男人天堂日韩,中文字幕18页,天天伊人网,成人性生交大片免费视频

高中數(shù)學(xué)說課稿

時(shí)間:2024-07-17 08:11:06 數(shù)學(xué)說課稿 我要投稿

高中數(shù)學(xué)說課稿[常用15篇]

  作為一位兢兢業(yè)業(yè)的人民教師,時(shí)常需要編寫說課稿,借助說課稿可以更好地組織教學(xué)活動。那么說課稿應(yīng)該怎么寫才合適呢?下面是小編幫大家整理的高中數(shù)學(xué)說課稿,歡迎閱讀,希望大家能夠喜歡。

高中數(shù)學(xué)說課稿[常用15篇]

高中數(shù)學(xué)說課稿1

  今天我說課的題目是《函數(shù)的單調(diào)性》,下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個(gè)問題,從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、教學(xué)過程五方面逐一加以分析和說明。

  一、說教材

  1、教材的地位和作用

  本節(jié)內(nèi)容選自北師大版高中數(shù)學(xué)必修1,第二章第3節(jié)。函數(shù)是高中數(shù)學(xué)的課程,它是描述事物運(yùn)動變化的模型,而函數(shù)的單調(diào)性是函數(shù)的一大特征,它為我們之后的學(xué)習(xí)奠定重要基礎(chǔ)。

  2、學(xué)情分析

  本節(jié)課的學(xué)生是高一學(xué)生,他們在初中階段,通過一次函數(shù)、二次函數(shù)、反比例函數(shù)的學(xué)習(xí)已經(jīng)對函數(shù)的增減性有了初步的感性認(rèn)識。在高中階段,用符號語言刻畫圖形語言,用定量分析解釋定性結(jié)果,有利于培養(yǎng)學(xué)生的理性思維,為后續(xù)函數(shù)的學(xué)習(xí)作準(zhǔn)備,也為利用倒數(shù)研究單調(diào)性的相關(guān)知識奠定了基礎(chǔ)。

  教學(xué)目標(biāo)分析

  基于以上對教材和學(xué)情的分析以及新課標(biāo)教學(xué)理念,我將教學(xué)目標(biāo)分為以下三個(gè)部分:

  1、知識與技能(1)理解函數(shù)的單調(diào)性和單調(diào)函數(shù)的意義;

 。2)會判斷和證明簡單函數(shù)的單調(diào)性。

  2、過程與方法

 。1)培養(yǎng)從概念出發(fā),進(jìn)一步研究性質(zhì)的意識及能力;

 。2)體會數(shù)形結(jié)合、分類討論的數(shù)學(xué)思想。

  3、情感態(tài)度與價(jià)值觀

  由合適的例子引發(fā)學(xué)生探求數(shù)學(xué)知識的欲望,突出學(xué)生的主觀能動性,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。

  三、教學(xué)重難點(diǎn)分析

  通過以上對教材和學(xué)生的分析以及教學(xué)目標(biāo),我將本節(jié)課的重難點(diǎn)

  重點(diǎn):

  函數(shù)單調(diào)性的概念,判斷和證明簡單函數(shù)的單調(diào)性。

  難點(diǎn):

  1、函數(shù)單調(diào)性概念的認(rèn)知

 。1)自然語言到符號語言的轉(zhuǎn)化;

 。2)常量到變量的轉(zhuǎn)化。

  2、應(yīng)用定義證明單調(diào)性的代數(shù)推理論證。

  四、教法與學(xué)法分析

  1、教法分析

  基于以上對教材、學(xué)情的分析以及新課標(biāo)的教學(xué)理念,本節(jié)課我采用啟發(fā)式教學(xué)、多媒體輔助教學(xué)和討論法。學(xué)生可以在多媒體中感受到數(shù)學(xué)在生活中的應(yīng)用,啟發(fā)式教學(xué)和討論法發(fā)散學(xué)生思維,培養(yǎng)學(xué)生善于思考的能力。

  2、學(xué)法分析

  新課改理念告訴我們,學(xué)生不僅要學(xué)知識,更重要的是要學(xué)會怎樣學(xué)習(xí),為終生學(xué)習(xí)奠定扎實(shí)的基礎(chǔ)。所以本節(jié)課我將引導(dǎo)學(xué)生通過合作交流、自主探索的方法理解函數(shù)的單調(diào)性及特征。

  五、教學(xué)過程

  為了更好的實(shí)現(xiàn)本課的三維目標(biāo),并突破重難點(diǎn),我設(shè)計(jì)以下五個(gè)環(huán)節(jié)來進(jìn)行我的教學(xué)。

 。ㄒ唬┲R導(dǎo)入

  溫故而知新,我將先從之前學(xué)習(xí)的知識引入,給出一些函數(shù),比如y=x、y=-x、y=|x|,讓學(xué)生作出這些函數(shù)的圖像,然后讓學(xué)生討論這些函數(shù)圖像是上升的還是下降的,由此引入到我的新課。在這個(gè)過程中不僅可以檢查學(xué)生掌握基本初等函數(shù)圖像的情況,而且符合學(xué)生的認(rèn)知結(jié)構(gòu),通過學(xué)生自主探究,從知識產(chǎn)生、發(fā)展的過程中構(gòu)建新概念,有利于激發(fā)學(xué)生的思維和學(xué)習(xí)的積極主動性。

 。ǘ┲v授新課

  1.問題:分別做出函數(shù)y=x2,y=x+2的圖像,指出上面的函數(shù)圖象在哪個(gè)區(qū)間是上升的,在哪個(gè)區(qū)間是下降的?

  通過學(xué)生熟悉的圖像,及時(shí)引導(dǎo)學(xué)生觀察,函數(shù)圖像上A點(diǎn)的運(yùn)動情況,引導(dǎo)學(xué)生能用自然語言描述出,隨著x增大時(shí)圖像變化規(guī)律。讓學(xué)生大膽的去說,老師逐步修正、完善學(xué)生的說法,最后給出正確答案。

  2、觀察函數(shù)y=x2隨自變量x變化的情況,設(shè)置啟發(fā)式問題:

 。1)在y軸的右側(cè)部分圖象具有什么特點(diǎn)?

 。2)如果在y軸右側(cè)部分取兩個(gè)點(diǎn)(x1,y1),(x2,y2),當(dāng)x1< p="">

  (3)如何用數(shù)學(xué)符號語言來描述這個(gè)規(guī)律?

  教師補(bǔ)充:這時(shí)我們就說函數(shù)y=x2在(0,+∞)上是增函數(shù)。

 。4)反過來,如果y=f(x)在(0,+∞)上是增函數(shù),我們能不能得到自變量與函數(shù)值的變化規(guī)律呢?

  類似地分析圖象在y軸的左側(cè)部分。

  通過對以上問題的分析,從正、反兩方面領(lǐng)會函數(shù)單調(diào)性。師生共同總結(jié)出單調(diào)增函數(shù)的定義,并解讀定義中的關(guān)鍵詞,如:區(qū)間內(nèi),任意,當(dāng)x1< p="">

  仿照單調(diào)增函數(shù)定義,由學(xué)生說出單調(diào)減函數(shù)的定義。

  教師總結(jié)歸納單調(diào)性和單調(diào)區(qū)間的定義。注意強(qiáng)調(diào):函數(shù)的單調(diào)性是函數(shù)在定義域某個(gè)區(qū)間上的局部性質(zhì),也就是說,一個(gè)函數(shù)在不同的區(qū)間上可以有不同的單調(diào)性。

 。ㄎ覍⒔o出函數(shù)y=x2,并畫出這個(gè)函數(shù)的圖像,讓學(xué)生觀察函數(shù)圖像的特點(diǎn),讓他們描述函數(shù)圖像的增減性,慢慢得到函數(shù)單調(diào)性的概念。在這個(gè)過程中,學(xué)生把對圖像的'感性認(rèn)識轉(zhuǎn)化為了數(shù)學(xué)關(guān)系,這種從特殊到一般的學(xué)習(xí)過程有利于學(xué)生對概念的理解)

 。ㄈ╈柟叹毩(xí)

  1練習(xí)1:說出函數(shù)f(x)=的單調(diào)區(qū)間,并指明在該區(qū)間上的單調(diào)性。x

  練習(xí)2:練習(xí)2:判斷下列說法是否正確

 、俣x在R上的函數(shù)f(x)滿足f(2)>f(1),則函數(shù)是R上的增函數(shù)。

 、诙x在R上的函數(shù)f(x)滿足f(2)>f(1),則函數(shù)是R上不是減函數(shù)。

  1③已知函數(shù)y=,因?yàn)閒(-1)< p="">

  1我將給出一些具體的函數(shù),如y=,f(x)=3x+2讓學(xué)生說出函數(shù)的單調(diào)區(qū)間,并指明在該區(qū)間x

  上的單調(diào)性。通過這種練習(xí)的方式,幫助學(xué)生鞏固對知識的掌握。

 。ㄋ模w納總結(jié)

  我先讓學(xué)生進(jìn)行小結(jié),函數(shù)單調(diào)性定義,判斷函數(shù)單調(diào)性的方法(圖像、定義),然后教師進(jìn)行補(bǔ)充,在這樣一個(gè)過程中既有利于學(xué)生鞏固知識,也有利于教師對學(xué)生的學(xué)習(xí)情況有一定的了解,為下一節(jié)課的教學(xué)過程做好準(zhǔn)備。

  (五)布置作業(yè)

  必做題:習(xí)題2-3A組第2,4,5題。

  選做題:習(xí)題2-3B組第2題。

  新課程理念告訴我們,不同的人在數(shù)學(xué)上可以獲得不同的發(fā)展,因此要設(shè)計(jì)不同程度要求的習(xí)題。

高中數(shù)學(xué)說課稿2

  課題《數(shù)列的概念與簡單表示方法(一)》選自普通高中課程標(biāo)準(zhǔn)試驗(yàn)教科書人教版A版數(shù)學(xué)必修5第二章第一節(jié)的第一課時(shí)。我將從教材分析、學(xué)情分析、教學(xué)目標(biāo)分析、教法分析、教學(xué)過程這五個(gè)方面來匯報(bào)我對這節(jié)課的教學(xué)設(shè)想。

  一、教材分析

  1、教材的地位和作用

  數(shù)列是高中數(shù)學(xué)的重要內(nèi)容之一,它的地位作用可以從三個(gè)方面來看:

 。1)數(shù)列有著廣泛的實(shí)際應(yīng)用。如堆放的物品的總數(shù)計(jì)算要用到數(shù)列的前n項(xiàng)和,又如分期儲蓄、付款公式的有關(guān)計(jì)算也要用到數(shù)列的一些知識。

