖象上許多點,相信學(xué)生畫出圖象應(yīng)該不成問題,只要教師適當(dāng)點撥,學(xué)生不難得到正確答案。以高考試題為背景引入新課,可以提高學(xué)生興趣,抓住學(xué)生眼球,吸引學(xué)生注意力,還可以讓學(xué)生實實在在感受到,高考題就在我們的課本中,就在我們平常的練習(xí)中。

  2.探究交流——發(fā)現(xiàn)規(guī)律。從特殊到一般是我們發(fā)現(xiàn)問題、尋求規(guī)律、揭示問題本質(zhì)最常用的方法之一。我把課本例題1、2編為練習(xí)題組(一),交由學(xué)生用上面解高考題的方法——圖象法去解,學(xué)生由于熟知二次函數(shù)圖象,求解應(yīng)該不會有太大的問題。在這個過程中,教師要啟發(fā)引導(dǎo)學(xué)生注意對比兩題的異同,組織引導(dǎo)學(xué)生展開交流討論,探討第(2)題能不能先把二次項系數(shù)化正以后再構(gòu)造函數(shù)畫圖求解。然后達(dá)成共識,如果二次項系數(shù)為負(fù)數(shù)時,先做等價轉(zhuǎn)化,把二次項系數(shù)化為正數(shù)再解,課本19頁例3、例4作為題組(二),繼續(xù)讓學(xué)生用上面的圖象法,由學(xué)生自己求解,這時我及時提示學(xué)生注意這兩題與題組(一)中兩題的不同(例1、例2對應(yīng)方程都有兩個不等實根,例3對應(yīng)方程有兩相等實根,例4對應(yīng)方程無實根)。兩個題組的練習(xí)之后,可以尋求解二次不等式的一般規(guī)律。

  3.啟發(fā)引導(dǎo)——形成結(jié)論。前面兩個題組的四個小題,基本涵蓋了一般一元二次不等式解的各種情況,進一步啟發(fā)引導(dǎo)學(xué)生將特殊、具體題目的結(jié)論做一般化總結(jié),與學(xué)生一起就 △>0,△<0,△=0 c="">0或ax2+bx+c<0 a="">0)的解的情況應(yīng)該水到渠成。至此,學(xué)生可以感受到,解二次不等式只須①將二次項系數(shù)化為正數(shù),②求解二次方程 ax2+bx+c=0 的根。③根據(jù)①后的二次不等式的符號寫出解集即可,必要時也可以結(jié)合圖象寫解集。這樣我們就得到了二次不等式的另外一種解法(可稱為"三步曲"法)。

  4.訓(xùn)練小結(jié)——鞏固深化。為了鞏固和加深二次不等式的兩種解法,接下來及時組織學(xué)生進行課堂練習(xí),完成課本21頁練習(xí)1-4題。本環(huán)節(jié)請不同層次的'學(xué)生在黑板上書寫解題過程,之后師生共同糾正問題,規(guī)范解題過程的書寫。

  5.延伸拓寬——提高能力。課堂教學(xué)既要面向全體學(xué)生,又應(yīng)關(guān)注學(xué)生的個體差異。體現(xiàn)分類推進,分層教學(xué)的原則。為此,我又設(shè)計了一個提高練習(xí)題組,共有三道備選題目,以供程度較好學(xué)有余力的學(xué)生能夠更好的展示自己的解題能力,取得更進一步的提高。

  四、課堂意外預(yù)案:

  新課程理念下的教學(xué)更多的關(guān)注學(xué)生自主探究、關(guān)注學(xué)生的個性發(fā)展,鼓勵學(xué)生勇于提出問題,培養(yǎng)學(xué)生思維的批評性。在課堂上學(xué)生往往會提出讓老師感到"意外"的問題,我在平時的教學(xué)中重視對"課堂意外預(yù)案"的探索和思考,備課時盡量設(shè)想課堂中可能會出現(xiàn)的各種情況,做到有備無患,以免在課堂中學(xué)生提出讓自己出乎意料的問題,使自己陷入被動尷尬境地。結(jié)合以往經(jīng)驗,在本節(jié)課,我提出兩個"意外預(yù)案".

  1.學(xué)生在做課本練習(xí)1(x+2)(x-3)>0 時,可能會問到轉(zhuǎn)化為不等式組{ 或{ 求解對不對。學(xué)生提出的問題,想法非常好,應(yīng)給予肯定和鼓勵,這與下節(jié)簡單分式不等式和高次不等式的解法有關(guān),是解不等式的另一種解法——等價轉(zhuǎn)化法,不在本節(jié)課之列。

  2.根據(jù)以往的經(jīng)驗,在解(x-1)(x+2)>1一類的不等式的時候,由于受方程(x+1)(x+2)=0 可轉(zhuǎn)化為x-1=0或x+2=0求解的影響,有可能會出現(xiàn)將不等式轉(zhuǎn)化為不等式組{ 來求解的錯誤做法,教師要關(guān)注學(xué)生,及時發(fā)現(xiàn)問題并給予糾正,指出上面的轉(zhuǎn)化不是等價轉(zhuǎn)化。

  以上是我對本節(jié)課的一些粗淺的認(rèn)識和構(gòu)想,如有不妥之處,懇請各位專家、各位同仁批評指正。謝謝大家!

  高中數(shù)學(xué)說課稿 8

  一、教材分析:

  1、教材的地位與作用。

  本節(jié)資料是在學(xué)生學(xué)習(xí)了"事件的可能性的基礎(chǔ)上來學(xué)習(xí)如何預(yù)測不確定事件(隨機事件)發(fā)生的可能性的大小。"用概率預(yù)測隨機發(fā)生的可能性大小,在日常生活、自然、科技領(lǐng)域有著廣泛的應(yīng)用,學(xué)習(xí)本單元知識,無論是今后繼續(xù)深造(高中學(xué)習(xí)概率的乘法定理)還是參加社會實踐活動都是十分必要的。概率的概念比較抽象,概率的定義學(xué)生較難理解。

  在教材的處理上,采取小單元教學(xué),本節(jié)課安排讓學(xué)生了解求隨機事件概率的兩種方法,目的是讓學(xué)生能夠比較系統(tǒng)地理解概率的意義及求概率的方法,為下頭學(xué)習(xí)求比較復(fù)雜的情景的概率打下基礎(chǔ)。

  2、重點與難點。

  重點:對概率意義的理解,經(jīng)過多次重復(fù)實驗,用頻率預(yù)測概率的方法,以及用列舉法求概率的方法。

  難點:對概率意義的理解和用列舉法求概率過程中在各種可能性相同條件下某一事件可能發(fā)生的總數(shù)及總的結(jié)果數(shù)的分析。

  二、目的分析:

  知識與技能:掌握用頻率預(yù)測概率和用列舉法求概率方法。

  過程與方法:組織學(xué)生自主探究,合作交流,引導(dǎo)學(xué)生觀察試驗和統(tǒng)計的結(jié)果,進而進行分析、歸納、總結(jié),了解并感受概率的定義的過程,引導(dǎo)學(xué)生從數(shù)學(xué)的視角觀察客觀世界,用數(shù)學(xué)的思維思考客觀世界,以數(shù)學(xué)的語言描述客觀世界。

  情感態(tài)度價值觀:學(xué)生經(jīng)歷觀察、分析、歸納、確認(rèn)等數(shù)學(xué)活動,感受數(shù)學(xué)活動充滿了探索性與創(chuàng)造性,感受量變與質(zhì)變的對立統(tǒng)一規(guī)律,同時為概率的精準(zhǔn)、新穎、獨特的思維方法所震撼,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情,增強對數(shù)學(xué)價值觀的認(rèn)識。

  三、教法、學(xué)法分析:

  引導(dǎo)學(xué)生自主探究、合作交流、觀察分析、歸納總結(jié),讓學(xué)生經(jīng)歷知識(概率定義計算公式)的產(chǎn)生和發(fā)展過程,讓學(xué)生在數(shù)學(xué)活動中學(xué)習(xí)數(shù)學(xué)、掌握數(shù)學(xué),并能應(yīng)用數(shù)學(xué)解決現(xiàn)實生活中的實際問題,教師是學(xué)生學(xué)習(xí)的'組織者、合作者和指導(dǎo)者,精心設(shè)計教學(xué)情境,有序組織學(xué)生活動,讓課堂充滿生機活力,體現(xiàn)"教"為"學(xué)"服務(wù)這一宗旨。

  四、教學(xué)過程分析:

  1、引導(dǎo)學(xué)生探究

  精心設(shè)計問題一,學(xué)生經(jīng)過對問題一的探究,一方面復(fù)習(xí)前面學(xué)過的"確定事件和不確定事件"的知識,為學(xué)好本節(jié)資料理清知識障礙,二是讓學(xué)生明確為什么要學(xué)習(xí)概率(如何預(yù)測隨機事件可能性發(fā)生大。。引導(dǎo)學(xué)生對問題二的探究與觀察實驗數(shù)據(jù),使學(xué)生了解概率這一重要概念的實際背景,感受并相信隨機事件的發(fā)生中存在著統(tǒng)計規(guī)律性,感受數(shù)學(xué)規(guī)律的真實的發(fā)現(xiàn)過程。

  2、歸納概括

  學(xué)生從試驗中得到的統(tǒng)計數(shù)字及概率呈現(xiàn)穩(wěn)定在某一數(shù)值附近這一規(guī)律,讓學(xué)生明確概率定義的由來。

  引導(dǎo)學(xué)生重新對問題一和問題二的探究,分析某事件發(fā)生的各種可能性在全部可能發(fā)生結(jié)果中所占比例,得到用列舉法求概率的公式,引導(dǎo)學(xué)生進行理性思維,邏輯分析,既培養(yǎng)學(xué)生的分析問題能力,又讓學(xué)生明確用列舉法求概率這一簡便快捷方法的合理性。

  3、舉例應(yīng)用

  ⑴引導(dǎo)學(xué)生對教材書例題、問題一、問題二中問題的進一步分析與探究,讓學(xué)生掌握用列舉法求概率的方法。

 、埔龑(dǎo)學(xué)生對練習(xí)中的問題思考與探究,鞏固對概率公式的應(yīng)用及加深對概率意義的理解。

  4、深化發(fā)展

 、旁O(shè)置3個小題目,引導(dǎo)學(xué)生歸納、分析、總結(jié),加深對知識與方法的理解,并學(xué)會靈活運用。

 、谱寣W(xué)生設(shè)計活動資料,對知識進行升華和拓展,引導(dǎo)學(xué)生創(chuàng)造性地運用知識思考問題和解決問題,從而培養(yǎng)學(xué)生的創(chuàng)新意識和創(chuàng)新能力。

  高中數(shù)學(xué)說課稿 9

  一、教材分析

  1、教材內(nèi)容

  本節(jié)課是蘇教版第二章《函數(shù)概念和基本初等函數(shù)Ⅰ》2.1.3函數(shù)簡單性質(zhì)的第一課時,該課時主要學(xué)習(xí)增函數(shù)、減函數(shù)的定義,以及應(yīng)用定義解決一些簡單問題.

  2、教材所處地位、作用

  函數(shù)的性質(zhì)是研究函數(shù)的基石,函數(shù)的單調(diào)性是首先研究的一個性質(zhì).通過對本節(jié)課的學(xué)習(xí),讓學(xué)生領(lǐng)會函數(shù)單調(diào)性的概念、掌握證明函數(shù)單調(diào)性的步驟,并能運用單調(diào)性知識解決一些簡單的實際問題.通過上述活動,加深對函數(shù)本質(zhì)的認(rèn)識.函數(shù)的單調(diào)性既是學(xué)生學(xué)過的函數(shù)概念的延續(xù)和拓展,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)、三角函數(shù)的單調(diào)性的基礎(chǔ).此外在比較數(shù)的大小、函數(shù)的定性分析以及相關(guān)的數(shù)學(xué)綜合問題中也有廣泛的應(yīng)用,它是整個高中數(shù)學(xué)中起著承上啟下作用的核心知識之一.從方法論的角度分析,本節(jié)教學(xué)過程中還滲透了探索發(fā)現(xiàn)、數(shù)形結(jié)合、歸納轉(zhuǎn)化等數(shù)學(xué)思想方法.

  3、教學(xué)目標(biāo)

 。1)知識與技能:使學(xué)生理解函數(shù)單調(diào)性的概念,掌握判別函數(shù)單調(diào)性

  的方法;

  (2)過程與方法:從實際生活問題出發(fā),引導(dǎo)學(xué)生自主探索函數(shù)單調(diào)性的概念,應(yīng)用圖象和單調(diào)性的定義解決函數(shù)單調(diào)性問題,讓學(xué)生領(lǐng)會數(shù)形結(jié)合的數(shù)學(xué)思想方法,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、分析問題、解決問題的能力.

  (3)情感態(tài)度價值觀:讓學(xué)生體驗數(shù)學(xué)的科學(xué)功能、符號功能和工具功能,培養(yǎng)學(xué)生直覺觀察、探索發(fā)現(xiàn)、科學(xué)論證的良好的'數(shù)學(xué)思維品質(zhì).

  4、重點與難點

  教學(xué)重點

 。1)函數(shù)單調(diào)性的概念;

 。2)運用函數(shù)單調(diào)性的定義判斷一些函數(shù)的單調(diào)性.

  教學(xué)難點

 。1)函數(shù)單調(diào)性的知識形成;

  (2)利用函數(shù)圖象、單調(diào)性的定義判斷和證明函數(shù)的單調(diào)性.

  二、教法分析與學(xué)法指導(dǎo)

  本節(jié)課是一節(jié)較為抽象的數(shù)學(xué)概念課,因此,教法上要注意:

  1、通過學(xué)生熟悉的實際生活問題引入課題,為概念學(xué)習(xí)創(chuàng)設(shè)情境,拉近數(shù)學(xué)與現(xiàn)實的距離,激發(fā)了學(xué)生求知欲,調(diào)動了學(xué)生主體參與的積極性.

  2、在運用定義解題的過程中,緊扣定義中的關(guān)鍵語句,通過學(xué)生的主體參與,逐個完成對各個難點的突破,以獲得各類問題的解決.

  3、在鼓勵學(xué)生主體參與的同時,不可忽視教師的主導(dǎo)作用.具體體現(xiàn)在設(shè)問、講評和規(guī)范書寫等方面,要教會學(xué)生清晰的思維、嚴(yán)謹(jǐn)?shù)耐评恚⒊晒Φ赝瓿蓵姹磉_(dá).

  4、采用投影儀、多媒體等現(xiàn)代教學(xué)手段,增大教學(xué)容量和直觀性.

  在學(xué)法上:

  1、讓學(xué)生從問題中質(zhì)疑、嘗試、歸納、總結(jié)、運用,培養(yǎng)學(xué)生發(fā)現(xiàn)問題、研究問題和解決問題的能力.

  2、讓學(xué)生利用圖形直觀啟迪思維,并通過正、反例的構(gòu)造,來完成從感性認(rèn)識到理性思維的一個飛躍.

  高中數(shù)學(xué)說課稿 10

  今天我說課的題目是《二次函數(shù)的圖像》,下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個問題,從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點分析、教法與學(xué)法、課堂設(shè)計五方面逐一加以分析和說明。

  一、教材分析

  教材的地位和作用

  本節(jié)內(nèi)容選自北師大版高中數(shù)學(xué)必修1,第二章第4.1節(jié)。二次函數(shù)的圖像在教材中起著承上啟下的作用。

  學(xué)情分析

  本節(jié)課的學(xué)生是高一學(xué)生,他們在初中的時候已經(jīng)學(xué)習(xí)過有關(guān)內(nèi)容,為本節(jié)課的學(xué)習(xí)打下了基礎(chǔ),另一方面,二次函數(shù)解析式中的系數(shù)由常數(shù)轉(zhuǎn)變?yōu)閰?shù),使學(xué)生對二次函數(shù)的圖像由感性認(rèn)識上升到理性認(rèn)識,能培養(yǎng)學(xué)生利用數(shù)形結(jié)合思想解決問題的能力。

  二、教學(xué)目標(biāo)分析

  基于以上對教材和學(xué)情的分析以及新課標(biāo)教學(xué)理念,我將教學(xué)目標(biāo)分為以下三個部分:

  1、知識與技能

  理解二次函數(shù)中參數(shù)a,b,c,h,k對其圖像的影響;

  2、過程與方法

  通過體驗對二次函數(shù)圖像平移的研究方法,能遷移到其他函數(shù)圖像的研究。

  3、情感態(tài)度與價值觀

  通過本節(jié)的學(xué)習(xí),進一步體會數(shù)形結(jié)合思想的作用,感受到數(shù)學(xué)中數(shù)與形的辯證統(tǒng)一。

  三、教學(xué)重難點分析

  通過以上對教材和學(xué)生的分析以及教學(xué)目標(biāo),我將本節(jié)課的'重難點確定如下

  重點:

  二次函數(shù)圖像的平移變換規(guī)律及應(yīng)用。

  難點:

  探索平移對函數(shù)解析式的影響及如何利用平移變換規(guī)律求函數(shù)解析式,并能把平移變換規(guī)律遷移到其他函數(shù)。

  四、教法與學(xué)法分析

  1、教法分析

  基于以上對教材、學(xué)情的分析以及新課改的要求,本節(jié)課我采用啟發(fā)式教學(xué)、多媒體輔助教學(xué)和討論法。學(xué)生可以在多媒體中感受到數(shù)學(xué)在生活中的應(yīng)用,啟發(fā)式教學(xué)和討論法發(fā)散學(xué)生思維,培養(yǎng)學(xué)生善于思考的能力。

  2、學(xué)法分析

  新課改理念告訴我們,學(xué)生不僅要學(xué)知識,更重要的是要學(xué)會怎樣學(xué)習(xí),為終生學(xué)習(xí)奠定扎實的基礎(chǔ)。所以本節(jié)課我將引導(dǎo)學(xué)生通過合作交流、自主探索的方法進行學(xué)習(xí)。

  五、教學(xué)過程

  為了更好的實現(xiàn)本課的三維目標(biāo),并突破重難點,我將設(shè)計以下五個環(huán)節(jié)來進行我的教學(xué)。

 。1)知識導(dǎo)入

  溫故而知新,我將先從之前學(xué)習(xí)的知識引入,給出一些函數(shù),比如y=x2、y=2x2,讓學(xué)生作出這些函數(shù)的圖像,然后讓學(xué)生比較這些函數(shù)圖像的相同點和不同點,由此引入我的新課。一方面讓學(xué)生總結(jié)復(fù)習(xí)已有知識,為后面的學(xué)習(xí)做好鋪墊,另一方面,使學(xué)生在自己熟悉的問題中首先獲得解題成功的快樂體驗。

 。2)講授新課

  例1:畫出函數(shù)y=2x2,y=2(x+1)2,y=2(x+1)2+3的圖像

  讓學(xué)生畫出他們的圖像并觀察函數(shù)圖像的特點,再讓學(xué)生與多媒體課件展示的圖像進行對比,得出結(jié)論:若二次函數(shù)的解析式為y=ax2+bx+c,先將其化成y=a(x+h)2+k的形式,從而判斷出y=ax2+bx+c是如何由y=ax2變換得到的。

  前面的練習(xí)和例題,基本涵蓋了二次函數(shù)圖像平移變換的各種情況,啟發(fā)并引導(dǎo)了學(xué)生將實例的結(jié)論進行總結(jié),得出y=x2到y(tǒng)=ax2,y=ax2到y(tǒng)=a(x+h)2+k,y=ax2到y(tǒng)=ax2+bx+c(其中,a均不為0)的圖像變化過程,即a>0開口向上,a

 。3)鞏固練習(xí)

  我將組織學(xué)生進行練習(xí),完成課本44頁1-3題。通過這種練習(xí)的方式,幫助學(xué)生鞏固和加深二次函數(shù)中參數(shù)對圖像的影響。

 。4)歸納總結(jié)

  我先讓學(xué)生進行小結(jié),然后教師進行補充,在這樣一個過程中既有利于學(xué)生鞏固知識,也有利于教師對學(xué)生的學(xué)習(xí)情況有一定的了解,可以進行適當(dāng)反思,為下一節(jié)課的教學(xué)過程做好準(zhǔn)備。

 。5)布置作業(yè)

  略

  高中數(shù)學(xué)說課稿 11

  一、教材分析

  本節(jié)知識是必修五第一章《解三角形》的第一節(jié)資料,與初中學(xué)習(xí)的三角形的邊和角的基本關(guān)系有密切的聯(lián)系與判定三角形的全等也有密切聯(lián)系,在日常生活和工業(yè)生產(chǎn)中也時常有解三角形的問題,并且解三角形和三角函數(shù)聯(lián)系在高考當(dāng)中也時?家恍┙獯痤}。所以,正弦定理和余弦定理的知識十分重要。

  根據(jù)上述教材資料分析,研究到學(xué)生已有的認(rèn)知結(jié)構(gòu)心理特征及原有知識水平,制定如下教學(xué)目標(biāo):

  認(rèn)知目標(biāo):在創(chuàng)設(shè)的問題情境中,引導(dǎo)學(xué)生發(fā)現(xiàn)正弦定理的資料,推證正弦定理及簡單運用正弦定理與三角形的內(nèi)角和定理解斜三角形的兩類問題。

  能力目標(biāo):引導(dǎo)學(xué)生經(jīng)過觀察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,培養(yǎng)學(xué)生的創(chuàng)新意識和觀察與邏輯思維能力,能體會用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。

  情感目標(biāo):面向全體學(xué)生,創(chuàng)造平等的教學(xué)氛圍,經(jīng)過學(xué)生之間、師生之間的交流、合作和評價,調(diào)動學(xué)生的主動性和積極性,給學(xué)生成功的體驗,激發(fā)學(xué)生學(xué)習(xí)的興趣。

  教學(xué)重點:正弦定理的資料,正弦定理的證明及基本應(yīng)用。

  教學(xué)難點:正弦定理的探索及證明,已知兩邊和其中一邊的對角解三角形時確定解的個數(shù)。

  二、教法

  根據(jù)教材的資料和編排的特點,為是更有效地突出重點,空破難點,以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認(rèn)識規(guī)律,本講遵照以教師為主導(dǎo),以學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想,采用探究式課堂教學(xué)模式,即在教學(xué)過程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究資料,以生活實際為參照對象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。突破重點的手段:抓住學(xué)生情感的興奮點,激發(fā)他們的興趣,鼓勵學(xué)生大膽猜想,積極探索,以及及時地鼓勵,使他們知難而進。另外,抓知識選擇的切入點,從學(xué)生原有的認(rèn)知水平和所需的知識特點入手,教師在學(xué)生主體下給以適當(dāng)?shù)腵提示和指導(dǎo)。突破難點的方法:抓住學(xué)生的能力線聯(lián)系方法與技能使學(xué)生較易證明正弦定理,另外經(jīng)過例題和練習(xí)來突破難點。

  三、學(xué)法:

  指導(dǎo)學(xué)生掌握“觀察——猜想——證明——應(yīng)用”這一思維方法,采取個人、小組、團體等多種解難釋疑的嘗試活動,將自我所學(xué)知識應(yīng)用于對任意三角形性質(zhì)的探究。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,概括,動手嘗試相結(jié)合,體現(xiàn)學(xué)生的主體地位,增強學(xué)生由特殊到一般的數(shù)學(xué)思維能力,構(gòu)成了實事求是的科學(xué)態(tài)度,增強了鍥而不舍的求學(xué)精神。

  四、教學(xué)過程

  第一:創(chuàng)設(shè)情景,大概用2分鐘

  第二:實踐探究,構(gòu)成概念,大約用25分鐘

  第三:應(yīng)用概念,拓展反思,大約用13分鐘

 。ㄒ唬﹦(chuàng)設(shè)情境,布疑激趣

  “興趣是最好的教師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,本節(jié)課由一個實際問題引入,“工人師傅的一個三角形的模型壞了,只剩下如右圖所示的部分,∠A=47°,∠B=53°,AB長為1m,想修好這個零件,但他不明白AC和BC的長度是多少好去截料,你能幫師傅這個忙嗎?”激發(fā)學(xué)生幫忙別人的熱情和學(xué)習(xí)的興趣,從而進入今日的學(xué)習(xí)課題。

 。ǘ┨綄ぬ乩,提出猜想

  1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進行研究,發(fā)現(xiàn)正弦定理。

  2.那結(jié)論對任意三角形都適用嗎?指導(dǎo)學(xué)生分小組用刻度尺、量角器、計算器等工具對一般三角形進行驗證。

  3.讓學(xué)生總結(jié)實驗結(jié)果,得出猜想:

  在三角形中,角與所對的邊滿足關(guān)系

  這為下一步證明樹立信心,不斷的使學(xué)生對結(jié)論的認(rèn)識從感性逐步上升到理性。

 。ㄈ┻壿嬐评恚C明猜想

  1.強調(diào)將猜想轉(zhuǎn)化為定理,需要嚴(yán)格的理論證明。

  2.鼓勵學(xué)生經(jīng)過作高轉(zhuǎn)化為熟悉的直角三角形進行證明。

  3.提示學(xué)生思考哪些知識能把長度和三角函數(shù)聯(lián)系起來,繼而思考向量分析層面,用數(shù)量積作為工具證明定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

  4.思考是否還有其他的方法來證明正弦定理,布置課后練習(xí),提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標(biāo)法來證明

  (四)歸納總結(jié),簡單應(yīng)用

  1.讓學(xué)生用文字?jǐn)⑹稣叶ɡ恚龑?dǎo)學(xué)生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學(xué)美的享受。

  2.正弦定理的資料,討論能夠解決哪幾類有關(guān)三角形的問題。

  3.運用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。自我參與實際問題的解決,能激發(fā)學(xué)生知識后用于實際的價值觀。

 。ㄎ澹┲v解例題,鞏固定理

  1.例1。在△ABC中,已知A=32°,B=81.8°,a=42.9cm.解三角形.

  例1簡單,結(jié)果為唯一解,如果已知三角形兩角兩角所夾的邊,以及已知兩角和其中一角的對邊,都可利用正弦定理來解三角形。

  2.例2.在△ABC中,已知a=20cm,b=28cm,A=40°,解三角形.