 。2)數(shù)列起著承前啟后的作用。一方面,初中數(shù)學(xué)的許多內(nèi)容在解決數(shù)列的某些問題中得到了充分運(yùn)用,數(shù)列是前面函數(shù)知識的延伸及應(yīng)用,可以使學(xué)生加深對函數(shù)概念的理解;另一方面,學(xué)習(xí)數(shù)列又為進(jìn)一步學(xué)習(xí)數(shù)列的極限,等差數(shù)列、等比數(shù)列的前n項(xiàng)和以及通項(xiàng)公式打好了鋪墊。因此就有必要講好、學(xué)好數(shù)列。

 。3)數(shù)列是培養(yǎng)學(xué)生數(shù)學(xué)能力的良好題材。是進(jìn)行計(jì)算,推理等基本訓(xùn)練,綜合訓(xùn)練的重要教材。學(xué)習(xí)數(shù)列,要經(jīng)常觀察、分析、歸納、猜想,還要綜合運(yùn)用前面的知識解決數(shù)列中的一些問題,這些都有助于學(xué)生數(shù)學(xué)能力的提高。

  二、學(xué)情分析

  從學(xué)生知識層面看:學(xué)生對數(shù)列已有初步的認(rèn)識,對方程、函數(shù)、數(shù)學(xué)公式的運(yùn)用已有一定的基礎(chǔ),對方程、函數(shù)思想的體會也逐漸深刻。

  從學(xué)生素質(zhì)層面看:從高一新生入學(xué)開始,我就很注意學(xué)生自主探究習(xí)慣的養(yǎng)成,F(xiàn)階段我的學(xué)生思維活躍,課堂參與意識較強(qiáng),而且已經(jīng)具有一定的分析、推理能力。

  三、教學(xué)目標(biāo)分析

  根據(jù)上面的教材分析以及學(xué)情分析,確定了本節(jié)課的教學(xué)目標(biāo):

  (1)知識目標(biāo):認(rèn)識數(shù)列的特點(diǎn),掌握數(shù)列的概念及表示方法,并明白數(shù)列與集合的不同點(diǎn)。了解數(shù)列通項(xiàng)公式的意義及數(shù)列分類。能由數(shù)列的通項(xiàng)公式求出數(shù)列的各項(xiàng),反之,又能由數(shù)列的前幾項(xiàng)寫出數(shù)列的一個(gè)通項(xiàng)公式。

 。2)能力目標(biāo):通過對數(shù)列概念以及通項(xiàng)公式的探究、推導(dǎo)、應(yīng)用等過程,鍛煉了學(xué)生的觀察、歸納、類比等分析問題的能力。同時(shí)更深層次的理解了數(shù)學(xué)知識之間的相互滲透性思想。

 。3)情感目標(biāo):在教學(xué)中使學(xué)生體會教學(xué)知識與現(xiàn)實(shí)世界的聯(lián)系,并且利用各種有趣的,貼近學(xué)生生活的素材激發(fā)學(xué)生的學(xué)習(xí)興趣,培養(yǎng)熱愛生活的情感。

  四、教學(xué)重點(diǎn)與難點(diǎn)

  根據(jù)教學(xué)目標(biāo)以及學(xué)生的理解能力與認(rèn)知水平,我確定了如下的教學(xué)重難點(diǎn)。

  重點(diǎn):理解數(shù)列的`概念,能由函數(shù)的觀點(diǎn)去認(rèn)識數(shù)列,以及對通項(xiàng)公式的理解。

  難點(diǎn):根據(jù)數(shù)列的前幾項(xiàng)的特點(diǎn),通過多角度、多層次的觀察分析歸納出數(shù)列的一個(gè)通項(xiàng)公式。

  五、教法分析

  根據(jù)本節(jié)課的內(nèi)容和學(xué)生的實(shí)際情況,結(jié)合波利亞的先猜后證理論,本節(jié)課主要以講解法為主,引導(dǎo)發(fā)現(xiàn)為輔,由老師帶領(lǐng)同學(xué)們發(fā)現(xiàn)問題,分析問題,并解決問題.考慮到學(xué)生的認(rèn)知過程,本節(jié)課會采用由易到難的教學(xué)進(jìn)程以及實(shí)例給出與練習(xí)設(shè)置,讓學(xué)生們充分體會到事物的發(fā)展規(guī)律。同時(shí)為了增大課堂容量,提高教學(xué)效率,更吸引同學(xué)們的眼光,提高學(xué)習(xí)熱情,本節(jié)課還會采用常規(guī)手段與現(xiàn)代手段相結(jié)合的辦法,充分利用多媒體,將引例、例題具體呈現(xiàn).

高中數(shù)學(xué)說課稿3

  尊敬的各位考官,大家好,我是今天的X號考生,今天我說課的題目是《向量減法運(yùn)算及其幾何意義》。

  下面開始我的說課。

  一、說教材

  首先談?wù)勎覍滩牡睦斫。《向量減法運(yùn)算及其幾何意義》是人教A版實(shí)驗(yàn)版高中數(shù)學(xué)必修4的內(nèi)容。本節(jié)課主要學(xué)習(xí)向量減法運(yùn)算的定義及幾何意義。本節(jié)課的學(xué)習(xí)建立在學(xué)生已經(jīng)掌握平面向量的基本概念以及向量加法運(yùn)算的基礎(chǔ)之上。向量減法的學(xué)習(xí)是運(yùn)算認(rèn)識的一次飛躍,本節(jié)課的知識在整個(gè)章節(jié)中也起到了承上啟下的重要作用。

  二、說學(xué)情

  接下來談?wù)剬W(xué)生的實(shí)際情況。新課標(biāo)指出學(xué)生是教學(xué)的主體,所以要成為符合新課標(biāo)要求的教師,深入了解所面對的學(xué)生可以說是必修課。這一階段的學(xué)生思維較為活躍,求知欲也較強(qiáng),但是未形成良好的思維習(xí)慣。

  三、說教學(xué)目標(biāo)

  根據(jù)以上對教材的分析以及對學(xué)情的把握,我制定了如下三維教學(xué)目標(biāo):

 。ㄒ唬┲R與技能

  借助向量加法運(yùn)算及相反向量的概念,理解向量減法運(yùn)算的定義和幾何意義。

  (二)過程與方法

  通過將向量減法運(yùn)算轉(zhuǎn)化為向量加法運(yùn)算的計(jì)算過程,體會向量加、減法的內(nèi)在聯(lián)系,滲透轉(zhuǎn)化的數(shù)學(xué)思想。

 。ㄈ┣楦小B(tài)度與價(jià)值觀

  在探究向量減法運(yùn)算定義及幾何意義的'過程中,養(yǎng)成良好的學(xué)習(xí)習(xí)慣和嚴(yán)謹(jǐn)?shù)乃季S方式。

  四、說教學(xué)重難點(diǎn)

  根據(jù)授課內(nèi)容可以確定本節(jié)課的教學(xué)重點(diǎn)是向量減法運(yùn)算的定義及幾何意義,教學(xué)難點(diǎn)是向量減法幾何意義的理解。

  五、說教法和學(xué)法

  結(jié)合本節(jié)課的內(nèi)容特點(diǎn)和學(xué)生的年齡特征,本節(jié)課我采用講授法、練習(xí)法的教法,觀察、分析、歸納概括探索知識的學(xué)法來進(jìn)行教學(xué)。

  六、說教學(xué)過程

  下面我將重點(diǎn)談?wù)勎覍虒W(xué)過程的設(shè)計(jì)。

 。ㄒ唬⿲(dǎo)入新課

  首先是導(dǎo)入環(huán)節(jié)。先回憶上節(jié)課學(xué)習(xí)的向量加法運(yùn)算法則,再回憶實(shí)數(shù)運(yùn)算中,減去一個(gè)數(shù)相當(dāng)于什么?通過提問:向量的減法是否也有類似的法則?引出本節(jié)課的內(nèi)容《向量減法運(yùn)算及其幾何意義》。

  通過相關(guān)概念的復(fù)習(xí)和向量加法運(yùn)算法則的鞏固,為后續(xù)向量減法運(yùn)算的教學(xué)奠定理論基礎(chǔ)。

高中數(shù)學(xué)說課稿4

  拋物線焦點(diǎn)性質(zhì)的探索(說課)

  一、教材分析

  1 教材的地位與作用 “拋物線焦點(diǎn)的性質(zhì)”是拋物線的重要性質(zhì)之一,它是在學(xué)生學(xué)習(xí)拋物線的一般性質(zhì)的基礎(chǔ)上,學(xué)習(xí)和研究的拋物線有關(guān)問題的基本工具之一;本節(jié)教材對于培養(yǎng)學(xué)生觀察、猜想、概括能力和邏輯推理能力具有重要的意義。

  2 教學(xué)目的 全日制普通高級中學(xué)《數(shù)學(xué)教學(xué)大綱》第22頁“重視現(xiàn)代教育技術(shù)的.運(yùn)用”中明確提出:在數(shù)學(xué)教學(xué)過程中,應(yīng)有意識地利用計(jì)算機(jī)網(wǎng)絡(luò)等現(xiàn)代信息技術(shù),認(rèn)識計(jì)算機(jī)的智能圖形、快速計(jì)算、機(jī)器證明、自動求解及人機(jī)交互等功能在數(shù)學(xué)教學(xué)中的巨大潛力,努力探索在現(xiàn)代信息技術(shù)支持下的教學(xué)方法、教學(xué)模式。設(shè)計(jì)和組織能吸引學(xué)生積極參與的數(shù)學(xué)活動,支持和鼓勵(lì)學(xué)生運(yùn)用信息技術(shù)學(xué)習(xí)數(shù)學(xué)、開展課題研究,改進(jìn)學(xué)習(xí)方式,提高學(xué)生的自主學(xué)習(xí)能力和創(chuàng)新意識。因此本人在現(xiàn)行高中新教材(試驗(yàn)修訂本·必修)數(shù)學(xué)第二冊(上)拋物線這一節(jié)內(nèi)容為背景材料,以多媒體網(wǎng)絡(luò)教室為場地,以《幾何畫板》為教學(xué)工具與學(xué)習(xí)工具,設(shè)計(jì)了一堂《拋物線焦點(diǎn)性質(zhì)的探索》,具體目標(biāo)如下:

  (1) 知識目標(biāo):了解焦點(diǎn)的有關(guān)性質(zhì);并掌握這些性質(zhì)的證明方法;體會數(shù)形結(jié)合思想與分類討論思想在解決解析幾何題中的指導(dǎo)作用

 。2) 能力目標(biāo):使學(xué)生學(xué)會研究數(shù)學(xué)問題的基本過程,能夠根據(jù)條件建立恰當(dāng)?shù)臄?shù)學(xué)模型;培養(yǎng)辯證唯物主義思想和辯證思維能力(主要包括量變與質(zhì)變,常量與變量,運(yùn)動與靜止)培養(yǎng)學(xué)生通過計(jì)算機(jī)來自主學(xué)習(xí)的能力與創(chuàng)新的能力。

 。3) 情感目標(biāo):培養(yǎng)學(xué)生不畏困難,勇于鉆研、探索、大膽創(chuàng)新的精神,在挫折中成長鍛煉,培養(yǎng)學(xué)生良好的心理素質(zhì)和抗挫折能力,通過拋物線焦點(diǎn)性質(zhì)的探索及證明,使學(xué)生得到數(shù)學(xué)美和創(chuàng)造美的享受。

  3 教學(xué)內(nèi)容、重點(diǎn)、難點(diǎn)及關(guān)鍵 本節(jié)安排兩節(jié)課,

  第一節(jié)課:主要內(nèi)容是利用《幾何畫板》探索拋物線的有關(guān)性質(zhì);

  第二節(jié)課:證明第一節(jié)所得到的有關(guān)性質(zhì)。

  重點(diǎn):

 。1)如何利用《幾何畫板》探索、發(fā)現(xiàn)拋物線焦點(diǎn)的性質(zhì);

 。2)如何證明這些性質(zhì)。

  難點(diǎn);

 。1)如何利用《幾何畫板》探索、發(fā)現(xiàn)拋物線焦點(diǎn)的性質(zhì);

 。2)如何證明這些性質(zhì)。

  二、教學(xué)策略及教法設(shè)計(jì)

  學(xué)生在網(wǎng)絡(luò)教室(每人一機(jī)),其中裝有《幾何畫板》軟件及上課系統(tǒng),每個(gè)學(xué)生的窗口,其他學(xué)生及教師都可以通過教師機(jī)切換,從而和其他學(xué)生交流,也可以通過網(wǎng)上論壇交流研究結(jié)果。

  三、網(wǎng)絡(luò)教學(xué)環(huán)境設(shè)計(jì)

  學(xué)生在網(wǎng)絡(luò)教室(每人一機(jī))中有幾何畫板軟件,學(xué)生通過教師提供的網(wǎng)絡(luò),自已閱讀,下載有關(guān),利用《幾何畫板》的操作、試驗(yàn)、猜想,通過自己的研究獲得結(jié)論,并互相討論觀察到的現(xiàn)象、交流研究結(jié)果。

  四、教學(xué)過程設(shè)計(jì)

  4.1 使學(xué)生學(xué)會研究數(shù)學(xué)問題的基本過程,能夠根據(jù)條件建立恰當(dāng)?shù)臄?shù)學(xué)模型 問題1 回顧一下拋物線的定義,并根據(jù)拋物線的定義思考用《幾何畫板》如何作出焦點(diǎn)在x軸上的拋物線圖象。 由于創(chuàng)設(shè)了一個(gè)創(chuàng)作的《幾何畫板》的窗口及網(wǎng)絡(luò)窗口,學(xué)生通過網(wǎng)絡(luò)學(xué)習(xí),得到以上問題的多種作法,以下就其中的一種作法作為探索、研究拋物線焦點(diǎn)性質(zhì)的基本圖形。

高中數(shù)學(xué)說課稿5

  一、教學(xué)內(nèi)容分析

  圓錐曲線的定義反映了圓錐曲線的本質(zhì)屬性,它是無數(shù)次實(shí)踐后的高度抽象.恰當(dāng)?shù)乩枚x解題,許多時(shí)候能以簡馭繁.因此,在學(xué)習(xí)了橢圓、雙曲線、拋物線的定義及標(biāo)準(zhǔn)方程、幾何性質(zhì)后,再一次強(qiáng)調(diào)定義,學(xué)會利用圓錐曲線定義來熟練的解題”。

  二、學(xué)生學(xué)習(xí)情況分析

  我所任教班級的學(xué)生參與課堂教學(xué)活動的積極性強(qiáng),思維活躍,但計(jì)算能力較差,推理能力較弱,使用數(shù)學(xué)語言的表達(dá)能力也略顯不足。

  三、設(shè)計(jì)思想

  由于這部分知識較為抽象,如果離開感性認(rèn)識,容易使學(xué)生陷入困境,降低學(xué)習(xí)熱情.在教學(xué)時(shí),借助多媒體動畫,引導(dǎo)學(xué)生主動發(fā)現(xiàn)問題、解決問題,主動參與教學(xué),在輕松愉快的環(huán)境中發(fā)現(xiàn)、獲取新知,提高教學(xué)效率.

  四、教學(xué)目標(biāo)

  1.深刻理解并熟練掌握圓錐曲線的定義,能靈活應(yīng)用定義解決問題;熟練掌握焦點(diǎn)坐標(biāo)、頂點(diǎn)坐標(biāo)、焦距、離心率、準(zhǔn)線方程、漸近線、焦半徑等概念和求法;能結(jié)合平面幾何的基本知識求解圓錐曲線的方程。

  2.通過對練習(xí),強(qiáng)化對圓錐曲線定義的理解,提高分析、解決問題的能力;通過對問題的不斷引申,精心設(shè)問,引導(dǎo)學(xué)生學(xué)習(xí)解題的一般方法。

  3.借助多媒體輔助教學(xué),激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣.

  五、教學(xué)重點(diǎn)與難點(diǎn):

  教學(xué)重點(diǎn)

  1.對圓錐曲線定義的理解

  2.利用圓錐曲線的定義求“最值”

  3.“定義法”求軌跡方程

  教學(xué)難點(diǎn):

  巧用圓錐曲線定義解題

  六、教學(xué)過程設(shè)計(jì)

  【設(shè)計(jì)思路】

  (一)開門見山,提出問題

  一上課,我就直截了當(dāng)?shù)亟o出——

  例題1:(1) 已知A(-2,0), B(2,0)動點(diǎn)M滿足|MA|+|MB|=2,則點(diǎn)M的軌跡是( )。

  (A)橢圓 (B)雙曲線 (C)線段 (D)不存在

  (2)已知?jiǎng)狱c(diǎn) M(x,y)滿足(x1)2(y2)2|3x4y|,則點(diǎn)M的軌跡是( )。

  (A)橢圓 (B)雙曲線 (C)拋物線 (D)兩條相交直線

  【設(shè)計(jì)意圖】

  定義是揭示概念內(nèi)涵的邏輯方法,熟悉不同概念的不同定義方式,是學(xué)習(xí)和研究數(shù)學(xué)的一個(gè)必備條件,而通過一個(gè)階段的學(xué)習(xí)之后,學(xué)生們對圓錐曲線的定義已有了一定的認(rèn)識,他們是否能真正掌握它們的本質(zhì),是我本節(jié)課首先要弄清楚的問題。

  為了加深學(xué)生對圓錐曲線定義理解,我以圓錐曲線的.定義的運(yùn)用為主線,精心準(zhǔn)備了兩道練習(xí)題。

  【學(xué)情預(yù)設(shè)】

  估計(jì)多數(shù)學(xué)生能夠很快回答出正確答案,但是部分學(xué)生對于圓錐曲線的定義可能并未真正理解,因此,在學(xué)生們回答后,我將要求學(xué)生接著說出:若想答案是其他選項(xiàng)的話,條件要怎么改?這對于已學(xué)完圓錐曲線這部分知識的學(xué)生來說,并不是什么難事。但問題(2)就可能讓學(xué)生們費(fèi)一番周折—— 如果有學(xué)生提出:可以利用變形來解決問題,那么我就可以循著他的思路,先對原等式做變形:(x1)2(y2)2

  5這樣,很快就能得出正確結(jié)果。如若不然,我將啟發(fā)他們從等式兩端的式子|3x4y|5

  入手,考慮通過適當(dāng)?shù)淖冃,轉(zhuǎn)化為學(xué)生們熟知的兩個(gè)距離公式。

  在對學(xué)生們的解答做出判斷后,我將把問題引申為:該雙曲線的中心坐標(biāo)是 ,實(shí)軸長為 ,焦距為 。以深化對概念的理解。

  (二)理解定義、解決問題

  例2 (1)已知?jiǎng)訄AA過定圓B:x2y26x70的圓心,且與定圓C:xy6x910 相內(nèi)切,求△ABC面積的最大值。

  (2)在(1)的條件下,給定點(diǎn)P(-2,2), 求|PA|

  七、教學(xué)反思

  1.本課將借助于“XXX”,將使全體學(xué)生參與活動成為可能,使原來令人難以理解的抽象的數(shù)學(xué)理論變得形象,生動且通俗易懂,同時(shí),運(yùn)用“多媒體課件”輔助教學(xué),節(jié)省了板演的時(shí)間,從而給學(xué)生留出更多的時(shí)間自悟、自練、自查,充分發(fā)揮學(xué)生的主體作用,這充分顯示出“多媒體課件”與探究合作式教學(xué)理念的有機(jī)結(jié)合的教學(xué)優(yōu)勢。

  2.利用兩個(gè)例題及其引申,通過一題多變,層層深入的探索,以及對猜測結(jié)果的檢測研究,培養(yǎng)學(xué)生思維能力,使學(xué)生從學(xué)會一個(gè)問題的求解到掌握一類問題的解決方法. 循序漸進(jìn)的讓學(xué)生把握這類問題的解法;將學(xué)生容易混淆的兩類求“最值問題”并為一道題,方便學(xué)生進(jìn)行比較、分析。雖然從表面上看,我這一堂課的教學(xué)容量不大,但事實(shí)上,學(xué)生們的思維運(yùn)動量并不會小。

  總之,如何更好地選擇符合學(xué)生具體情況,滿足教學(xué)目標(biāo)的例題與練習(xí)、靈活把握課堂教學(xué)節(jié)奏仍是我今后工作中的一個(gè)重要研究課題.而要能真正進(jìn)行素質(zhì)教育,培養(yǎng)學(xué)生的創(chuàng)新意識,自己首先必須更新觀念——在教學(xué)中適度使用多媒體技術(shù),讓學(xué)生有參與教學(xué)實(shí)踐的機(jī)會,能夠使學(xué)生在學(xué)習(xí)新知識的同時(shí),激發(fā)起求知的欲望,在尋求解決問題的辦法的過程中獲得自信和成功的體驗(yàn),于不知不覺中改善了他們的思維品質(zhì),提高了數(shù)學(xué)思維能力。