  例2較難,使學(xué)生明確,利用正弦定理求角有兩種可能。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。完了把時間交給學(xué)生。

 。┱n堂練習(xí),提高鞏固

  1.在△ABC中,已知下列條件,解三角形.

  (1)A=45°,C=30°,c=10cm

  (2)A=60°,B=45°,c=20cm

  2.在△ABC中,已知下列條件,解三角形.

  (1)a=20cm,b=11cm,B=30°

  (2)c=54cm,b=39cm,C=115°

  學(xué)生板演,教師巡視,及時發(fā)現(xiàn)問題,并解答。

 。ㄆ撸┬〗Y(jié)反思,提高認(rèn)識

  經(jīng)過以上的研究過程,同學(xué)們主要學(xué)到了那些知識和方法?你對此有何體會?

  1.用向量證明了正弦定理,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

  2.它表述了三角形的邊與對角的正弦值的關(guān)系。

  3.定理證明分別從直角、銳角、鈍角出發(fā),運用分類討論的思想。

 。◤膶嶋H問題出發(fā),經(jīng)過猜想、實驗、歸納等思維方法,最終得到了推導(dǎo)出正弦定理。我們研究問題的突出特點是從特殊到一般,我們不僅僅收獲著結(jié)論,并且整個探索過程我們也掌握了研究問題的一般方法。在強調(diào)研究性學(xué)習(xí)方法,注重學(xué)生的主體地位,調(diào)動學(xué)生積極性,使數(shù)學(xué)教學(xué)成為數(shù)學(xué)活動的教學(xué)。)

 。ò耍┤蝿(wù)后延,自主探究

  如果已知一個三角形的兩邊及其夾角,要求第三邊,怎樣辦?發(fā)現(xiàn)正弦定理不適用了,那么自然過渡到下一節(jié)資料,余弦定理。布置作業(yè),預(yù)習(xí)下一節(jié)資料。

  高中數(shù)學(xué)說課稿 12

  我擔(dān)任高職單招輔導(dǎo)班的數(shù)學(xué)科教學(xué),可以說每節(jié)課都是復(fù)習(xí)課。今天,我說的是復(fù)習(xí)課這種課型。內(nèi)容是《函數(shù)》這一章中的“反函數(shù)”這一節(jié)。

  一、教材分析:

  反函數(shù)這一節(jié)在《函數(shù)》這章中是一個難點,篇幅不多(課時少),在高考考綱中的要求也比較簡單。但我個人這樣認(rèn)為,復(fù)習(xí)課應(yīng)盡量把與本節(jié)內(nèi)容相關(guān)的新舊知識系統(tǒng)地串在一起,所以在備課時要找一條能把知識點連在一起的線索。這線索就是函數(shù)的三要素:

 。ㄒ唬┙虒W(xué)目標(biāo):

  ①使學(xué)生掌握反函數(shù)的概念并能求出簡單函數(shù)的反函數(shù)(考綱要求)。

  ②互為反函數(shù)的兩個函數(shù)具有的性質(zhì),以及這些性質(zhì)在解題中的運用。

 、弁ㄟ^知識的系統(tǒng)性,培養(yǎng)學(xué)生的逆向思維能力和邏輯思維能力。

 。ǘ┲攸c、難點:

  ①重點:使學(xué)生能求出簡單函數(shù)的反函數(shù)。

 、陔y點:反函數(shù)概念的理解。

  二、教學(xué)方法:

  整節(jié)課采用傳統(tǒng)的講解法。

  首先要認(rèn)識反函數(shù)應(yīng)先有函數(shù)的概念這知識,用例子來說明反函數(shù)的求法以及讓學(xué)生來完成一題沒有反函數(shù)的函數(shù),從而得出一個不滿足函數(shù)定義的關(guān)系式,通過分析來得到一個函數(shù)具有反函數(shù)的條件。這里是用“欲擒故縱”的手法,加深對概念的理解,也是突破難點的關(guān)鍵。

  三、學(xué)生學(xué)習(xí)方法:

  學(xué)生認(rèn)識了反函數(shù)的求法(步驟),在老師的引導(dǎo)下得出三個結(jié)論,并運用這些結(jié)論來解題。希望能達(dá)到提高學(xué)生性質(zhì)的解題能力和思維能力的目標(biāo)。

  四、教學(xué)過程:

  (一)溫故:函數(shù)的'概念、三要素

  (二)新課:例1:求y=2x+1的反函數(shù)

  解:

  即(x∈R)

  注意步驟,新關(guān)系式滿足從R到R是一個函數(shù)關(guān)系式。

  互這反函數(shù)的特點:

 、龠\算互逆;②順序倒置

  例2:y=x2(x∈R)用y的代數(shù)表示x

  得x=這x不是y的函數(shù),不滿足函數(shù)定義

  若對,y=x2的定義域改為x≥0

  可得x=,即y=(x≥0)

  當(dāng)逆對應(yīng)滿足函數(shù)定義,原函數(shù)才存在反函數(shù)。

  得到結(jié)論①互為反函數(shù)的定義域、值域交換

  即

  分別在同一坐標(biāo)上畫出以上互為反函數(shù)的圖象

  得到結(jié)論②圖象關(guān)于y=x對稱

 、蹎握{(diào)性一致

 。ㄈ┚毩(xí)

  1、求的反函數(shù),并求出反函數(shù)的值域。

  2、函數(shù)的圖象關(guān)于對稱,求a的值。

  講評:略。

  (四)小結(jié):

 。ㄎ澹┎贾米鳂I(yè):

  高中數(shù)學(xué)說課稿 13

  一、教材分析

  1、《指數(shù)函數(shù)》在教材中的地位、作用和特點

  《指數(shù)函數(shù)》是人教版高中數(shù)學(xué)(必修)第一冊第二章“函數(shù)”的第六節(jié)資料,是在學(xué)習(xí)了《指數(shù)》一節(jié)資料之后編排的。經(jīng)過本節(jié)課的學(xué)習(xí),既能夠?qū)χ笖?shù)和函數(shù)的概念等知識進一步鞏固和深化,又能夠為后面進一步學(xué)習(xí)對數(shù)、對數(shù)函數(shù)尤其是利用互為反函數(shù)的圖象間的關(guān)系來研究對數(shù)函數(shù)的性質(zhì)打下堅實的概念和圖象基礎(chǔ),又因為《指數(shù)函數(shù)》是進入高中以后學(xué)生遇到的第一個系統(tǒng)研究的函數(shù),對高中階段研究對數(shù)函數(shù)、三角函數(shù)等完整的函數(shù)知識,初步培養(yǎng)函數(shù)的應(yīng)用意識打下了良好的學(xué)習(xí)基礎(chǔ),所以《指數(shù)函數(shù)》不僅僅是本章《函數(shù)》的重點資料,也是高中學(xué)段的主要研究資料之一,有著不可替代的重要作用。

  此外,《指數(shù)函數(shù)》的知識與我們的日常生產(chǎn)、生活和科學(xué)研究有著緊密的聯(lián)系,尤其體此刻細(xì)胞分裂、貸款利率的計算和考古中的年代測算等方面,所以學(xué)習(xí)這部分知識還有著廣泛的現(xiàn)實意義。本節(jié)資料的特點之一是概念性強,特點之二是凸顯了數(shù)學(xué)圖形在研究函數(shù)性質(zhì)時的重要作用。

  2、教學(xué)目標(biāo)、重點和難點

  經(jīng)過初中學(xué)段的學(xué)習(xí)和高中對集合、函數(shù)等知識的系統(tǒng)學(xué)習(xí),學(xué)生對函數(shù)和圖象的關(guān)系已經(jīng)構(gòu)建了必須的認(rèn)知結(jié)構(gòu),主要體此刻三個方面:

  知識維度:對正比例函數(shù)、反比例函數(shù)、一次函數(shù),二次函數(shù)等最簡單的函數(shù)概念和性質(zhì)已有了初步認(rèn)識,能夠從初中運動變化的角度認(rèn)識函數(shù)初步轉(zhuǎn)化到從集合與對應(yīng)的觀點來認(rèn)識函數(shù)。

  技能維度:學(xué)生對采用“描點法”描繪函數(shù)圖象的方法已基本掌握,能夠為研究《指數(shù)函數(shù)》的性質(zhì)做好準(zhǔn)備。

  素質(zhì)維度:由觀察到抽象的數(shù)學(xué)活動過程已有必須的體會,已初步了解了數(shù)形結(jié)合的思想。

  鑒于對學(xué)生已有的知識基礎(chǔ)和認(rèn)知能力的分析,根據(jù)《教學(xué)大綱》的要求,我確定本節(jié)課的教學(xué)目標(biāo)、教學(xué)重點和難點如下:

  (1)知識目標(biāo):

 、僬莆罩笖(shù)函數(shù)的概念;

 、谡莆罩笖(shù)函數(shù)的圖象和性質(zhì);

 、勰艹醪嚼弥笖(shù)函數(shù)的概念解決實際問題;

  (2)技能目標(biāo):

 、贊B透數(shù)形結(jié)合的基本數(shù)學(xué)思想方法;

 、谂囵B(yǎng)學(xué)生觀察、聯(lián)想、類比、猜測、歸納的能力;

  (3)情感目標(biāo):

 、袤w驗從特殊到一般的學(xué)習(xí)規(guī)律,認(rèn)識事物之間的普遍聯(lián)系與相互轉(zhuǎn)化,培養(yǎng)學(xué)生用聯(lián)系的觀點看問題;

 、诮(jīng)過教學(xué)互動促進師生情感,激發(fā)學(xué)生的學(xué)習(xí)興趣,提高學(xué)生抽象、概括、分析、綜合的能力;

 、垲I(lǐng)會數(shù)學(xué)科學(xué)的應(yīng)用價值。

  (4)教學(xué)重點:指數(shù)函數(shù)的圖象和性質(zhì)。

  (5)教學(xué)難點:指數(shù)函數(shù)的圖象性質(zhì)與底數(shù)a的關(guān)系。

  突破難點的關(guān)鍵:尋找新知生長點,建立新舊知識的聯(lián)系,在理解概念的基礎(chǔ)上充分結(jié)合圖象,利用數(shù)形結(jié)合來掃清障礙。

  二、教法設(shè)計

  由于《指數(shù)函數(shù)》這節(jié)課的特殊地位,在本節(jié)課的教法設(shè)計中,我力圖經(jīng)過這一節(jié)課的教學(xué)到達(dá)不僅僅使學(xué)生初步理解并能簡單應(yīng)用指數(shù)函數(shù)的知識,更期望能引領(lǐng)學(xué)生掌握研究初等函數(shù)圖象性質(zhì)的一般思路和方法,為今后研究其它的函數(shù)做好準(zhǔn)備,從而到達(dá)培養(yǎng)學(xué)生學(xué)習(xí)能力的目的,我根據(jù)自我對“誘思探究”教學(xué)模式和“情景式”教學(xué)模式的認(rèn)識,將二者結(jié)合起來,主要突出了幾個方面:

  1、創(chuàng)設(shè)問題情景、按照指數(shù)函數(shù)的在生活中的實際背景給出兩個實例,充分調(diào)動學(xué)生的學(xué)習(xí)興趣,激發(fā)學(xué)生的探究心理,順利引入課題,而這兩個例子又恰好為研究指數(shù)函數(shù)中底數(shù)大于1和底數(shù)大于0小于1的圖象做好了準(zhǔn)備。

  2、強化“指數(shù)函數(shù)”概念、引導(dǎo)學(xué)生結(jié)合指數(shù)的有關(guān)概念來歸納出指數(shù)函數(shù)的定義,并向?qū)W生指出指數(shù)函數(shù)的形式特點,請學(xué)生思考對于底數(shù)a是否需要限制,如不限制會有什么問題出現(xiàn),這樣避免了學(xué)生對于底數(shù)a范圍分類的不清楚,也為研究指數(shù)函數(shù)的圖象做了“分類討論”的鋪墊。

  3、突出圖象的作用、在數(shù)學(xué)學(xué)習(xí)過程中,圖形始終使我們需要借助的重要輔助手段。一位數(shù)學(xué)家以往說過“數(shù)離形時少直觀,形離數(shù)時難入微”,而在研究指數(shù)函數(shù)的性質(zhì)時,更是直接由圖象觀察得出性質(zhì),所以圖象發(fā)揮了主要的作用。

  4、注意數(shù)學(xué)與生活和實踐的聯(lián)系、數(shù)學(xué)的本質(zhì)是來源于生活,服務(wù)于實踐。在課堂教學(xué)的引入、例題的講解和課外知識的拓展部分,都介紹了與指數(shù)函數(shù)息息相關(guān)的生活問題,力圖使學(xué)生了解到數(shù)學(xué)的基礎(chǔ)學(xué)科作用,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識。

  三、學(xué)法指導(dǎo)

  本節(jié)課是在學(xué)習(xí)完“指數(shù)”的概念和運算后編排的,針對學(xué)生實際情景,我主要在以下幾個方面做了嘗試:

  1、再現(xiàn)原有認(rèn)知結(jié)構(gòu)。在引入兩個生活實例后,請學(xué)生回憶有關(guān)指數(shù)的概念,幫忙學(xué)生再現(xiàn)原有認(rèn)知結(jié)構(gòu),為理解指數(shù)函數(shù)的概念做好準(zhǔn)備。

  2、領(lǐng)會常見數(shù)學(xué)思想方法。在借助圖象研究指數(shù)函數(shù)的性質(zhì)時會遇到分類討論、數(shù)形結(jié)合等基本數(shù)學(xué)思想方法,這些方法將會貫穿整個高中的數(shù)學(xué)學(xué)習(xí)。

  3、在互相交流和自主探究中獲得發(fā)展。在生活實例的課堂導(dǎo)入、指數(shù)函數(shù)的性質(zhì)研究、例題與訓(xùn)練、課內(nèi)小節(jié)等教學(xué)環(huán)節(jié)中都安排了學(xué)生的討論、分組、交流等活動,讓學(xué)生變被動的'理解和記憶知識為在合作學(xué)習(xí)的樂趣中主動地建構(gòu)新知識的框架和體系,從而完成知識的內(nèi)化過程。

  4、注意學(xué)習(xí)過程的循序漸進。在概念、圖象、性質(zhì)、應(yīng)用、拓展的過程中按照先易后難的順序?qū)訉舆f進,讓學(xué)生感到有挑戰(zhàn)、有收獲,跳一跳,夠得著,不一樣難度的題目設(shè)計將盡可能照顧到課堂學(xué)生的個體差異。

  四、程序設(shè)計

  在設(shè)計本節(jié)課的教學(xué)過程中,本著遵循學(xué)生的認(rèn)知規(guī)律、讓學(xué)生去經(jīng)歷知識的構(gòu)成與發(fā)展過程的原則,我設(shè)計了如下的教學(xué)程序,啟發(fā)學(xué)生逐步發(fā)現(xiàn)和認(rèn)識指數(shù)函數(shù)的圖象和性質(zhì)。

  1、創(chuàng)設(shè)情景、導(dǎo)入新課

  教師活動:

 、儆秒娔X展示兩個實例,第一個是計算機價格下降問題,第二個是生物中細(xì)胞分裂的例子;

 、趯W(xué)生按奇數(shù)列、偶數(shù)列分組。

  學(xué)生活動:

 、俜謩e寫出計算機價格y與經(jīng)過月份x的關(guān)系式和細(xì)胞個數(shù)y與分裂次數(shù)x的關(guān)系式,并互相交流;

 、诨貞浿笖(shù)的概念;

 、蹥w納指數(shù)函數(shù)的概念;

 、芊治龀鰧χ笖(shù)函數(shù)底數(shù)討論的必要性以及分類的方法。

  設(shè)計意圖:經(jīng)過生活實例激發(fā)學(xué)生的學(xué)習(xí)動機,掃清由概念不清而造成的知識障礙,培養(yǎng)學(xué)生思維的主動性,為突破難點做好準(zhǔn)備;

  2、啟發(fā)誘導(dǎo)、探求新知

  教師活動:

 、俳o出兩個簡單的指數(shù)函數(shù)并要求學(xué)生畫它們的圖象

 、谠跍(zhǔn)備好的小黑板上規(guī)范地畫出這兩個指數(shù)函數(shù)的圖象

 、郯鍟笖(shù)函數(shù)的性質(zhì)。

  學(xué)生活動:

 、佼嫵鰞蓚簡單的指數(shù)函數(shù)圖象

 、诮涣鳌⒂懻

 、蹥w納出研究函數(shù)性質(zhì)涉及的方面

 、芸偨Y(jié)出指數(shù)函數(shù)的性質(zhì)。

  設(shè)計意圖:讓學(xué)生動手作簡單的指數(shù)函數(shù)的圖象對深刻理解本節(jié)課的資料有著必須的促進作用,在學(xué)生完成基本作圖之后,教師再利用課前已列表、建立坐標(biāo)系的小黑板展示準(zhǔn)確的作圖方法,到達(dá)進一步規(guī)范學(xué)生的作圖習(xí)慣的目的,然后借助“函數(shù)作圖器”用多媒體將指數(shù)函數(shù)的圖象推廣到一般情景,學(xué)生就會很自然的經(jīng)過觀察圖象總結(jié)出指數(shù)函數(shù)的性質(zhì),同時對于底數(shù)的討論也就變得順理成章。

  高中數(shù)學(xué)說課稿 14

  一、教材分析:

  《向量的加法》是《必修》4第二章第二單元中"平面向量的線性運算"的第一節(jié)課。本節(jié)資料有向量加法的平行四邊形法則、三角形法則及應(yīng)用,向量加法的運算律及應(yīng)用,大約需要1課時。向量的加法是向量的線性運算中最基本的一種運算,向量的加法及其幾何意義為后繼學(xué)習(xí)向量的減法運算及其幾何意義、向量的數(shù)乘運算及其幾何意義奠定了基礎(chǔ);其中三角形法則適用于求任意多個向量的和,在空間向量與立體幾何中有很普遍的應(yīng)用。所以本課在"平面向量"及"空間向量"中有很重要的地位。

  二、學(xué)情分析:

  學(xué)生在上節(jié)課中學(xué)習(xí)了向量的定義及表示,相等向量,平行向量等概念,明白向量能夠自由移動,這是學(xué)習(xí)本節(jié)資料的基礎(chǔ)。學(xué)生對數(shù)的運算了如指掌,并且在物理中學(xué)過力的合成、位移的合成等矢量的加法,所以向量的加法可經(jīng)過類比數(shù)的加法、以所學(xué)的物理模型為背景引入,這樣做有利于學(xué)生更好地理解向量加法的意義,準(zhǔn)確把握兩個加法法則的特點。

  三、教學(xué)目的:

  1、經(jīng)過對向量加法的探究,使學(xué)生掌握向量加法的概念,結(jié)合物理學(xué)實際理解向量加法的意義。能正確領(lǐng)會向量加法的平行四邊形法則和三角形法則的幾何意義,并能運用法則作出兩個已知向量的和向量。

  2、在應(yīng)用活動中,理解向量加法滿足交換律和結(jié)合律以及表述兩個運算律的幾何意義。掌握有特殊位置關(guān)系的兩個向量之和,比如共線向量,共起點向量、共終點向量等。

  3、經(jīng)過本節(jié)的學(xué)習(xí),培養(yǎng)學(xué)生類比、遷移、分類、歸納等數(shù)學(xué)方面的能力。

  四、教學(xué)重、難點

  重點:向量的加法法則。探究向量的加法法則并正確應(yīng)用是本課的重點。兩個加法法則各有特點,聯(lián)系緊密,你中有我,我中有你,實質(zhì)相同,可是三角形法則適用范圍更加廣泛,且簡便易行,所以是詳講資料,平行四邊形法則在本課中所占份量略少于三角形法則。

  難點:對三角形法則的理解;方向相反的兩個向量的加法。主要是讓學(xué)生認(rèn)識到三角形法則的實質(zhì)是:將已知向量首尾相接,而不是表示向量的有向線段之間必須構(gòu)成三角形。

  五、教學(xué)方法

  本節(jié)采用以下教學(xué)方法:

  1、類比:由數(shù)的加法運算類比向量的加法運算。

  2、探究:由力的合成引入平行四邊形法則,在法則的運用中觀察圖形得出三角形法則,探求共線向量的加法,發(fā)現(xiàn)三角形法則適用于任意向量相加;經(jīng)過圖形,觀察得出向量加法滿足交換律、結(jié)合律等,這些都體現(xiàn)探究式教學(xué)法的運用。

  3、講解與練習(xí):對兩個法則特點的分析,例題都采取了引導(dǎo)與講解的方法,學(xué)生課堂完成教材中的練習(xí)。

  4、多媒體技術(shù)的運用,能直觀地表現(xiàn)向量的平移,相等向量的意義,更能說清兩個法則的幾何意義及運算律。

  六、數(shù)學(xué)思想的體現(xiàn):

  1、分類的思想:總的來說本課中向量的加法分為不共線向量及共線向量兩種形式,共線向量又分為方向相同與方向相反兩種情形,然后專門對零向量與任意向量相加作了規(guī)定,這樣對任意向量的加法都做了討論,線索清楚。

  2、類比思想:使之與數(shù)的加法進行類比,使學(xué)生對向量的加法不致于太陌生,既有似曾相識的感覺,又能從比較中看出兩者的不一樣,效果較好。

  3、歸納思想:主要體此刻以下三個環(huán)節(jié):

  ①學(xué)完平行四邊形法則和三角形法則后,歸納總結(jié),對不共線向量相加,兩個法則都能夠選用。

  ②由共線向量的加法總結(jié)出三角形法則適用于任意兩個向量的'相加,而三角形法則僅適用于不共線向量相加。

 、蹖ο蛄考臃ǖ慕Y(jié)合律和探討中,又使學(xué)生發(fā)現(xiàn)了三角形法則還適用于任意多個向量的加法。歸納思想在這三個環(huán)節(jié)中的運用,使得學(xué)生對兩個加法法則,尤其是三角形法則的理解,步步深入。

  七、教學(xué)過程:

  1、回顧舊知:本節(jié)要進行向量的平移,且對向量加法分共線與不共線兩種情景,所以要復(fù)習(xí)向量、相等向量、共線向量等概念,這些都是新課學(xué)習(xí)中必要的知識鋪墊。

  2、引入新課:

 。1)平行四邊形法則的引入。

  學(xué)生在物理學(xué)中雖然接觸過位移的合成,可是并沒有構(gòu)成三角形法則的概念;而對平行四邊形法則學(xué)生已學(xué)過,很熟悉。所以我決定由力的合成引入向量加法的平行四邊形法則。平行四邊形法則的特點是起點相同,可是物理中力的合成是在有相同的作用點的條件下合成的,引入到數(shù)學(xué)中向量加法的平行四邊形法則,所給出的圖形也是現(xiàn)成的平行四邊形,而學(xué)生剛學(xué)完相等向量,對相等向量的概念還沒有深刻的認(rèn)識,易產(chǎn)生誤解:表示兩個已知向量的有向線段的起點必須在一起才能用平行四邊形法則,不在一起不能用。這時要經(jīng)過講解例1,使學(xué)生認(rèn)識到能夠經(jīng)過平移向量,使表示兩個向量的有向線段有共同的起點。這一點對理解及運用法則求兩向量的和很重要。

  設(shè)計意圖:本著從學(xué)生最熟悉、離學(xué)生最近的知識經(jīng)驗為接入點,用學(xué)生熟知的方法來解決新的問題——向量的加法,這樣新中有舊,學(xué)生容易理解,也使學(xué)科間的滲透發(fā)揮了作用,加深了學(xué)生對向量加法的平行四邊形法則的"起點相同"這一特點的認(rèn)識,例1的講解使學(xué)生認(rèn)識到當(dāng)表示向量的有向線段的起點不在一起時,須把起點移到一起,至此才能使學(xué)生完成對平行四邊形法則理解真正到位。

  (2)三角形法則的引入。三角形法則沒有按照教材中利用位移的合成引入,而是從前面所講的平行四邊形法則的圖形中直接引入。

  所以這種把兩個向量相加的方法稱為三角形法則。接下來用幻燈片完整展示三角形法則,同時法則的作法敘述、作圖過程對學(xué)生也起到了示例的作用。于是前面的例1還能夠利用三角形法則來做。

  這時,總結(jié)出兩個不共線向量求和時,平行四邊形法則與三角形法則都能夠用。

  設(shè)計意圖:由平行四邊形法則的圖形引入三角形法則,能夠很清楚地使學(xué)生從向何意義上認(rèn)識到兩個法則之間的密切聯(lián)系,理解它們的實質(zhì),并且銜接自然,能夠使學(xué)生比較地得出兩個法則的特點與實質(zhì),并對兩個法則的特點有較深刻的印象。

  (3)共線向量的加法

  方向相同的兩個向量相加,對學(xué)生來說較易完成,"將它們接在一起,取它們的方向及長度之和,作為和向量的方向與長度。"引導(dǎo)學(xué)生分析作法,結(jié)果發(fā)現(xiàn)還是運用了三角形法則:首尾相接,方向由第一個向量的起點指向第二個向量的終點。

  方向相反的兩個向量相加,對學(xué)生來說是個難點,首先從作圖上不明白怎樣做?墒菍W(xué)生學(xué)過有理數(shù)加法中的異號兩數(shù)相加:"異號兩數(shù)相加,用較大的絕對值減去較小的絕對值,符號取絕對值較大的數(shù)的符號。"類比異號兩數(shù)相加,他們會用較長的模減去較短的模,方向取模較長的向量的方向。具體做法由教師引導(dǎo)學(xué)生嘗試運用三角形法則去做,發(fā)現(xiàn)結(jié)論正確。

  反思過程,學(xué)生自然會想到方向相同的兩個向量相加,類似于同號兩數(shù)相加。這說明兩個共線向量相加依然可用三角形法則經(jīng)過以上幾個環(huán)節(jié)的討論,能夠作個簡單的小結(jié):兩個不共線向量相加,可采用平行四邊形法則或三角形法則,而兩個共線向量相加在本課所學(xué)方法中只能用三角形法則,說明三角形法則適用于任意兩個向量相加。