高中數(shù)學(xué)說課稿6

  一、教材分析

  本節(jié)內(nèi)容是等差數(shù)列(第一課時(shí))的內(nèi)容,屬于數(shù)與代數(shù)領(lǐng)域的知識。本節(jié)是數(shù)列課程的新授課,為后面等比數(shù)列以及數(shù)列求和的知識點(diǎn)作基礎(chǔ)。數(shù)列是高中數(shù)學(xué)重要內(nèi)容之一,它有著廣泛的實(shí)際應(yīng)用。等差數(shù)列是在學(xué)生學(xué)習(xí)了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項(xiàng)公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進(jìn)一步深入和拓廣。同時(shí)等差數(shù)列也為今后學(xué)習(xí)等比數(shù)列提供了學(xué)習(xí)對比的依據(jù)。在數(shù)學(xué)思想的方面,數(shù)列在處理數(shù)與數(shù)之間的關(guān)系中,更多地培養(yǎng)了學(xué)生運(yùn)用函數(shù)與函數(shù)關(guān)系的思想。

  二、教學(xué)目標(biāo)

  根據(jù)課程標(biāo)準(zhǔn)的要求和學(xué)生的實(shí)際水平,確定了本次課的教學(xué)目標(biāo)

 。1)在知識上:理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程及思想。

 。2)在能力上:培養(yǎng)學(xué)生觀察、分析、歸納、推理的能力;以形象的'實(shí)際例子作為學(xué)生理解與練習(xí)的模板,使學(xué)生在不斷實(shí)踐中鞏固學(xué)習(xí)到的知識;通過階梯性練習(xí),提高學(xué)生分析問題和解決問題的能力。

 。3)在情感上:通過對等差數(shù)列在實(shí)際問題中的研究,培養(yǎng)學(xué)生主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣。

  3、教學(xué)重點(diǎn)和難點(diǎn)

  根據(jù)課程標(biāo)準(zhǔn)的要求我確定本節(jié)課的教學(xué)重點(diǎn)為: ①等差數(shù)列的概念。

 、诘炔顢(shù)列的通項(xiàng)公式的推導(dǎo)過程及應(yīng)用。

  三、教學(xué)方法分析:

  對于高中學(xué)生,知識經(jīng)驗(yàn)比較貧乏,雖然他們的智力發(fā)展已到了形式運(yùn)演階段,但并不具備教強(qiáng)的抽象思維能力和演繹推理能力,所以本堂課將從實(shí)際中的問題出發(fā),以學(xué)生日常生活中較易接觸的一些數(shù)學(xué)問題,籍此啟發(fā)學(xué)生對于數(shù)列知識點(diǎn)的理解。本節(jié)課大多采用啟發(fā)式、討論式的教學(xué)方法,通過問題激發(fā)學(xué)生求知欲,使學(xué)生主動參與數(shù)學(xué)實(shí)踐活動,以獨(dú)立思考和相互交流的形式,在教師的指導(dǎo)下發(fā)現(xiàn)、分析和解決問題,并學(xué)會將數(shù)學(xué)知識運(yùn)用到實(shí)際問題的解決中。

  四、教學(xué)過程

  通過復(fù)習(xí)上節(jié)課數(shù)列的定義來引入幾個(gè)數(shù)列

  1)0,5,10,15,20,25.....2)18,15.5,13,10.5,8,4.5 3) 48,53,58,63,68.....通過這3個(gè)數(shù)列,初步認(rèn)識等差數(shù)列的特征,為后面的概念學(xué)習(xí)建立基礎(chǔ)。由學(xué)生觀察第一個(gè)數(shù)列與第三個(gè)數(shù)列的特點(diǎn),并與第二個(gè)做對比,引出等差數(shù)列的概念。

  (二)新課探究

  1、由引入自然的給出等差數(shù)列的概念:

  定義:如果一個(gè)數(shù)列,從第二項(xiàng)開始它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù),這個(gè)數(shù)列就叫等差數(shù)列,這個(gè)常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強(qiáng)調(diào):

 、 “從第二項(xiàng)起”滿足條件;

 、诠頳一定是由后項(xiàng)減前項(xiàng)所得;

  ③每一項(xiàng)與它的前一項(xiàng)的差必須是同一個(gè)常數(shù);

  在理解概念的基礎(chǔ)上,由學(xué)生將等差數(shù)列的文字語言轉(zhuǎn)化為數(shù)學(xué)語言,歸納出數(shù)學(xué)表達(dá)式:

  an+1-an=d (n≥1)

  同時(shí)為了配合概念的理解,引導(dǎo)學(xué)生講本不是等差數(shù)列的第二組數(shù)列修改成等差數(shù)列。并由觀察三組數(shù)列的不同特點(diǎn),由此強(qiáng)調(diào):公差可以是正數(shù)、負(fù)數(shù),并再舉出特例數(shù)列1,1,1,1,1,1,1......說明公差也可以是0。

  2、第二個(gè)重點(diǎn)部分為等差數(shù)列的通項(xiàng)公式

  在歸納等差數(shù)列通項(xiàng)公式中,我采用討論式的教學(xué)方法。給出等差數(shù)列的首項(xiàng),公差d,運(yùn)用求數(shù)列通項(xiàng)公式的辦法------迭加法:整個(gè)過程通過互相討論的方式既培養(yǎng)了學(xué)生的協(xié)作意識又化解了教學(xué)難點(diǎn)。

  若一等差數(shù)列{an }的首項(xiàng)是a1,公差是d,則據(jù)其定義可得:

  a2 – a1 =d a3 – a2 =d a4 – a3 =d …… an – an-1=d將這(n-1)個(gè)等式左右兩邊分別相加,就可以得到an– a1= (n-1) d即an= a1+(n-1) d(1)

  當(dāng)n=1時(shí),(1)也成立,

  所以對一切n∈N﹡,上面的公式都成立

  因此它就是等差數(shù)列{an}的通項(xiàng)公式。對照已歸納出的通項(xiàng)公式啟發(fā)學(xué)生想出將n-1個(gè)等式相加。證出通項(xiàng)公式。

  在這里通過運(yùn)用迭加法這一數(shù)學(xué)思想,便于學(xué)生從概念理解的過程過渡到運(yùn)用概念的過程。

  接著舉例說明:若一個(gè)等差數(shù)列{an}的首項(xiàng)是1,公差是2,得出這個(gè)數(shù)列的通項(xiàng)公式是:an=1+(n-1)×2,

  即an=2n-1以此來鞏固等差數(shù)列通項(xiàng)公式運(yùn)用。

  (三)應(yīng)用舉例

  現(xiàn)實(shí)生活中,以學(xué)生較為熟悉的iphone手機(jī)的數(shù)據(jù)作為例子。觀察Iphone手機(jī)的發(fā)布時(shí)間,iphone第一代發(fā)布于20xx年,第二代發(fā)布于20xx年,第三代發(fā)布于20xx年,第四代發(fā)布于20xx年,F(xiàn)在第六代發(fā)布于今年20xx年。首先,讓學(xué)生觀察從04年到10年每兩代iphone發(fā)布的間隔時(shí)間,讓學(xué)生自行尋找規(guī)律,并在此基礎(chǔ)上讓學(xué)生估測第五代iphone的發(fā)布時(shí)間,并驗(yàn)證第五代iphone發(fā)布于20xx年。同時(shí),再讓學(xué)生預(yù)測在未來,下一部iphone發(fā)布的時(shí)間,是學(xué)生體驗(yàn)到將數(shù)學(xué)知識運(yùn)用到實(shí)際中的方法與步驟。為了加深聯(lián)系,再給出了每代iphone的價(jià)格:iphone1 4299;iphone2 4800;iphone3 5299;iphone4 5988;iphone5 6300。在給出的數(shù)據(jù)上,將價(jià)格隨時(shí)間的變化以坐標(biāo)軸的形式作圖表示出來,讓學(xué)生觀察到雖然這些數(shù)據(jù)非等差,但是可以大致變?yōu)榈炔畹闹本圖像,讓學(xué)生體會到“擬合數(shù)據(jù)”的思想。在此基礎(chǔ)上,讓學(xué)生進(jìn)行練習(xí),預(yù)測14年如今iphone6的上市價(jià)格為6888元,并與學(xué)生通過數(shù)列進(jìn)行推理的價(jià)格進(jìn)行對比,讓學(xué)生對自己在實(shí)踐中解決問題的過程中找到一定的認(rèn)同感。

  五、歸納小結(jié)

  提問學(xué)生,總結(jié)這節(jié)課的收獲

  1、等差數(shù)列的概念及數(shù)學(xué)表達(dá)式,并強(qiáng)調(diào)關(guān)鍵字:從第二項(xiàng)開始,它的每一項(xiàng)與前一項(xiàng)之差都等于同一常數(shù)。

  2、等差數(shù)列的通項(xiàng)公式an= a1+(n-1) d

  3、將讓學(xué)生在實(shí)踐中了解,將數(shù)列知識點(diǎn)運(yùn)用到實(shí)際中的方法。

  4、在課末提出啟發(fā)性問題,若是有人將每一部iphone都買入,那他一共花費(fèi)了多少錢?借此引出了下一節(jié),等差數(shù)列求和的知識點(diǎn)。讓學(xué)生嘗試自行去思考這樣的問題。

  5、布置作業(yè)

高中數(shù)學(xué)說課稿7

  說課內(nèi)容:普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(人教A版)《數(shù)學(xué)必修4》第二章第四節(jié)“平面向量的數(shù)量積”的第一課時(shí)---平面向量數(shù)量積的物理背景及其含義。

  下面,我從背景分析、教學(xué)目標(biāo)設(shè)計(jì)、課堂結(jié)構(gòu)設(shè)計(jì)、教學(xué)過程設(shè)計(jì)、教學(xué)媒體設(shè)計(jì)及教學(xué)評價(jià)設(shè)計(jì)六個(gè)方面對本節(jié)課的思考進(jìn)行說明。

  一、 背景分析

  1、學(xué)習(xí)任務(wù)分析

  平面向量的數(shù)量積是繼向量的線性運(yùn)算之后的又一重要運(yùn)算,也是高中數(shù)學(xué)的一個(gè)重要概念,在數(shù)學(xué)、物理等學(xué)科中應(yīng)用十分廣泛。本節(jié)內(nèi)容教材共安排兩課時(shí),其中第一課時(shí)主要研究數(shù)量積的概念,第二課時(shí)主要研究數(shù)量積的坐標(biāo)運(yùn)算,本節(jié)課是第一課時(shí)。