  設(shè)計意圖:經(jīng)過對共線向量加法的探討,拓寬了學(xué)生對三角形法則的認(rèn)識,使得不一樣位置的向量相加都有了依據(jù),并且采用類比的方法,使學(xué)生對共線向量的加法,尤其是方向相反的兩個向量的加法更易于理解,能夠化解難點。

  (4)向量加法的運算律

 、俳粨Q律:交換律是利用平行四邊形法則的圖形,又結(jié)合三角形法則得出,理解起來沒什么困難,再一次強化了學(xué)生對兩個法則特點及實質(zhì)的認(rèn)識。

  ②結(jié)合律:結(jié)合律是經(jīng)過三個向量首尾相接,先加前兩個再與第三個向量相加,和先加后兩個向量再與第一個向量相加所得結(jié)果相同。

  接下來是對應(yīng)的兩個練習(xí),運用交換律與結(jié)合律計算向量的和。

  設(shè)計意圖:運算律的引入給加法運算帶來方便,從后面的練習(xí)中學(xué)生能夠體會到這點。由結(jié)合律還使學(xué)生發(fā)現(xiàn),多個向量相加,同樣能夠運用三角形法則:將所加向量首尾相接,和向量的方向是由第一個向量的起點指向最終一個向量的終點。這樣使學(xué)生明白,三角形法則適用于任意多個向量相加。

  3、小結(jié)

  先由學(xué)生小結(jié),檢查學(xué)生對本課重要知識的認(rèn)識,也給學(xué)生一個概括本節(jié)知識的機會,然后用課件展示小結(jié)資料,使學(xué)生印象更深。

 。1)平行四邊形法則:起點相同,適用于不共線向量的求和。

 。2)三角形法則首尾相接,適用于任意多個向量的求和。

 。3)運算律

  高中數(shù)學(xué)說課稿 15

  一、教材分析:

  《向量的加法》是《必修》4第二章第二單元中“平面向量的線性運算”的第一節(jié)課。本節(jié)內(nèi)容有向量加法的平行四邊形法則、三角形法則及應(yīng)用,向量加法的運算律及應(yīng)用,大約需要1課時。向量的加法是向量的線性運算中最基本的一種運算,向量的加法及其幾何意義為后繼學(xué)習(xí)向量的減法運算及其幾何意義、向量的數(shù)乘運算及其幾何意義奠定了基礎(chǔ);其中三角形法則適用于求任意多個向量的和,在空間向量與立體幾何中有很普遍的應(yīng)用。所以本課在“平面向量”及“空間向量”中有很重要的地位。

  二、學(xué)情分析:

  學(xué)生在上節(jié)課中學(xué)習(xí)了向量的定義及表示,相等向量,平行向量等概念,知道向量可以自由移動,這是學(xué)習(xí)本節(jié)內(nèi)容的基礎(chǔ)。學(xué)生對數(shù)的運算了如指掌,并且在物理中學(xué)過力的合成、位移的合成等矢量的加法,所以向量的加法可通過類比數(shù)的加法、以所學(xué)的物理模型為背景引入,這樣做有利于學(xué)生更好地理解向量加法的意義,準(zhǔn)確把握兩個加法法則的特點。

  三、教學(xué)目的:

  1、通過對向量加法的探究,使學(xué)生掌握向量加法的概念,結(jié)合物理學(xué)實際理解向量加法的意義。能正確領(lǐng)會向量加法的平行四邊形法則和三角形法則的幾何意義,并能運用法則作出兩個已知向量的和向量。

  2、在應(yīng)用活動中,理解向量加法滿足交換律和結(jié)合律以及表述兩個運算律的幾何意義。掌握有特殊位置關(guān)系的兩個向量之和,比如共線向量,共起點向量、共終點向量等。

  3、通過本節(jié)的學(xué)習(xí),培養(yǎng)學(xué)生類比、遷移、分類、歸納等數(shù)學(xué)方面的能力。

  四、教學(xué)重、難點

  重點:向量的加法法則。探究向量的加法法則并正確應(yīng)用是本課的重點。兩個加法法則各有特點,聯(lián)系緊密,你中有我,我中有你,實質(zhì)相同,但是三角形法則適用范圍更加廣泛,且簡便易行,所以是詳講內(nèi)容,平行四邊形法則在本課中所占份量略少于三角形法則。

  難點:對三角形法則的理解;方向相反的兩個向量的加法。主要是讓學(xué)生認(rèn)識到三角形法則的實質(zhì)是:將已知向量首尾相接,而不是表示向量的有向線段之間必須構(gòu)成三角形。

  五、教學(xué)方法

  本節(jié)采用以下教學(xué)方法:

  1、類比:由數(shù)的加法運算類比向量的加法運算。

  2、探究:由力的合成引入平行四邊形法則,在法則的運用中觀察圖形得出三角形法則,探求共線向量的加法,發(fā)現(xiàn)三角形法則適用于任意向量相加;通過圖形,觀察得出向量加法滿足交換律、結(jié)合律等,這些都體現(xiàn)探究式教學(xué)法的運用。

  3、講解與練習(xí):對兩個法則特點的分析,例題都采取了引導(dǎo)與講解的方法,學(xué)生課堂完成教材中的練習(xí)。

  4、多媒體技術(shù)的運用,能直觀地表現(xiàn)向量的平移,相等向量的意義,更能說清兩個法則的幾何意義及運算律。

  六、數(shù)學(xué)思想的體現(xiàn):

  1、分類的思想:總的來說本課中向量的加法分為不共線向量及共線向量兩種形式,共線向量又分為方向相同與方向相反兩種情形,然后專門對零向量與任意向量相加作了規(guī)定,這樣對任意向量的加法都做了討論,線索清楚。

  2、類比思想:使之與數(shù)的加法進行類比,使學(xué)生對向量的加法不致于太陌生,既有似曾相識的感覺,又能從對比中看出兩者的不同,效果較好。

  3、歸納思想:主要體現(xiàn)在以下三個環(huán)節(jié)

 、賹W(xué)完平行四邊形法則和三角形法則后,歸納總結(jié),對不共線向量相加,兩個法則都可以選用。

 、谟晒簿向量的加法總結(jié)出三角形法則適用于任意兩個向量的相加,而三角形法則僅適用于不共線向量相加。

 、蹖ο蛄考臃ǖ慕Y(jié)合律和探討中,又使學(xué)生發(fā)現(xiàn)了三角形法則還適用于任意多個向量的加法。歸納思想在這三個環(huán)節(jié)中的運用,使得學(xué)生對兩個加法法則,尤其是三角形法則的理解,步步深入。

  七、教學(xué)過程:

  1、回顧舊知:本節(jié)要進行向量的平移,且對向量加法分共線與不共線兩種情況,所以要復(fù)習(xí)向量、相等向量、共線向量等概念,這些都是新課學(xué)習(xí)中必要的知識鋪墊。

  2、引入新課:

  (1)平行四邊形法則的引入。

  學(xué)生在物理學(xué)中雖然接觸過位移的合成,但是并沒有形成三角形法則的概念;而對平行四邊形法則學(xué)生已學(xué)過,很熟悉。所以我決定由力的合成引入向量加法的平行四邊形法則。平行四邊形法則的特點是起點相同,但是物理中力的合成是在有相同的作用點的條件下合成的,引入到數(shù)學(xué)中向量加法的'平行四邊形法則,所給出的圖形也是現(xiàn)成的平行四邊形,而學(xué)生剛學(xué)完相等向量,對相等向量的概念還沒有深刻的認(rèn)識,易產(chǎn)生誤解:表示兩個已知向量的有向線段的起點必須在一起才能用平行四邊形法則,不在一起不能用。這時要通過講解例1,使學(xué)生認(rèn)識到可以通過平移向量,使表示兩個向量的有向線段有共同的起點。這一點對理解及運用法則求兩向量的和很重要。

  設(shè)計意圖:本著從學(xué)生最熟悉、離學(xué)生最近的知識經(jīng)驗為接入點,用學(xué)生熟知的方法來解決新的問題——向量的加法,這樣新中有舊,學(xué)生容易接受,也使學(xué)科間的滲透發(fā)揮了作用,加深了學(xué)生對向量加法的平行四邊形法則的“起點相同”這一特點的認(rèn)識,例1的講解使學(xué)生認(rèn)識到當(dāng)表示向量的有向線段的起點不在一起時,須把起點移到一起,至此才能使學(xué)生完成對平行四邊形法則理解真正到位。

 。2)三角形法則的引入。三角形法則沒有按照教材中利用位移的合成引入,而是從前面所講的平行四邊形法則的圖形中直接引入(如圖)。

  所以這種把兩個向量相加的方法稱為三角形法則。接下來用幻燈片完整展示三角形法則,同時法則的作法敘述、作圖過程對學(xué)生也起到了示例的作用。于是前面的例1還可以利用三角形法則來做。

  這時,總結(jié)出兩個不共線向量求和時,平行四邊形法則與三角形法則都可以用。

  設(shè)計意圖:由平行四邊形法則的圖形引入三角形法則,可以很清楚地使學(xué)生從向何意義上認(rèn)識到兩個法則之間的密切聯(lián)系,理解它們的實質(zhì),而且銜接自然,能夠使學(xué)生對比地得出兩個法則的特點與實質(zhì),并對兩個法則的特點有較深刻的印象。

 。3)共線向量的加法

  方向相同的兩個向量相加,對學(xué)生來說較易完成,“將它們接在一起,取它們的方向及長度之和,作為和向量的方向與長度!币龑(dǎo)學(xué)生分析作法,結(jié)果發(fā)現(xiàn)還是運用了三角形法則:首尾相接,方向由第一個向量的起點指向第二個向量的終點。

  方向相反的兩個向量相加,對學(xué)生來說是個難點,首先從作圖上不知道怎樣做。但是學(xué)生學(xué)過有理數(shù)加法中的異號兩數(shù)相加:“異號兩數(shù)相加,用較大的絕對值減去較小的絕對值,符號取絕對值較大的數(shù)的符號!鳖惐犬愄杻蓴(shù)相加,他們會用較長的模減去較短的模,方向取模較長的向量的方向。具體做法由老師引導(dǎo)學(xué)生嘗試運用三角形法則去做,發(fā)現(xiàn)結(jié)論正確。

  反思過程,學(xué)生自然會想到方向相同的兩個向量相加,類似于同號兩數(shù)相加。這說明兩個共線向量相加依然可用三角形法則 通過以上幾個環(huán)節(jié)的討論,可以作個簡單的小結(jié):兩個不共線向量相加,可采用平行四邊形法則或三角形法則,而兩個共線向量相加在本課所學(xué)方法中只能用三角形法則,說明三角形法則適用于任意兩個向量相加。

  設(shè)計意圖:通過對共線向量加法的探討,拓寬了學(xué)生對三角形法則的認(rèn)識,使得不同位置的向量相加都有了依據(jù),并且采用類比的方法,使學(xué)生對共線向量的加法,尤其是方向相反的兩個向量的加法更易于理解,可以化解難點。

 。4)向量加法的運算律

  ①交換律:交換律是利用平行四邊形法則的圖形,又結(jié)合三角

  形法則得出,理解起來沒什么困難,再一次強化了學(xué)生對兩個法則特點及實質(zhì)的認(rèn)識。

 、诮Y(jié)合律:結(jié)合律是通過三個向量首尾相接,先加前兩個再與第三個向量相加,和先加后兩個向量再與第一個向量相加所得結(jié)果相同。

  接下來是對應(yīng)的兩個練習(xí),運用交換律與結(jié)合律計算向量的和。

  設(shè)計意圖:運算律的引入給加法運算帶來方便,從后面的練習(xí)中學(xué)生能夠體會到這點。由結(jié)合律還使學(xué)生發(fā)現(xiàn),多個向量相加,同樣可以運用三角形法則:將所加向量首尾相接,和向量的方向是由第一個向量的起點指向最后一個向量的終點。這樣使學(xué)生明白,三角形法則適用于任意多個向量相加。

  3、小結(jié)

  先由學(xué)生小結(jié),檢查學(xué)生對本課重要知識的認(rèn)識,也給學(xué)生一個概括本節(jié)知識的機會,然后用課件展示小結(jié)內(nèi)容,使學(xué)生印象更深。

  (1)平行四邊形法則:起點相同,適用于不共線向量的求和。

 。2)三角形法則首尾相接,適用于任意多個向量的求和。

  (3)運算律

  高中數(shù)學(xué)說課稿 16

  一、教材分析

  1.教材所處的地位和作用

  在學(xué)習(xí)了隨機事件、頻率、概率的意義和性質(zhì)及用概率解決實際問題和古典概型的概念后,進一步體會用頻率估計概率思想。它是對古典概型問題的一種模擬,也是對古典概型知識的深化,同時它也是為了更廣泛、高效地解決一些實際問題、體現(xiàn)信息技術(shù)的優(yōu)越性而新增的內(nèi)容。

  2.教學(xué)的重點和難點

  重點:正確理解隨機數(shù)的概念,并能應(yīng)用計算器或計算機產(chǎn)生隨機數(shù)。

  難點:建立概率模型,應(yīng)用計算器或計算機來模擬試驗的方法近似計算概率,解決一些較簡單的現(xiàn)實問題。

  二、教學(xué)目標(biāo)分析

  1、知識與技能:

  (1)了解隨機數(shù)的概念;

  (2)利用計算機產(chǎn)生隨機數(shù),并能直接統(tǒng)計出頻數(shù)與頻率。

  2、過程與方法:

  (1)通過對現(xiàn)實生活中具體的概率問題的探究,感知應(yīng)用數(shù)學(xué)解決問題的方法,體會數(shù)學(xué)知識與現(xiàn)實世界的聯(lián)系,培養(yǎng)邏輯推理能力;

  (2)通過模擬試驗,感知應(yīng)用數(shù)字解決問題的方法,自覺養(yǎng)成動手、動腦的良好習(xí)慣

  3、情感態(tài)度與價值觀:

  通過數(shù)學(xué)與探究活動,體會理論來源于實踐并應(yīng)用于實踐的辯證唯物主義觀點

  三、教學(xué)方法與手段分析

  1、教學(xué)方法:本節(jié)課我主要采用啟發(fā)探究式的教學(xué)模式。

  2、教學(xué)手段:利用多媒體技術(shù)優(yōu)化課堂教學(xué)

  四、教學(xué)過程分析

 、鍎(chuàng)設(shè)情境、引入新課

  情境1:假設(shè)你作為一名食品衛(wèi)生工作人員,要對某超市內(nèi)的80袋小包裝餅干中抽取10袋進行衛(wèi)生達(dá)標(biāo)檢驗,你打算如何操作?