  本節(jié)課的主要學(xué)習(xí)任務(wù)是通過物理中“功”的事例抽象出平面向量數(shù)量積的概念,在此基礎(chǔ)上探究數(shù)量積的性質(zhì)與運(yùn)算律,使學(xué)生體會類比的思想方法,進(jìn)一步培養(yǎng)學(xué)生的抽象概括和推理論證的能力。其中數(shù)量積的概念既是對物理背景的抽象,又是研究性質(zhì)和運(yùn)算律的基礎(chǔ)。同時(shí)也因?yàn)樵谶@個(gè)概念中,既有長度又有角度,既有形又有數(shù),是代數(shù)、幾何與三角的最佳結(jié)合點(diǎn),不僅應(yīng)用廣泛,而且很好的體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想,使得數(shù)量積的概念成為本節(jié)課的核心概念,自然也是本節(jié)課教學(xué)的重點(diǎn)。

  2、學(xué)生情況分析

  學(xué)生在學(xué)習(xí)本節(jié)內(nèi)容之前,已熟知了實(shí)數(shù)的運(yùn)算體系,掌握了向量的概念及其線性運(yùn)算,具備了功等物理知識,并且初步體會了研究向量運(yùn)算的一般方法:即先由特殊模型(主要是物理模型)抽象出概念,然后再從概念出發(fā),在與實(shí)數(shù)運(yùn)算類比的基礎(chǔ)上研究性質(zhì)和運(yùn)算律。這為學(xué)生學(xué)習(xí)數(shù)量積做了很好的鋪墊,使學(xué)生倍感親切。但也正是這些干擾了學(xué)生對數(shù)量積概念的理解,一方面,相對于線性運(yùn)算而言,數(shù)量積的結(jié)果發(fā)生了本質(zhì)的變化,兩個(gè)有形有數(shù)的向量經(jīng)過數(shù)量積運(yùn)算后,形卻消失了,學(xué)生對這一點(diǎn)是很難接受的;另一方面,由于受實(shí)數(shù)乘法運(yùn)算的影響,也會造成學(xué)生對數(shù)量積理解上的偏差,特別是對性質(zhì)和運(yùn)算律的理解。因而本節(jié)課教學(xué)的難點(diǎn)數(shù)量積的概念。

  二、 教學(xué)目標(biāo)設(shè)計(jì)

  《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn))》 對本節(jié)課的要求有以下三條:

  (1)通過物理中“功”等事例,理解平面向量數(shù)量積的含義及其物理意義。

  (2)體會平面向量的數(shù)量積與向量投影的關(guān)系。

  (3)能用運(yùn)數(shù)量積表示兩個(gè)向量的夾角,會用數(shù)量積判斷兩個(gè)平面向量的垂直關(guān)系。

  從以上的背景分析可以看出,數(shù)量積的概念既是本節(jié)課的重點(diǎn),也是難點(diǎn)。為了突破這一難點(diǎn),首先無論是在概念的引入還是應(yīng)用過程中,物理中“功”的實(shí)例都發(fā)揮了重要作用。其次,作為數(shù)量積概念延伸的性質(zhì)和運(yùn)算律,不僅能夠使學(xué)生更加全面深刻地理解概念,同時(shí)也是進(jìn)行相關(guān)計(jì)算和判斷的理論依據(jù)。最后,無論是數(shù)量積的性質(zhì)還是運(yùn)算律,都希望學(xué)生在類比的基礎(chǔ)上,通過主動探究來發(fā)現(xiàn),因而對培養(yǎng)學(xué)生的抽象概括能力、推理論證能力和類比思想都無疑是很好的載體。

  綜上所述,結(jié)合“課標(biāo)”要求和學(xué)生實(shí)際,我將本節(jié)課的教學(xué)目標(biāo)定為:

  1、了解平面向量數(shù)量積的物理背景,理解數(shù)量積的含義及其物理意義;

  2、體會平面向量的數(shù)量積與向量投影的關(guān)系,掌握數(shù)量積的性質(zhì)和運(yùn)算律,

  并能運(yùn)用性質(zhì)和運(yùn)算律進(jìn)行相關(guān)的運(yùn)算和判斷;

  3、體會類比的數(shù)學(xué)思想和方法,進(jìn)一步培養(yǎng)學(xué)生抽象概括、推理論證的能力。

  三、課堂結(jié)構(gòu)設(shè)計(jì)

  本節(jié)課從總體上講是一節(jié)概念教學(xué),依據(jù)數(shù)學(xué)課程改革應(yīng)關(guān)注知識的發(fā)生和發(fā)展過程的理念,結(jié)合本節(jié)課的知識的邏輯關(guān)系,我按照以下順序安排本節(jié)課的教學(xué):

  即先從數(shù)學(xué)和物理兩個(gè)角度創(chuàng)設(shè)問題情景,通過歸納和抽象得到數(shù)量積的概念,在此基礎(chǔ)上研究數(shù)量積的性質(zhì)和運(yùn)算律,使學(xué)生進(jìn)一步加深對概念的理解,然后通過例題和練習(xí)使學(xué)生鞏固概念,加深印象,最后通過課堂小結(jié)提高學(xué)生認(rèn)識,形成知識體系。

  四、 教學(xué)媒體設(shè)計(jì)

  和“大綱”教材相比,“課標(biāo)”教材在本節(jié)課的內(nèi)容安排上,雖然將向量的夾角在“平面向量基本定理”一節(jié)提前做了介紹,但卻將原來分兩節(jié)課完成的內(nèi)容合并成一節(jié),相比較而言本節(jié)課的教學(xué)任務(wù)加重了許多。為了保證教學(xué)任務(wù)的完成,順利實(shí)現(xiàn)本節(jié)課的教學(xué)目標(biāo),考慮到本節(jié)課的實(shí)際特點(diǎn),在教學(xué)媒體的使用上,我的設(shè)想主要有以下兩點(diǎn):

  1、制作高效實(shí)用的電腦多媒體課件,主要作用是改變相關(guān)內(nèi)容的呈現(xiàn)方式,以此來節(jié)約課時(shí),增加課堂容量。

  2、設(shè)計(jì)科學(xué)合理的板書(見下),一方面使學(xué)生加深對主要知識的印象,另一方面使學(xué)生清楚本節(jié)內(nèi)容知識間的邏輯關(guān)系,形成知識網(wǎng)絡(luò)。

  平面向量數(shù)量積的物理背景及其含義

  一、 數(shù)量積的概念 二、數(shù)量積的性質(zhì) 四、應(yīng)用與提高

  1、 概念: 例1:

  2、 概念強(qiáng)調(diào) (1)記法 例2:

  (2)“規(guī)定” 三、數(shù)量積的運(yùn)算律 例3:

  3、幾何意義:

  4、物理意義:

  五、 教學(xué)過程設(shè)計(jì)

  課標(biāo)指出:數(shù)學(xué)教學(xué)過程是教師引導(dǎo)學(xué)生進(jìn)行學(xué)習(xí)活動的過程,是教師和學(xué)生間互動的過程,是師生共同發(fā)展的過程。為有序、有效地進(jìn)行教學(xué),本節(jié)課我主要安排以下六個(gè)活動:

  活動一:創(chuàng)設(shè)問題情景,激發(fā)學(xué)習(xí)興趣

  正如教材主編寄語所言,數(shù)學(xué)是自然的,而不是強(qiáng)加于人的。平面向量的數(shù)量積這一重要概念,和向量的`線性運(yùn)算一樣,也有其數(shù)學(xué)背景和物理背景,為了體現(xiàn)這一點(diǎn),我設(shè)計(jì)以下幾個(gè)問題:

  問題1:我們已經(jīng)研究了向量的哪些運(yùn)算?這些運(yùn)算的結(jié)果是什么?

  問題2:我們是怎么引入向量的加法運(yùn)算的?我們又是按照怎樣的順序研究了這種運(yùn)算的?

  期望學(xué)生回答:物理模型→概念→性質(zhì)→運(yùn)算律→應(yīng)用

  問題3:如圖所示,一物體在力F的作用下產(chǎn)生位移S,

  (1)力F所做的功W= 。

  (2)請同學(xué)們分析這個(gè)公式的特點(diǎn):

  W(功)是 量,

  F(力)是 量,

  S(位移)是 量,

  α是 。

  問題1的設(shè)計(jì)意圖在于使學(xué)生了解數(shù)量積的數(shù)學(xué)背景,讓學(xué)生明白本節(jié)課所要研究的數(shù)量積與向量的加法、減法及數(shù)乘一樣,都是向量的運(yùn)算,但與向量的線性運(yùn)算相比,數(shù)量積運(yùn)算又有其特殊性,那就是其結(jié)果發(fā)生了本質(zhì)的變化。

  問題2的設(shè)計(jì)意圖在于使學(xué)生在與向量加法類比的基礎(chǔ)上明了本節(jié)課的研究方法和順序,為教學(xué)活動指明方向。

  問題3的設(shè)計(jì)意圖在于使學(xué)生了解數(shù)量積的物理背景,讓學(xué)生知道,我們研究數(shù)量積絕不僅僅是為了數(shù)學(xué)自身的完善,而是有其客觀背景和現(xiàn)實(shí)意義的,從而產(chǎn)生了進(jìn)一步研究這種新運(yùn)算的愿望。同時(shí),也為抽象數(shù)量積的概念做好鋪墊。

  活動二:探究數(shù)量積的概念

  1、概念的抽象

  在分析“功”的計(jì)算公式的基礎(chǔ)上提出問題4

  問題4:你能用文字語言來表述功的計(jì)算公式嗎?如果我們將公式中的力與位移推廣到一般向量,其結(jié)果又該如何表述?

  學(xué)生通過思考不難回答:功是力與位移的大小及其夾角余弦的乘積;兩個(gè)向量的大小及其夾角余弦的乘積。這樣,學(xué)生事實(shí)上已經(jīng)得到數(shù)量積概念的文字表述了,在此基礎(chǔ)上,我進(jìn)一步明晰數(shù)量積的概念。

  2、概念的明晰

  已知兩個(gè)非零向量

  與

  ,它們的夾角為

  ,我們把數(shù)量 ︱

  ︱·︱

  ︱cos

  叫做

  與

  的數(shù)量積(或內(nèi)積),記作:

  ·

  ,即:

  ·

  = ︱

  ︱·︱

  ︱cos

  在強(qiáng)調(diào)記法和“規(guī)定”后 ,為了讓學(xué)生進(jìn)一步認(rèn)識這一概念,提出問題5

  問題5:向量的數(shù)量積運(yùn)算與線性運(yùn)算的結(jié)果有什么不同?影響數(shù)量積大小的因素有哪些?并完成下表:

  角

  的范圍0°≤

  <90°

  =90°0°<

  ≤180°

  ·

  的符號

  通過此環(huán)節(jié)不僅使學(xué)生認(rèn)識到數(shù)量積的結(jié)果與線性運(yùn)算的結(jié)果有著本質(zhì)的不同,而且認(rèn)識到向量的夾角是決定數(shù)量積結(jié)果的重要因素,為下面更好地理解數(shù)量積的性質(zhì)和運(yùn)算律做好鋪墊。

  3、探究數(shù)量積的幾何意義

  這個(gè)問題教材是這樣安排的:在給出向量數(shù)量積的概念后,只介紹了向量投影的定義,直到講完例1后,為了證明運(yùn)算律的第三條才直接以結(jié)論的形式呈現(xiàn)給學(xué)生,我覺得這樣安排似乎不太自然,還不如在給出向量投影的概念后,直接由學(xué)生自己歸納得出,所以做了調(diào)整。為此,我首先給出給出向量投影的概念,然后提出問題5。

  如圖,我們把│

  │cos

  (│

  │cos

  )叫做向量

  在

  方向上(

  在

  方向上)的投影,記做:OB1=│

  │cos

  問題6:數(shù)量積的幾何意義是什么?

  這樣做不僅讓學(xué)生從“形”的角度重新認(rèn)識數(shù)量積的概念,從中體會數(shù)量積與向量投影的關(guān)系,同時(shí)也更符合知識的連貫性,而且也節(jié)約了課時(shí)。

  4、研究數(shù)量積的物理意義

  數(shù)量積的概念是由物理中功的概念引出的,學(xué)習(xí)了數(shù)量積的概念后,學(xué)生就會明白功的數(shù)學(xué)本質(zhì)就是力與位移的數(shù)量積。為此,我設(shè)計(jì)以下問題 一方面使學(xué)生嘗試計(jì)算數(shù)量積,另一方面使學(xué)生理解數(shù)量積的物理意義,同時(shí)也為數(shù)量積的性質(zhì)埋下伏筆。

  問題7:

  (1) 請同學(xué)們用一句話來概括功的數(shù)學(xué)本質(zhì):功是力與位移的數(shù)量積 。

  (2)嘗試練習(xí):一物體質(zhì)量是10千克,分別做以下運(yùn)動:

  ①、在水平面上位移為10米;

 、凇⒇Q直下降10米;

 、邸⒇Q直向上提升10米;

 、、沿傾角為30度的斜面向上運(yùn)動10米;

  分別求重力做的功。

  活動三:探究數(shù)量積的運(yùn)算性質(zhì)

  1、性質(zhì)的發(fā)現(xiàn)

  教材中關(guān)于數(shù)量積的三條性質(zhì)是以探究的形式出現(xiàn)的,為了很好地完成這一探究活動,在完成上述練習(xí)后,我不失時(shí)機(jī)地提出問題8:

  (1)將嘗試練習(xí)中的① ② ③的結(jié)論推廣到一般向量,你能得到哪些結(jié)論?

  (2)比較︱

  ·

  ︱與︱

  ︱×︱

  ︱的大小,你有什么結(jié)論?

  在學(xué)生討論交流的基礎(chǔ)上,教師進(jìn)一步明晰數(shù)量積的性質(zhì),然后再由學(xué)生利用數(shù)量積的定義給予證明,完成探究活動。

  2、明晰數(shù)量積的性質(zhì)

  3、性質(zhì)的證明

  這樣設(shè)計(jì)體現(xiàn)了教師只是教學(xué)活動的引領(lǐng)者,而學(xué)生才是學(xué)習(xí)活動的主體,讓學(xué)生成為學(xué)習(xí)的研究者,不斷地體驗(yàn)到成功的喜悅,激發(fā)學(xué)生參與學(xué)習(xí)活動的熱情,不僅使學(xué)生獲得了知識,更培養(yǎng)了學(xué)生由特殊到一般的思維品質(zhì)。

  活動四:探究數(shù)量積的運(yùn)算律

  1、運(yùn)算律的發(fā)現(xiàn)

  關(guān)于運(yùn)算律,教材仍然是以探究的形式出現(xiàn),為此,首先提出問題9

  問題9:我們學(xué)過了實(shí)數(shù)乘法的哪些運(yùn)算律?這些運(yùn)算律對向量是否也適用?

  通過此問題主要是想使學(xué)生在類比的基礎(chǔ)上,猜測提出數(shù)量積的運(yùn)算律。

  學(xué)生可能會提出以下猜測: ①

  ·

  =

  ·

 、(

  ·

  )

  =

  (

  ·

  ) ③(

  +

  )·

  =

  ·

  +

  ·

  猜測①的正確性是顯而易見的。

  關(guān)于猜測②的正確性,我提示學(xué)生思考下面的問題:

  猜測②的左右兩邊的結(jié)果各是什么?它們一定相等嗎?

  學(xué)生通過討論不難發(fā)現(xiàn),猜測②是不正確的。

  這時(shí)教師在肯定猜測③的基礎(chǔ)上明晰數(shù)量積的運(yùn)算律:

  2、明晰數(shù)量積的運(yùn)算律

  3、證明運(yùn)算律

  學(xué)生獨(dú)立證明運(yùn)算律(2)

  我把運(yùn)算運(yùn)算律(2)的證明交給學(xué)生完成,在證明時(shí),學(xué)生可能只考慮到λ>0的情況,為了幫助學(xué)生完善證明,提出以下問題:

  當(dāng)λ<0時(shí),向量

  與λ

  ,

  與λ

  的方向 的關(guān)系如何?此時(shí),向量λ

  與

  及

  與λ

  的夾角與向量

  與

  的夾角相等嗎?

  師生共同證明運(yùn)算律(3)

  運(yùn)算律(3)的證明對學(xué)生來說是比較困難的,為了節(jié)約課時(shí),這個(gè)證明由師生共同完成,我想這也是教材的本意。

  在這個(gè)環(huán)節(jié)中,我仍然是首先為學(xué)生創(chuàng)設(shè)情景,讓學(xué)生在類比的基礎(chǔ)上進(jìn)行猜想歸納,然后教師明晰結(jié)論,最后再完成證明,這樣做不僅培養(yǎng)了學(xué)生推理論證的能力,同時(shí)也增強(qiáng)了學(xué)生類比創(chuàng)新的意識,將知識的獲得和能力的培養(yǎng)有機(jī)的結(jié)合在一起。

  活動五:應(yīng)用與提高

  例1、(師生共同完成)已知︱

  ︱=6,︱

  ︱=4,

  與

  的夾角為60°,求

  (

  +2

  )·(

  -3

  ),并思考此運(yùn)算過程類似于哪種運(yùn)算?

  例2、(學(xué)生獨(dú)立完成)對任意向量

  ,b是否有以下結(jié)論:

  (1)(

  +

  )2=

  2+2

  ·

  +

  2

  (2)(

  +

  )·(

  -

  )=

  2—

  2

  例3、(師生共同完成)已知︱

  ︱=3,︱

  ︱=4, 且

  與

  不共線,k為何值時(shí),向量

  +k

  與

  -k

  互相垂直?并思考:通過本題你有什么收獲?

  本節(jié)教材共安排了四道例題,我根據(jù)學(xué)生實(shí)際選擇了其中的三道,并對例1和例3增加了題后反思。例1是數(shù)量積的性質(zhì)和運(yùn)算律的綜合應(yīng)用,教學(xué)時(shí),我重點(diǎn)從對運(yùn)算原理的分析和運(yùn)算過程的規(guī)范書寫兩個(gè)方面加強(qiáng)示范。完成計(jì)算后,進(jìn)一步提出問題:此運(yùn)算過程類似于哪種運(yùn)算?目的是想讓學(xué)生在類比多項(xiàng)式乘法的基礎(chǔ)上自己猜測提出例2給出的兩個(gè)公式,再由學(xué)生獨(dú)立完成證明,一方面這并不困難,另一方面培養(yǎng)了學(xué)生通過類比這一思維模式達(dá)到創(chuàng)新的目的。例3的主要作用是,在繼續(xù)鞏固性質(zhì)和運(yùn)算律的同時(shí),教給學(xué)生如何利用數(shù)量積來判斷兩個(gè)向量的垂直,是平面向量數(shù)量積的基本應(yīng)用之一,教學(xué)時(shí)重點(diǎn)給學(xué)生分析數(shù)與形的轉(zhuǎn)化原理。

  為了使學(xué)生更好的理解數(shù)量積的含義,熟練掌握性質(zhì)及運(yùn)算律,并能夠應(yīng)用數(shù)量積解決有關(guān)問題,再安排如下練習(xí):

  1、 下列兩個(gè)命題正確嗎?為什么?

 、、若

  ≠0,則對任一非零向量

  ,有

  ·

  ≠0.

 、凇⑷

  ≠0,

  ·

  =

  ·

  ,則

  =

  .

  2、已知△ABC中,

  =

  ,

  =

  ,當(dāng)

  ·

  <0或

  ·

  =0時(shí),試判斷△ABC的形狀。

  安排練習(xí)1的主要目的是,使學(xué)生在與實(shí)數(shù)乘法比較的基礎(chǔ)上全面認(rèn)識數(shù)量積這一重要運(yùn)算,

  通過練習(xí)2使學(xué)生學(xué)會用數(shù)量積表示兩個(gè)向量的夾角,進(jìn)一步感受數(shù)量積的應(yīng)用價(jià)值。

  活動六:小結(jié)提升與作業(yè)布置

  1、本節(jié)課我們學(xué)習(xí)的主要內(nèi)容是什么?

  2、平面向量數(shù)量積的兩個(gè)基本應(yīng)用是什么?

  3、我們是按照怎樣的思維模式進(jìn)行概念的歸納和性質(zhì)的探究?在運(yùn)算律的探究過程中,滲透了哪些數(shù)學(xué)思想?

  4、類比向量的線性運(yùn)算,我們還應(yīng)該怎樣研究數(shù)量積?