  預(yù)設(shè)學(xué)生回答:

  ⑴采用簡單隨機抽樣方法(抽簽法)

 、撇捎煤唵坞S機抽樣方法(隨機數(shù)表法)

  教師總結(jié)得出:隨機數(shù)就是在一定范圍內(nèi)隨機產(chǎn)生的數(shù),并且得到這個范圍內(nèi)每一數(shù)的機會一樣。(引入課題)

  「設(shè)計意圖」

  (1)回憶統(tǒng)計知識中利用隨機抽樣方法如抽簽法、隨機數(shù)表法等進行抽樣的步驟和特征;

  (2)從具體試驗中了解隨機數(shù)的含義。

  情境2:在拋硬幣和擲骰子的試驗中,是用頻率估計概率。假如現(xiàn)在要作10000次試驗,你打算怎么辦?大家可能覺得這樣做試驗花費時間太多了,有沒有其他方法可以代替試驗?zāi)?

  「設(shè)計意圖」當(dāng)需要隨機數(shù)的量很大時,用手工試驗產(chǎn)生隨機數(shù)速度太慢,從而說明利用現(xiàn)代信息技術(shù)的重要性,體現(xiàn)利用計算器或計算機產(chǎn)生隨機數(shù)的必要性。

 、娌僮鲗嵺`、了解新知

  教師:向?qū)W生介紹計算器的操作,讓他們了解隨機函數(shù)的原理?墒孪染幹茙讉小問題,在課堂上帶著學(xué)生用計算器(科學(xué)計算器或圖形計算器)操作一遍,讓學(xué)生熟悉如何用計算器產(chǎn)生隨機數(shù)。

  「設(shè)計意圖」通過操作熟悉計算器操作流程,在明白原理后,通過讓學(xué)生自己按照規(guī)則操作,熟悉計算器產(chǎn)生隨機數(shù)的操作流程,了解隨機數(shù)。

  問題1:拋一枚質(zhì)地均勻的硬幣出現(xiàn)正面向上的概率是50,你能設(shè)計一種利用計算器模擬擲硬幣的試驗來驗證這個結(jié)論嗎?

  思考:隨著模擬次數(shù)的不同,結(jié)果是否有區(qū)別,為什么?

  「設(shè)計意圖」

  ⑴設(shè)計概率模型是解決概率問題的難點,也是能解決概率問題的關(guān)鍵,是數(shù)學(xué)建模的第一步。⑵拋硬幣是最熟悉、最簡單的問題,很自然會想到把正面向上、反面向上這兩個基能力件用兩個隨機數(shù)來代替。(題目讓學(xué)生通過熟悉50想到用隨機數(shù)0,1來模擬,為后面問題4每天下雨的'概率為40的概率建模作第一次小鋪墊。)

  ⑶熟悉利用計算器模擬試驗的操作流程,為解決后面例題模擬下雨作好鋪墊。

  問題2:

  (1)剛才我們利用了計算器來產(chǎn)生隨機數(shù),我們知道計算機有許多軟件有統(tǒng)計功能,你知道哪些軟件具有隨機函數(shù)這個功能?

  (2)你會利用統(tǒng)計軟件Excel來產(chǎn)生隨機數(shù)嗎?你能設(shè)計一種利用計算機模擬擲硬幣的試驗嗎?

  「設(shè)計意圖」

 、帕私庥性S多統(tǒng)計軟件都有隨機函數(shù)這個功能,并與前面第一章所學(xué)的用程序語言編寫程序相聯(lián)系;⑵Excel是學(xué)生比較熟悉的統(tǒng)計軟件,也可讓學(xué)生回顧初中用Excel畫統(tǒng)計圖的一些功能和知識,其次讓學(xué)生掌握多種隨機模擬試驗方法。

  問題3:

  (1)你能在Excel軟件中畫試驗次數(shù)從1到100次的頻率分布折線圖嗎?

  (2)當(dāng)試驗次數(shù)為1000,1500時,你能說說出現(xiàn)正面向上的頻率有些什么變化?

  「設(shè)計意圖」

 、艖(yīng)用隨機模擬方法估計古典概型中隨機事件的概率值;

  ⑵體會頻率的隨機性與相對穩(wěn)定性,經(jīng)歷用計算機產(chǎn)生數(shù)據(jù),整理數(shù)據(jù),分析數(shù)據(jù),畫統(tǒng)計圖的全過程,使學(xué)生相信統(tǒng)計結(jié)果的真實性、隨機性及規(guī)律性。

 、缰v練結(jié)合、鞏固新知

  問題4:天氣預(yù)報說,在今后的三天中,每一天下雨的概率均為40,這三天中恰有兩天下雨的概率是多少?

  問1:能用古典概型的計算公式求解嗎?

  你能說明一下這為什么不是古典概型嗎?

  問2:你如何模擬每一天下雨的概率為40?

  「設(shè)計意圖」

  ⑴問題分層提出,降低本題難度。如何模擬每一天下雨的概率40是解決這道題的關(guān)鍵,是隨機模擬方法應(yīng)用的重點,也是難點之一。

  ⑵鞏固用隨機模擬方法估計未知量的基本思想,明確利用隨機模擬方法也可解決不是古典概型而比較復(fù)雜的概率應(yīng)用題。

  歸納步驟:第一步,設(shè)計概率模型;

  第二步,進行模擬試驗;

  方法一:(隨機模擬方法--計算器模擬)利用計算器隨機函數(shù);

  方法二:(隨機模擬方法--計算機模擬)

  第三步,統(tǒng)計試驗的結(jié)果。

  課堂檢測將一枚質(zhì)地均勻的硬幣連擲三次,出現(xiàn)"2個正面朝上、1個反面朝上"和"1個正面朝上、2個反面朝上"的概率各是多少?并用隨機模擬的方法做100次試驗,計算各自的頻數(shù)。

  「設(shè)計意圖」通過練習(xí),進一步鞏固學(xué)生對本節(jié)課知識的掌握。

 、铓w納小結(jié)

  (1)你能歸納利用隨機模擬方法估計概率的步驟嗎?

  (2)你能體會到隨機模擬的優(yōu)勢嗎?請舉例說說。

  「設(shè)計意圖」⑴通過問題的思考和解決,使學(xué)生理解模擬方法的優(yōu)點,并充分利用信息技術(shù)的優(yōu)勢;⑵是對知識的進一步理解與思考,又是對本節(jié)內(nèi)容的回顧與總結(jié)。

 、椴贾镁毩(xí):

  課本練習(xí)3、4

  「設(shè)計意圖」課后作業(yè)的布置是為了檢驗學(xué)生對本節(jié)課內(nèi)容的理解和運用程度,并促使學(xué)生進一步鞏固和掌握所學(xué)內(nèi)容。

  [內(nèi)容結(jié)束]

  高中數(shù)學(xué)說課稿 17

  一、說教材

  1.從在教材中的地位與作用來看

  《等比數(shù)列的前n項和》是數(shù)列這一章中的一個重要內(nèi)容,它不僅在現(xiàn)實生活中有著廣泛的實際應(yīng)用,如儲蓄、分期付款的有關(guān)計算等等,而且公式推導(dǎo)過程中所滲透的類比、化歸、分類討論、整體變換和方程等思想方法,都是學(xué)生今后學(xué)習(xí)和工作中必備的數(shù)學(xué)素養(yǎng).

  2.從學(xué)生認(rèn)知角度看

  從學(xué)生的思維特點看,很容易把本節(jié)內(nèi)容與等差數(shù)列前n項和從公式的形成、特點等方面進行類比,這是積極因素,應(yīng)因勢利導(dǎo).不利因素是:本節(jié)公式的推導(dǎo)與等差數(shù)列前n項和公式的推導(dǎo)有著本質(zhì)的不同,這對學(xué)生的思維是一個突破,另外,對于q=1這一特殊情況,學(xué)生往往容易忽視,尤其是在后面使用的過程中容易出錯.

  3.學(xué)情分析

  教學(xué)對象是剛進入高中的學(xué)生,雖然具有一定的分析問題和解決問題的能力,邏輯思維能力也初步形成,但由于年齡的原因,思維盡管活躍、敏捷,卻缺乏冷靜、深刻,因此片面、不嚴(yán)謹(jǐn).

  4.重點、難點

  教學(xué)重點:公式的推導(dǎo)、公式的特點和公式的運用.

  教學(xué)難點:公式的推導(dǎo)方法和公式的靈活運用.

  公式推導(dǎo)所使用的“錯位相減法”是高中數(shù)學(xué)數(shù)列求和方法中最常用的方法之一,它蘊含了重要的數(shù)學(xué)思想,所以既是重點也是難點.

  二、說目標(biāo)

  知識與技能目標(biāo):

  理解并掌握等比數(shù)列前n項和公式的推導(dǎo)過程、公式的特點,在此基礎(chǔ)上能初步應(yīng)用公式解決與之有關(guān)的問題.

  過程與方法目標(biāo):

  通過對公式推導(dǎo)方法的探索與發(fā)現(xiàn),向?qū)W生滲透特殊到一般、類比與轉(zhuǎn)化、分類討論等數(shù)學(xué)思想,培養(yǎng)學(xué)生觀察、比較、抽象、概括等邏輯思維能力和逆向思維的能力.

  情感與態(tài)度價值觀:

  通過對公式推導(dǎo)方法的探索與發(fā)現(xiàn),優(yōu)化學(xué)生的思維品質(zhì),滲透事物之間等價轉(zhuǎn)化和理論聯(lián)系實際的辯證唯物主義觀點.

  三、說過程

  學(xué)生是認(rèn)知的主體,設(shè)計教學(xué)過程必須遵循學(xué)生的認(rèn)知規(guī)律,盡可能地讓學(xué)生去經(jīng)歷知識的形成與發(fā)展過程,結(jié)合本節(jié)課的特點,我設(shè)計了如下的教學(xué)過程:

  1.創(chuàng)設(shè)情境,提出問題

  在古印度,有個名叫西薩的人,發(fā)明了國際象棋,當(dāng)時的印度國王大為贊賞,對他說:我可以滿足你的任何要求.西薩說:請給我棋盤的64個方格上,第一格放1粒小麥,第二格放2粒,第三格放4粒,往后每一格都是前一格的兩倍,直至第64格.國王令宮廷數(shù)學(xué)家計算,結(jié)果出來后,國王大吃一驚.為什么呢?

  設(shè)計意圖:設(shè)計這個情境目的是在引入課題的同時激發(fā)學(xué)生的興趣,調(diào)動學(xué)習(xí)的積極性.故事內(nèi)容緊扣本節(jié)課的主題與重點.

  此時我問:同學(xué)們,你們知道西薩要的是多少粒小麥嗎?引導(dǎo)學(xué)生寫出麥?倲(shù).帶著這樣的問題,學(xué)生會動手算了起來,他們想到用計算器依次算出各項的值,然后再求和.這時我對他們的這種思路給予肯定.

  設(shè)計意圖:在實際教學(xué)中,由于受課堂時間限制,教師舍不得花時間讓學(xué)生去做所謂的“無用功”,急急忙忙地拋出“錯位相減法”,這樣做有悖學(xué)生的認(rèn)知規(guī)律:求和就想到相加,這是合乎邏輯順理成章的事,教師為什么不相加而馬上相減呢?在整個教學(xué)關(guān)鍵處學(xué)生難以轉(zhuǎn)過彎來,因而在教學(xué)中應(yīng)舍得花時間營造知識形成過程的氛圍,突破學(xué)生學(xué)習(xí)的障礙.同時,形成繁難的情境激起了學(xué)生的求知欲,迫使學(xué)生急于尋求解決問題的.新方法,為后面的教學(xué)埋下伏筆.