  通過上述問題,使學(xué)生不僅對本節(jié)課的知識、技能及方法有了更加全面深刻的認(rèn)識,同時(shí)也為下

  一節(jié)做好鋪墊,繼續(xù)激發(fā)學(xué)生的求知欲。

  布置作業(yè):

  1、課本P121習(xí)題2.4A組1、2、3。

  2、拓展與提高:

  已知

  與

  都是非零向量,且

  +3

  與7

  -5

  垂直,

  -4

  與 7

  -2

  垂直求

  與

  的夾角。

  在這個(gè)環(huán)節(jié)中,我首先考慮檢測全體學(xué)生是否都達(dá)到了“課標(biāo)”的基本要求,因此安排了一組教材中的習(xí)題,目的是讓所有的學(xué)生繼續(xù)加深對數(shù)量積概念的理解和應(yīng)用,為后續(xù)學(xué)習(xí)打好基礎(chǔ)。其次,為了能讓不同的學(xué)生在數(shù)學(xué)領(lǐng)域得到不同的發(fā)展,我又安排了一道有一定難度的問題供學(xué)有余力的同學(xué)選做。

  六、教學(xué)評價(jià)設(shè)計(jì)

  評價(jià)方式的轉(zhuǎn)變是新課程改革的一大亮點(diǎn),課標(biāo)指出:相對于結(jié)果,過程更能反映每個(gè)學(xué)生的發(fā)展變化,體現(xiàn)出學(xué)生成長的歷程。因此,數(shù)學(xué)學(xué)習(xí)的評價(jià)既要重視結(jié)果,也要重視過程。結(jié)合“課標(biāo)”對數(shù)學(xué)學(xué)習(xí)的評價(jià)建議,對本節(jié)課的教學(xué)我主要通過以下幾種方式進(jìn)行:

  1、 通過與學(xué)生的問答交流,發(fā)現(xiàn)其思維過程,在鼓勵(lì)的基礎(chǔ)上,糾正偏差,并對其進(jìn)行定

  性的評價(jià)。

  2、在學(xué)生討論、交流、協(xié)作時(shí),教師通過觀察,就個(gè)別或整體參與活動的態(tài)度和表現(xiàn)做出評價(jià),以此來調(diào)動學(xué)生參與活動的積極性。

  3、 通過練習(xí)來檢驗(yàn)學(xué)生學(xué)習(xí)的效果,并在講評中,肯定優(yōu)點(diǎn),指出不足。

  4、 通過作業(yè),反饋信息,再次對本節(jié)課做出評價(jià),以便查漏補(bǔ)缺。

高中數(shù)學(xué)說課稿8

尊敬的各位考官:

  大家好!

  我是今天的x號考生,今天我說課的題目是《直線與平面平行的判定》。

  高中數(shù)學(xué)課程以學(xué)生發(fā)展為本,提升數(shù)學(xué)學(xué)科核心素養(yǎng)。這節(jié)課我將秉承這一教學(xué)理念,從教材分析、教學(xué)目標(biāo)、教學(xué)過程等幾個(gè)方面來展開我的說課。

  一、說教材

  本節(jié)課選自人教A版高中數(shù)學(xué)必修2第二章第2節(jié)。此前學(xué)生對空間立體幾何已經(jīng)有了一定的感知。通過本節(jié)課的學(xué)習(xí),能使學(xué)生進(jìn)一步了解空間中直線與平面平行關(guān)系的判定方法,培養(yǎng)學(xué)生的邏輯思維和空間想象能力。

  二、說學(xué)情

  學(xué)生已經(jīng)學(xué)習(xí)了空間中點(diǎn)、直線、平面間的位置關(guān)系,知道若直線與平面平行,則沒有公共點(diǎn),但直接利用定義無法進(jìn)行判斷。因而我會注意在教學(xué)時(shí)逐步引導(dǎo)學(xué)生,在辯證思考中探索直線與平面平行的條件。

  三、說教學(xué)目標(biāo)

  根據(jù)以上對教材的分析和對學(xué)情的把握,我設(shè)置本節(jié)課的教學(xué)目標(biāo)如下:

  (一)知識與技能

  掌握直線與平面平行的判定定理,會用文字語言、符號語言和圖形語言描述判定定理,并會進(jìn)行簡單應(yīng)用。

 。ǘ┻^程與方法

  通過直觀感知、觀察、操作確認(rèn)的認(rèn)知過程,培養(yǎng)空間想象力和邏輯思維能力,體會“降維”的思想。

  (三)情感、態(tài)度與價(jià)值觀

  通過生活中的實(shí)例,體會平行關(guān)系在生活中的廣泛應(yīng)用;在探究線面平行判定定理的過程中,形成學(xué)習(xí)數(shù)學(xué)的積極態(tài)度。

  四、說教學(xué)重難點(diǎn)

  根據(jù)學(xué)生現(xiàn)有的知識儲備和知識本身的難易程度,我設(shè)置本節(jié)課教學(xué)重點(diǎn)為:直線與平面平行的判定定理。教學(xué)難點(diǎn)為:直線與平面平行的判定定理的探究。

  五、說教法和學(xué)法

  為達(dá)成教學(xué)目標(biāo),突破教學(xué)重難點(diǎn),本節(jié)課我將采用講授法、自主探究法、練習(xí)法等教學(xué)方法,以達(dá)到教與學(xué)的和諧完美統(tǒng)一。

  六、說教學(xué)過程

  下面我將重點(diǎn)談?wù)勎业慕虒W(xué)過程。

 。ㄒ唬┮胄抡n

  導(dǎo)入環(huán)節(jié)我會帶領(lǐng)學(xué)生從文字語言、圖形語言和符號語言這三個(gè)角度復(fù)習(xí)直線與平面有哪些位置關(guān)系。接著我會請學(xué)生思考,該如何判定直線與平面平行。根據(jù)定義,只需判定直線與平面沒有公共點(diǎn)即可。但直線無限伸長,平面無限延展,如何保證直線與平面無公共點(diǎn)。由此引發(fā)認(rèn)知沖突,引入本節(jié)課的學(xué)習(xí)。

  通過復(fù)習(xí)導(dǎo)入,不僅鞏固了之前所學(xué),建立起新舊知識之間的`聯(lián)系,而且能夠有效激發(fā)起學(xué)生的學(xué)習(xí)興趣,從而為下面的學(xué)習(xí)打好基礎(chǔ)。

 。ǘ┲v解新知

  接下來是新知講解環(huán)節(jié)。

  我會請學(xué)生觀察,教室門扇的兩邊是平行的,當(dāng)門扇繞著一邊轉(zhuǎn)動時(shí),觀察門扇轉(zhuǎn)動的一邊和門框所在平面有怎樣的位置關(guān)系。并組織學(xué)生動手操作,將書本平放在桌面上,翻動書的封面,封面邊緣所在直線與桌面所在平面具有什么樣的位置關(guān)系。

  學(xué)生不難看出其中的平行關(guān)系。在此基礎(chǔ)上,我會請學(xué)生同桌兩人交流討論,如果直線與平面平行,則這條直線與平面內(nèi)多少條直線平行。如果這條直線平行于平面內(nèi)的無數(shù)條直線,那么這條直線是否一定與這個(gè)平面平行。

 。ㄈ┱n堂練習(xí)

  除了知道知識,學(xué)生還要能對知識進(jìn)行應(yīng)用。我會出示以下練習(xí)題:求證空間四邊形相鄰兩邊中點(diǎn)的連線平行于另外兩邊所在的平面。結(jié)合這一練習(xí)題,我會進(jìn)一步強(qiáng)調(diào),線面平行問題可轉(zhuǎn)化為線線平行問題。這也為之后線面、面面關(guān)系的學(xué)習(xí)奠定基礎(chǔ)。

 。ㄋ模┬〗Y(jié)作業(yè)

  課堂小結(jié)部分,我會充分發(fā)揮學(xué)生的主體性,請學(xué)生說一說本節(jié)課的收獲。收獲不僅僅只是知識方面,也可以說一說這節(jié)課學(xué)到的思想方法等,進(jìn)一步培養(yǎng)學(xué)生的綜合素質(zhì)。

  課后作業(yè)我會請學(xué)生完成書上相應(yīng)練習(xí)題,使學(xué)生在課后也能得到思考,夯實(shí)學(xué)生對于新知的掌握。

  七、說板書設(shè)計(jì)

  我的板書設(shè)計(jì)遵循簡潔明了、突出重點(diǎn)的原則,以下是我的板書設(shè)計(jì):

  略。

高中數(shù)學(xué)說課稿9

尊敬的各位考官:

  大家好,我是X號考生,今天我說課的題目是《圓的標(biāo)準(zhǔn)方程》。

  對于本節(jié)課,我將以教什么、怎么教、為什么這么教為思路,從教材分析、學(xué)情分析、教學(xué)重難點(diǎn)等幾個(gè)方面加以闡述。

  一、說教材

  首先談一談我對教材的理解。本節(jié)課選自人教A版實(shí)驗(yàn)版高中數(shù)學(xué)必修二,主要探究圓的標(biāo)準(zhǔn)方程。此前學(xué)生已經(jīng)學(xué)習(xí)了在平面直角坐標(biāo)系中用方程表示直線,起到良好的'鋪墊作用。本節(jié)課為后續(xù)學(xué)習(xí)圓的一般方程及進(jìn)一步學(xué)習(xí)平面解析幾何打下基礎(chǔ)。

  二、說學(xué)情

  再來談?wù)剬W(xué)生的情況。高中生思維能力已經(jīng)非常成熟,能夠有自己獨(dú)立的思考,所以應(yīng)該積極發(fā)揮這種優(yōu)勢,讓學(xué)生獨(dú)立思考探索。

  三、說教學(xué)目標(biāo)

  基于以上分析,我制定了如下三維教學(xué)目標(biāo):

 。ㄒ唬┲R與技能

  掌握圓的標(biāo)準(zhǔn)方程,能夠在給出基本條件的情況下求出圓的標(biāo)準(zhǔn)方程。

 。ǘ┻^程與方法

  經(jīng)歷探究圓的標(biāo)準(zhǔn)方程的過程,提升邏輯推理、直觀想象與數(shù)學(xué)運(yùn)算能力。

  (三)情感、態(tài)度與價(jià)值觀

  獲得成功的體驗(yàn),增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣與信心。

  四、說教學(xué)重難點(diǎn)

  在教學(xué)目標(biāo)的實(shí)現(xiàn)過程中,教學(xué)重點(diǎn)是圓的標(biāo)準(zhǔn)方程,教學(xué)難點(diǎn)是圓的標(biāo)準(zhǔn)方程的探究過程。

  五、說教法學(xué)法

  現(xiàn)代教學(xué)理論認(rèn)為,在教學(xué)過程中,學(xué)生是學(xué)習(xí)的主體,教師是學(xué)習(xí)的組織者、引導(dǎo)者、合作者。根據(jù)這一教學(xué)理念,本節(jié)課我將采用自主探究為主,輔以教師講解、小組討論等教學(xué)方法,層層遞進(jìn)進(jìn)行展開。