  2.師生互動,探究問題

  在肯定他們的思路后,我接著問:1,2,22,…,263是什么數(shù)列?有何特征?應(yīng)歸結(jié)為什么數(shù)學(xué)問題呢?

  探討1:,記為(1)式,注意觀察每一項的特征,有何聯(lián)系?(學(xué)生會發(fā)現(xiàn),后一項都是前一項的2倍)

  探討2:如果我們把每一項都乘以2,就變成了它的后一項,(1)式兩邊同乘以2則有,記為(2)式.比較(1)(2)兩式,你有什么發(fā)現(xiàn)?

  設(shè)計意圖:留出時間讓學(xué)生充分地比較,等比數(shù)列前n項和的公式推導(dǎo)關(guān)鍵是變“加”為“減”,在教師看來這是“天經(jīng)地義”的,但在學(xué)生看來卻是“不可思議”的,因此教學(xué)中應(yīng)著力在這兒做文章,從而抓住培養(yǎng)學(xué)生的辯證思維能力的良好契機.

  經(jīng)過比較、研究,學(xué)生發(fā)現(xiàn):(1)、(2)兩式有許多相同的項,把兩式相減,相同的項就消去了,得到:.老師指出:這就是錯位相減法,并要求學(xué)生縱觀全過程,反思:為什么(1)式兩邊要同乘以2呢?

  設(shè)計意圖:經(jīng)過繁難的計算之苦后,突然發(fā)現(xiàn)上述解法,不禁驚呼:真是太簡潔了!讓學(xué)生在探索過程中,充分感受到成功的情感體驗,從而增強學(xué)習(xí)數(shù)學(xué)的興趣和學(xué)好數(shù)學(xué)的信心.

  3.類比聯(lián)想,解決問題

  這時我再順勢引導(dǎo)學(xué)生將結(jié)論一般化,這里,讓學(xué)生自主完成,并喊一名學(xué)生上黑板,然后對個別學(xué)生進行指導(dǎo).

  設(shè)計意圖:在教師的指導(dǎo)下,讓學(xué)生從特殊到一般,從已知到未知,步步深入,讓學(xué)生自己探究公式,從而體驗到學(xué)習(xí)的愉快和成就感.

  對不對?這里的q能不能等于1?等比數(shù)列中的公比能不能為1?q=1時是什么數(shù)列?此時sn=?(這里引導(dǎo)學(xué)生對q進行分類討論,得出公式,同時為后面的例題教學(xué)打下基礎(chǔ).)

  再次追問:結(jié)合等比數(shù)列的通項公式an=a1qn-1,如何把sn用a1、an、q表示出來?(引導(dǎo)學(xué)生得出公式的另一形式)

  設(shè)計意圖:通過反問精講,一方面使學(xué)生加深對知識的認(rèn)識,完善知識結(jié)構(gòu),另一方面使學(xué)生由簡單地模仿和接受,變?yōu)閷χR的主動認(rèn)識,從而進一步提高分析、類比和綜合的能力.這一環(huán)節(jié)非常重要,盡管時間有時比較少,甚至僅僅幾句話,然而卻有畫龍點睛之妙用.

  4.討論交流,延伸拓展

  高中數(shù)學(xué)說課稿 18

尊敬的老師們:

  大家好!

  很高興參加這次說課活動。這對我來說也是一次難得的學(xué)習(xí)和鍛煉的機會,感謝各位老師在百忙之中來此予以指導(dǎo)。希望各位評委和老師們對我的說課內(nèi)容提出寶貴意見。

  我說課的內(nèi)容是<平面向量>的教學(xué),所用的教材是人民教育出版社出版的全日制普通高級中學(xué)教科書(試驗修訂本—必修)<數(shù)學(xué)>第一冊下,教學(xué)內(nèi)容為第96頁至98頁第五章第一節(jié)。本校是浙江省一級重點中學(xué),學(xué)生基礎(chǔ)相對較好。我在進行教學(xué)設(shè)計時,也充分考慮到了這一點。

  下面我從教材分析,教學(xué)目標(biāo)的確定,教學(xué)方法的選擇和教學(xué)過程的設(shè)計四個方面來匯報我對這節(jié)課的教學(xué)設(shè)想。

  一、說教材

 。1)地位和作用

  向量是近代數(shù)學(xué)中重要和基本的概念之一,有著深刻的幾何背景,是解決幾何問題的有力工具。向量概念引入后,全等和平行(平移),相似,垂直,勾股定理等就可以轉(zhuǎn)化為向量的加(減)法,數(shù)乘向量,數(shù)量積運算(運算率),從而把圖形的基本性質(zhì)轉(zhuǎn)化為向量的運算體系。向量是溝通代數(shù),幾何與三角函數(shù)的一種工具,有著極其豐富的實際背景,在數(shù)學(xué)和物理學(xué)科中具有廣泛的應(yīng)用。

  平面向量的基本概念是在學(xué)生了解了物理學(xué)中的有關(guān)力,位移等矢量的概念的基礎(chǔ)上進一步對向量的深入學(xué)習(xí)。為學(xué)習(xí)向量的知識體系奠定了知識和方法基礎(chǔ)。

 。2)教學(xué)結(jié)構(gòu)的調(diào)整

  課本在這一部分內(nèi)容的教學(xué)為一課時,首先從小船航行的距離和方向兩個要素出發(fā),抽象出向量的概念,并重點說明了向量與數(shù)量的區(qū)別。然后介紹了向量的幾何表示,向量的長度,零向量,單位向量,平行向量,共線向量,相等向量等基本概念。為使學(xué)生更好地掌握這些基本概念,同時深化其認(rèn)知過程和探究過程。在教學(xué)中我將教學(xué)的順序做如下的調(diào)整:將本節(jié)教學(xué)中認(rèn)知過程的教學(xué)內(nèi)容適當(dāng)集中,以突出這節(jié)課的主題;例題,習(xí)題部分主要由學(xué)生依照概念自行分析,獨立完成。

 。3)重點,難點,關(guān)鍵

  由于本節(jié)課是本章內(nèi)容的第一節(jié)課,是學(xué)生學(xué)習(xí)本章的基礎(chǔ)。為了本章后面知識的學(xué)習(xí),首先必須掌握向量的概念,要抓住向量的本質(zhì):大小與方向。所以向量,相等向量的概念,向量的幾何表示是這節(jié)課的重點。本節(jié)課是為高一后半學(xué)期學(xué)生設(shè)計的,盡管此時的學(xué)生已經(jīng)有了一定的學(xué)習(xí)方法和習(xí)慣,但根據(jù)以往的教學(xué)經(jīng)驗,多數(shù)學(xué)生對向量的認(rèn)識還比較單一,僅僅考慮其大小,忽略其方向,這對學(xué)生的理解能力要求比較高,所以我認(rèn)為向量概念也是這節(jié)課的難點。而解決這一難點的關(guān)鍵是多用復(fù)雜的幾何圖形中相等的有向線段讓學(xué)生進行辨認(rèn),加深對向量的理解。

  二、說教學(xué)目標(biāo)的確定

  根據(jù)本課教材的特點,新大綱對本節(jié)課的教學(xué)要求,學(xué)生身心發(fā)展的合理需要,我從三個方面確定了以下教學(xué)目標(biāo):

  (1)基礎(chǔ)知識目標(biāo):理解向量,零向量,單位向量,共線向量,平行向量,相等向量的概念,會用字母表示向量,能讀寫已知圖中的向量。會根據(jù)圖形判定向量是否平行,共線,相等。

  (2)能力訓(xùn)練目標(biāo):培養(yǎng)學(xué)生觀察、歸納、類比、聯(lián)想等發(fā)現(xiàn)規(guī)律的一般方法,培養(yǎng)學(xué)生觀察問題,分析問題,解決問題的能力。

 。3)情感目標(biāo):讓學(xué)生在民主、和諧的共同活動中感受學(xué)習(xí)的樂趣。

  三、說教學(xué)方法的選擇

 、窠虒W(xué)方法

  本節(jié)課我采用了”啟發(fā)探究式的教學(xué)方法,根據(jù)本課教材的特點和學(xué)生的實際情況在教學(xué)中突出以下兩點:

 。1)由教材的特點確立類比思維為教學(xué)的主線。

  從教材內(nèi)容看平面向量無論從形式還是內(nèi)容都與物理學(xué)中的有向線段,矢量的概念類似。因此在教學(xué)中運用類比作為思維的主線進行教學(xué)。讓學(xué)生充分體會數(shù)學(xué)知識與其他學(xué)科之間的聯(lián)系以及發(fā)生與發(fā)展的過程。

 。2)由學(xué)生的特點確立自主探索式的學(xué)習(xí)方法

  通常學(xué)生對于概念課學(xué)起來很枯燥,不感興趣,因此要考慮學(xué)生的情感需要,找一些學(xué)生感興趣的題材來激發(fā)學(xué)生的學(xué)習(xí)興趣,另外,學(xué)生都有表現(xiàn)自己的欲望,希望得到老師和其他同學(xué)的認(rèn)可,要多表揚,多肯定來激勵他們的學(xué)習(xí)熱情?紤]到我校學(xué)生的基礎(chǔ)較好,思維較為活躍,對自主探索式的.學(xué)習(xí)方法也有一定的認(rèn)識,所以在教學(xué)中我通過創(chuàng)設(shè)問題情境,啟發(fā)引導(dǎo)學(xué)生運用科學(xué)的思維方法進行自主探究。將學(xué)生的獨立思考,自主探究,交流討論等探索活動貫穿于課堂教學(xué)的全過程,突出學(xué)生的主體作用。

  Ⅱ教學(xué)手段

  本節(jié)課中,除使用常規(guī)的教學(xué)手段外,我還使用了多媒體投影儀和計算機來輔助教學(xué)。多媒體投影為師生的交流和討論提供了平臺;計算機演示的作圖過程則有助于滲透數(shù)形結(jié)合思想,更易于對概念的理解和難點的突破。

  四教學(xué)過程的設(shè)計

 、裰R引入階段———提出學(xué)習(xí)課題,明確學(xué)習(xí)目標(biāo)

 。1)創(chuàng)設(shè)情境——引入概念

  數(shù)學(xué)學(xué)習(xí)應(yīng)該與學(xué)生的生活融合起來,從學(xué)生的生活經(jīng)驗和已有的知識背景出發(fā),讓他們在生活中去發(fā)現(xiàn)數(shù)學(xué)、探究數(shù)學(xué)、認(rèn)識并掌握數(shù)學(xué)。

  由生活中具體的向量的實例引入:大海中船只的航線,中國象棋中”馬”,”象”的走法等。這些符合高中學(xué)生思維活躍,想象力豐富的特點,有利于激發(fā)學(xué)生的學(xué)習(xí)興趣。

  (2)觀察歸納——形成概念

  由實例得出有向線段的概念,有向線段的三個要素:起點,方向,長度。明確知道了有向線段的起點,方向和長度,它的終點就唯一確定。再有目的的進行設(shè)計,引導(dǎo)學(xué)生概括總結(jié)出本課新的知識點:向量的概念及其幾何表示。

 。3)討論研究——深化概念

  在得到概念后進行歸納,深化,之后向?qū)W生提出以下三個問題:

  ①向量的要素是什么?

  ②向量之間能否比較大?

 、巯蛄颗c數(shù)量的區(qū)別是什么?

  同時指出這就是本節(jié)課我們要研究和學(xué)習(xí)的主題。

 、蛑R探索階段———探索平面向量的平行向量。相等向量等概念

 。1)總結(jié)反思——提高認(rèn)識

  方向相同或相反的非零向量叫平行向量,也即共線向量,并且規(guī)定0與任一向量平行.長度相等且方向相同的向量叫相等向量,規(guī)定零向量與零向量相等.平行向量不一定相等,但相等向量一定是平行向量,即向量平行是向量相等的必要條件。

 。2)即時訓(xùn)練—鞏固新知

  為了使學(xué)生達(dá)到對知識的深化理解,從而達(dá)到鞏固提高的效果,我特地設(shè)計了一組即時訓(xùn)練題,通過學(xué)生的觀察嘗試,討論研究,教師引導(dǎo)來鞏固新知識。

 。劬毩(xí)1]判斷下列命題是否正確,若不正確,請簡述理由.

  ①向量與是共線向量,則A、B、C、D四點必在一直線上;

  ②單位向量都相等;

  ③任一向量與它的相反向量不相等;

  ④四邊形ABCD是平行四邊形的充要條件是=;

 、菽0是一個向量方向不確定的充要條件;

  ⑥共線的向量,若起點不同,則終點一定不同.

 。劬毩(xí)2]下列命題正確的是( )

  A.a(chǎn)與b共線,b與c共線,則a與c也共線

  B.任意兩個相等的非零向量的始點與終點是一平行四邊形的四頂點

  C.向量a與b不共線,則a與b都是非零向量

  D.有相同起點的兩個非零向量不平行

 、笾R應(yīng)用階段————共線向量,相等向量等概念的初步應(yīng)用

  在本階段的教學(xué)中,我采用的是課本上一道典型的例題:在一個復(fù)雜圖形中觀察,辨認(rèn)平行,相等的有向線段。選用本題的目的是讓學(xué)生進行獨立思考,自主探究,交流討論等探索活動,加深對概念的理解和對難點的突破。

  例如圖所示,設(shè)O是正六邊形ABCDEF的中心,分別寫出圖中與向量相等的向量。(同時思考:向量與相等么?向量與相等么?)

  具體教學(xué)安排如下:

  (1)分析解決問題

  先引導(dǎo)學(xué)生分析解決問題。包括向量的概念,:向量相等的概念。抓住相等向量概念的實質(zhì):兩個向量只有當(dāng)它們的模相等,同時方向又相同時,才能稱它們相等。進而進行正確的辨認(rèn),直至最終解決問題。

  (2)歸納解題方法

  主要引導(dǎo)學(xué)生歸納以下兩個問題:①零向量的方向是任意的,它只與零向量相

  等;②兩個向量只要它們的模相等,方向相同就是相等向量。一個向量只要不改變它的大小和方向,是可以任意平行移動的,既向量是自由的。

 、魧W(xué)習(xí),小結(jié)階段———歸納知識方法,布置課后作業(yè)

  本階段通過學(xué)習(xí)小結(jié)進行課堂教學(xué)的反饋,組織和指導(dǎo)學(xué)生歸納知識,技能,方法的一般規(guī)律,為后續(xù)學(xué)習(xí)打好基礎(chǔ)。

  具體的教學(xué)安排如下:

  (1)知識,方法小結(jié)在知識層面上我首先引導(dǎo)學(xué)生回顧本節(jié)課的主要內(nèi)容,提醒學(xué)生要抓住向量的本質(zhì):大小與方向,對它們進行類比,加深對每個概念的理解。

  在方法層面上我將帶領(lǐng)學(xué)生回顧探索過程中用到的思維方法和數(shù)學(xué)方法如:

  類比,數(shù)形結(jié)合,等價轉(zhuǎn)化等進行強調(diào)。

 。2)布置課后作業(yè)

  閱讀教材96至97頁內(nèi)容,整理課堂筆記,習(xí)題5.1第1,2,3題。

  高中數(shù)學(xué)說課稿 19

  一、說設(shè)計理念

  《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出要讓學(xué)生感受生活中處處有數(shù)學(xué),用數(shù)學(xué)知識解決生活中的實際問題。

  基于這一理念,我在教學(xué)過程中力求聯(lián)系學(xué)生生活實際和已有的知識經(jīng)驗,從學(xué)生感興趣的素材,設(shè)計新穎的導(dǎo)入與例題教學(xué),給數(shù)學(xué)課富予新的生命力。課堂中力求構(gòu)建一種自主探究、和諧合作的教學(xué)氛圍,讓學(xué)生經(jīng)歷知識的探究過程,培養(yǎng)學(xué)生感受生活中的數(shù)學(xué)和用數(shù)學(xué)知識解決生活問題的能力,體驗數(shù)學(xué)的應(yīng)用價值。

  二、教材分析:

 。ㄒ唬┙滩牡牡匚缓妥饔

  有關(guān)統(tǒng)計圖的認(rèn)識,小學(xué)階段主要認(rèn)識條形統(tǒng)計圖、折線統(tǒng)計圖和扇形統(tǒng)計圖。考慮到扇形統(tǒng)計圖在日常生活中的廣泛應(yīng)用,《標(biāo)準(zhǔn)》把它作為必學(xué)內(nèi)容安排在本單元。本單元是在前面學(xué)習(xí)了條形統(tǒng)計圖和折線統(tǒng)計圖的特點和作用的基礎(chǔ)上進行教學(xué)的。主要通過熟悉的事例使學(xué)生體會到扇形統(tǒng)計圖的實用價值。

 。ǘ┙虒W(xué)目標(biāo)

  1、聯(lián)系生活情境了解扇形統(tǒng)計圖的特點和作用

  2、能讀懂扇形統(tǒng)計圖,從中獲取有效的信息。

  3、讓學(xué)生在觀察、比較、討論和交流中體會扇形統(tǒng)計圖反映的是整體和部分的關(guān)系。

 。ㄈ┙虒W(xué)重點:

  1、能讀懂扇形統(tǒng)計圖,理解扇形統(tǒng)計圖的特點和作用,并能從中獲取有效信息。

  2、認(rèn)識折線統(tǒng)計圖,了解折線統(tǒng)計圖的特點。

  (四)教學(xué)難點:

  1、能從扇形統(tǒng)計圖中獲得有用信息,并做出合理推斷。

  2、能根據(jù)統(tǒng)計圖和數(shù)據(jù)進行數(shù)據(jù)變化趨勢的分析。

  二、學(xué)情分析

  本單元的`教學(xué)是在學(xué)生已有統(tǒng)計經(jīng)驗的基礎(chǔ)上,學(xué)習(xí)新知的。六年級的學(xué)生已經(jīng)學(xué)習(xí)了條形統(tǒng)計圖和折線統(tǒng)計圖,知道他們的特點,并具有一定的概括、分析能力,在此基礎(chǔ)上,通過新舊知識對比,自然生成新知識點。

  三、設(shè)計理念和教法分析

  1、本堂課力爭做到由“關(guān)注知識”轉(zhuǎn)向“關(guān)注學(xué)生”,由“傳授知識”轉(zhuǎn)向“引導(dǎo)探索”,“教師是組織者、領(lǐng)導(dǎo)者。”將課堂設(shè)置問題給學(xué)生,讓學(xué)生自己獲取信息、分析信息,自主探索、合作交流,參與知識的構(gòu)建。

  2、運用探究法。探究學(xué)習(xí)的內(nèi)容以問題的形式出現(xiàn)在教師的引導(dǎo)下,學(xué)生自主探究,讓學(xué)生在課堂上多活動、多思考,自主構(gòu)建知識體系。引導(dǎo)學(xué)生獲取信息并合作交流。

  四、說學(xué)法

  《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出有效的數(shù)學(xué)學(xué)習(xí)不能單純的依賴模仿和記憶,動手操作、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式。教學(xué)時,我通過學(xué)生感興趣的話題引入,引導(dǎo)學(xué)生關(guān)注身邊的數(shù)學(xué),使學(xué)生體會到觀察、概括、想象、遷移等數(shù)學(xué)學(xué)習(xí)方法,在師生互動中讓每個學(xué)生都動口,動手,動腦。培養(yǎng)學(xué)生學(xué)習(xí)的主動性和積極性。

  五、說教學(xué)程序

  本課分成創(chuàng)設(shè)情境,感知特點——分析數(shù)據(jù),理解特征——嘗試制圖,看圖分析——實踐應(yīng)用,全課總結(jié)四環(huán)節(jié)。

  六、說教學(xué)過程

 。ㄒ唬⿵(fù)習(xí)引新

  1、復(fù)習(xí)舊知

  提問:我們學(xué)習(xí)過哪些統(tǒng)計方法?其中條形統(tǒng)計圖和折線統(tǒng)計圖各有什么特點?

  2、引入新課

 。ǘ┳灾魈剿,學(xué)習(xí)新知

  新知識教學(xué)分二步教學(xué):第一步整體感知,看懂統(tǒng)計圖,理解特征,這是本節(jié)課的重點。在教學(xué)中,以知識遷移的方式建立新舊知識之間的聯(lián)系,放手讓學(xué)生獨立思考,互相合作,進一步了解統(tǒng)計圖的特征。

  第二步實踐應(yīng)用環(huán)節(jié)。在教學(xué)中,精心地選取了大量的生活素材,使統(tǒng)計知識與生活建立緊密的聯(lián)系。根據(jù)統(tǒng)計圖回答問題,是讓學(xué)生運用到剛才學(xué)習(xí)到的知識來解決生活中的一些問題,并鞏固剛才所學(xué)的知識,為學(xué)生自己發(fā)現(xiàn)問題、提出問題及自己解決問題提供了較大的空間。同時,讓學(xué)生感悟由于數(shù)據(jù)變化帶來的啟示,并能合理地進行推理與判斷

 。ㄈ┱n堂總結(jié)

  (四)布置作業(yè)。

 。ㄎ澹┌鍟O(shè)計:

  高中數(shù)學(xué)說課稿 20

  一、教材分析

  本節(jié)課選自高中數(shù)學(xué)必修一第一章《集合與函數(shù)概念》中的第二節(jié)《函數(shù)的概念及其表示方法》。函數(shù)是數(shù)學(xué)中的重要概念,它不僅是高中數(shù)學(xué)學(xué)習(xí)的核心內(nèi)容之一,也是后續(xù)學(xué)習(xí)微積分、概率統(tǒng)計等高等數(shù)學(xué)知識的基礎(chǔ)。本節(jié)課旨在通過具體實例,引導(dǎo)學(xué)生理解函數(shù)的概念,掌握函數(shù)的三種表示方法(解析法、列表法、圖象法),并學(xué)會運用這些表示方法進行簡單的函數(shù)問題求解。

  二、學(xué)情分析

  本節(jié)課面向的是高一年級的學(xué)生,他們已經(jīng)具備了一定的數(shù)學(xué)基礎(chǔ),如集合、映射等概念,但對函數(shù)這一抽象概念的理解可能還存在困難。因此,在教學(xué)過程中,需要注重從生活實例出發(fā),逐步引導(dǎo)學(xué)生抽象出函數(shù)的本質(zhì)特征,同時注重培養(yǎng)學(xué)生的邏輯思維能力和抽象思維能力。

  三、教學(xué)目標(biāo)

  知識與技能:理解函數(shù)的概念,掌握函數(shù)的三種表示方法,并能運用這些方法描述實際問題中的函數(shù)關(guān)系。

  過程與方法:通過觀察、分析、歸納等數(shù)學(xué)活動,培養(yǎng)學(xué)生的抽象思維能力和邏輯思維能力。

  情感態(tài)度與價值觀:激發(fā)學(xué)生對數(shù)學(xué)的興趣,培養(yǎng)學(xué)生的探究精神和合作意識。

  四、教學(xué)重難點

  重點:函數(shù)的概念及三種表示方法。

  難點:從實際問題中抽象出函數(shù)關(guān)系,并用函數(shù)表示法描述。

  五、教學(xué)方法

  本節(jié)課采用啟發(fā)式、討論式、探究式等教學(xué)方法,結(jié)合多媒體輔助教學(xué),通過具體實例引導(dǎo)學(xué)生逐步理解函數(shù)的概念,掌握函數(shù)的表示方法。

  六、教學(xué)過程

  導(dǎo)入新課:

  通過展示生活中的實例(如氣溫隨時間的變化、汽車行駛的距離與時間的關(guān)系等),引導(dǎo)學(xué)生思考這些關(guān)系中的共同特征,引出函數(shù)的概念。

  講授新知:

  解析法:通過公式或方程表示函數(shù)關(guān)系。

  列表法:通過列出有序數(shù)對表示函數(shù)關(guān)系。

  圖象法:通過繪制函數(shù)圖象表示函數(shù)關(guān)系。

  定義函數(shù):介紹函數(shù)的定義,強調(diào)函數(shù)的'本質(zhì)特征——對應(yīng)關(guān)系唯一性。

  三種表示方法:

  通過具體例子,演示如何運用這三種方法表示函數(shù)。

  鞏固練習(xí):

  設(shè)計一系列由易到難的練習(xí)題,讓學(xué)生嘗試用函數(shù)的三種表示方法描述實際問題中的函數(shù)關(guān)系。

  鼓勵學(xué)生上臺展示解題過程,師生共同討論,糾正錯誤,加深理解。

  課堂小結(jié):

  總結(jié)本節(jié)課所學(xué)內(nèi)容,強調(diào)函數(shù)的概念及三種表示方法的重要性。

  引導(dǎo)學(xué)生反思學(xué)習(xí)過程,分享學(xué)習(xí)心得。

  布置作業(yè):

  設(shè)計一些與生活實際相關(guān)的函數(shù)問題,要求學(xué)生運用所學(xué)知識進行解答,并嘗試用多種表示方法描述函數(shù)關(guān)系。

  七、板書設(shè)計

  略

  八、教學(xué)反思

  本節(jié)課注重從生活實際出發(fā),引導(dǎo)學(xué)生逐步理解函數(shù)的概念,掌握函數(shù)的表示方法。在教學(xué)過程中,通過啟發(fā)式教學(xué)、討論式教學(xué)等方法,激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)學(xué)生的思維能力。同時,通過鞏固練習(xí)和課堂小結(jié),加深學(xué)生對知識的理解,提高解決問題的能力。但需要注意的是,由于函數(shù)概念的抽象性,部分學(xué)生可能仍存在一定的理解困難,需要在后續(xù)教學(xué)中加強個別輔導(dǎo)和練習(xí)。

【高中數(shù)學(xué)說課稿】相關(guān)文章:

高中數(shù)學(xué)經(jīng)典說課稿03-12

高中數(shù)學(xué)的說課稿06-13

高中數(shù)學(xué)說課稿07-23

高中數(shù)學(xué)獲獎?wù)f課稿03-12

高中數(shù)學(xué)說課稿10-03

高中數(shù)學(xué)向量說課稿07-08

高中數(shù)學(xué)的說課稿【精】06-13

高中數(shù)學(xué)說課稿06-25

高中數(shù)學(xué)說課稿[精選]06-10

高中數(shù)學(xué)說課稿06-12