  六、說教學(xué)過程

  下面重點(diǎn)談?wù)勎覍虒W(xué)過程的設(shè)計(jì)。

 。ㄒ唬⿲(dǎo)入新課

  課堂伊始,為了鋪墊用方程表示平面圖形的思路,也為了幫助學(xué)生完善知識體系,我會帶領(lǐng)學(xué)生簡單回顧之前所學(xué)內(nèi)容——在平面直角坐標(biāo)系中用坐標(biāo)、用方程的方法表示一些點(diǎn)、直線,由確定直線的幾何要素推導(dǎo)出直線的方程。

  進(jìn)而提出能不能在平面直角坐標(biāo)系中表示其他圖形。用大屏幕展示一些圓形物品,請學(xué)生舉例更多圓形物品。然后提問:能否用方程的思想在平面直角坐標(biāo)系中表示圓?由此引出課題。

 。ǘ┲v解新知

高中數(shù)學(xué)說課稿10

  一、教材分析

  1、教材所處的地位和作用

  奇偶性是人教A版第一章集合與函數(shù)概念的第3節(jié)函數(shù)的基本性質(zhì)的第2小節(jié)。

  奇偶性是函數(shù)的一條重要性質(zhì),教材從學(xué)生熟悉的 及入手,從特殊到一般,從具體到抽象,注重信息技術(shù)的應(yīng)用,比較系統(tǒng)地介紹了函數(shù)的奇偶性。從知識結(jié)構(gòu)看,它既是函數(shù)概念的拓展和深化,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)的基礎(chǔ)。因此,本節(jié)課起著承上啟下的重要作用。

  2、學(xué)情分析

  從學(xué)生的認(rèn)知基礎(chǔ)看,學(xué)生在初中已經(jīng)學(xué)習(xí)了軸對稱圖形和中心對稱圖形,并且有了一定數(shù)量的簡單函數(shù)的儲備。同時(shí),剛剛學(xué)習(xí)了函數(shù)單調(diào)性,已經(jīng)積累了研究函數(shù)的基本方法與初步經(jīng)驗(yàn)。

  從學(xué)生的思維發(fā)展看,高一學(xué)生思維能力正在由形象經(jīng)驗(yàn)型向抽象理論型轉(zhuǎn)變,能夠用假設(shè)、推理來思考和解決問題、

  3、教學(xué)目標(biāo)

  基于以上對教材和學(xué)生的分析,以及新課標(biāo)理念,我設(shè)計(jì)了這樣的教學(xué)目標(biāo):

  【知識與技能】

  1、能判斷一些簡單函數(shù)的奇偶性。

  2、能運(yùn)用函數(shù)奇偶性的代數(shù)特征和幾何意義解決一些簡單的問題。

  【過程與方法】

  經(jīng)歷奇偶性概念的形成過程,提高觀察抽象能力以及從特殊到一般的歸納概括能力。

  【情感、態(tài)度與價(jià)值觀】

  通過自主探索,體會數(shù)形結(jié)合的思想,感受數(shù)學(xué)的對稱美。

  從課堂反應(yīng)看,基本上達(dá)到了預(yù)期效果。

  4、教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):函數(shù)奇偶性的概念和幾何意義。

  幾年的教學(xué)實(shí)踐證明,雖然函數(shù)奇偶性這一節(jié)知識點(diǎn)并不是很難理解,但知識點(diǎn)掌握不全面的學(xué)生容易出現(xiàn)下面的錯(cuò)誤。他們往往流于表面形式,只根據(jù)奇偶性的定義檢驗(yàn)成立即可,而忽視了考慮函數(shù)定義域的問題。因此,在介紹奇、偶函數(shù)的定義時(shí),一定要揭示定義的隱含條件,從正反兩方面講清定義的內(nèi)涵和外延。因此,我把函數(shù)的奇偶性概念設(shè)計(jì)為本節(jié)課的重點(diǎn)。在這個(gè)問題上我除了注意概念的講解,還特意安排了一道例題,來加強(qiáng)本節(jié)課重點(diǎn)問題的講解。

  難點(diǎn):奇偶性概念的數(shù)學(xué)化提煉過程。

  由于,學(xué)生看待問題還是靜止的、片面的,抽象概括能力比較薄弱,這對建構(gòu)奇偶性的概念造成了一定的困難。因此我把奇偶性概念的數(shù)學(xué)化提煉過程設(shè)計(jì)為本節(jié)課的難點(diǎn)。

  二、教法與學(xué)法分析

  1、教法

  根據(jù)本節(jié)教材內(nèi)容和編排特點(diǎn),為了更有效地突出重點(diǎn),突破難點(diǎn),按照學(xué)生的認(rèn)知規(guī)律,遵循教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想,采用以引導(dǎo)發(fā)現(xiàn)法為主,直觀演示法、類比法為輔。教學(xué)中,精心設(shè)計(jì)一個(gè)又一個(gè)帶有啟發(fā)性和思考性的問題,創(chuàng)設(shè)問題情景,誘導(dǎo)學(xué)生思考,使學(xué)生始終處于主動探索問題的積極狀態(tài),從而培養(yǎng)思維能力。從課堂反應(yīng)看,基本上達(dá)到了預(yù)期效果。

  2、學(xué)法

  讓學(xué)生在觀察一歸納一檢驗(yàn)一應(yīng)用的學(xué)習(xí)過程中,自主參與知識的發(fā)生、發(fā)展、形成的過程,從而使學(xué)生掌握知識。

  三、教學(xué)過程

  具體的教學(xué)過程是師生互動交流的過程,共分六個(gè)環(huán)節(jié):設(shè)疑導(dǎo)入、觀圖激趣;指導(dǎo)觀察、形成概念;學(xué)生探索、領(lǐng)會定義;知識應(yīng)用,鞏固提高;總結(jié)反饋;分層作業(yè),學(xué)以致用。下面我對這六個(gè)環(huán)節(jié)進(jìn)行說明。

 。ㄒ唬┰O(shè)疑導(dǎo)入、觀圖激趣

  由于本節(jié)內(nèi)容相對獨(dú)立,專題性較強(qiáng),所以我采用了開門見山導(dǎo)入方式,直接點(diǎn)明要學(xué)的內(nèi)容,使學(xué)生的思維迅速定向,達(dá)到開始就明確目標(biāo)突出重點(diǎn)的效果。

  用多媒體展示一組圖片,使學(xué)生感受到生活中的對稱美。再讓學(xué)生觀察幾個(gè)特殊函數(shù)圖象。通過讓學(xué)生觀察圖片導(dǎo)入新課,既激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,又為學(xué)習(xí)新知識作好鋪墊。

 。ǘ┲笇(dǎo)觀察、形成概念

  在這一環(huán)節(jié)中共設(shè)計(jì)了2個(gè)探究活動。

  探究1 、2 數(shù)學(xué)中對稱的形式也很多,這節(jié)課我們就以函數(shù)和=︱x︱以及和為例展開探究。這個(gè)探究主要是通過學(xué)生的自主探究來實(shí)現(xiàn)的,由于有圖片的鋪墊,絕大多數(shù)學(xué)生很快就說出函數(shù)圖象關(guān)于Y軸(原點(diǎn))對稱。接著學(xué)生填表,從數(shù)值角度研究圖象的這種特征,體現(xiàn)在自變量與函數(shù)值之間有何規(guī)律? 引導(dǎo)學(xué)生先把它們具體化,再用數(shù)學(xué)符號表示。借助課件演示(令 比較 得出等式 , 再令 ,得到 ) 讓學(xué)生發(fā)現(xiàn)兩個(gè)函數(shù)的對稱性反應(yīng)到函數(shù)值上具有的特性, ()然后通過解析式給出嚴(yán)格證明,進(jìn)一步說明這個(gè)特性對定義域內(nèi)任意一個(gè) 都成立。 最后給出偶函數(shù)(奇函數(shù))定義(板書)。

  在這個(gè)過程中,學(xué)生把對圖形規(guī)律的感性認(rèn)識,轉(zhuǎn)化成數(shù)量的規(guī)律性,從而上升到了理性認(rèn)識,切實(shí)經(jīng)歷了一次從特殊歸納出一般的過程體驗(yàn)。

 。ㄈ 學(xué)生探索、領(lǐng)會定義

  探究3 下列函數(shù)圖象具有奇偶性嗎?

  設(shè)計(jì)意圖:深化對奇偶性概念的理解。強(qiáng)調(diào):函數(shù)具有奇偶性的前提條件是--定義域關(guān)于原點(diǎn)對稱。(突破了本節(jié)課的難點(diǎn))

  (四)知識應(yīng)用,鞏固提高

  在這一環(huán)節(jié)我設(shè)計(jì)了4道題

  例1判斷下列函數(shù)的奇偶性

  選例1的第(1)及(3)小題板書來示范解題步驟,其他小題讓學(xué)生在下面完成。

  例1設(shè)計(jì)意圖是歸納出判斷奇偶性的步驟:

  (1) 先求定義域,看是否關(guān)于原點(diǎn)對稱;

  (2) 再判斷f(-x)=-f(x) 還是 f(-x)=f(x)。

  例2 判斷下列函數(shù)的奇偶性:

  例3 判斷下列函數(shù)的奇偶性:

  例2、3設(shè)計(jì)意圖是探究一個(gè)函數(shù)奇偶性的`可能情況有幾種類型?

  例4(1)判斷函數(shù)的奇偶性。

 。2)如圖給出函數(shù)圖象的一部分,你能根據(jù)函數(shù)的奇偶性畫出它在y軸左邊的圖象嗎?

  例4設(shè)計(jì)意圖加強(qiáng)函數(shù)奇偶性的幾何意義的應(yīng)用。

  在這個(gè)過程中,我重點(diǎn)關(guān)注了學(xué)生的推理過程的表述。通過這些問題的解決,學(xué)生對函數(shù)的奇偶性認(rèn)識、理解和應(yīng)用都能提升很大一個(gè)高度,達(dá)到當(dāng)堂消化吸收的效果。

 。ㄎ澹┛偨Y(jié)反饋

  在以上課堂實(shí)錄中充分展示了教法、學(xué)法中的互動模式,問題貫穿于探究過程的始終,切實(shí)體現(xiàn)了啟發(fā)式、問題式教學(xué)法的特色。

  在本節(jié)課的最后對知識點(diǎn)進(jìn)行了簡單回顧,并引導(dǎo)學(xué)生總結(jié)出本節(jié)課應(yīng)積累的解題經(jīng)驗(yàn)。知識在于積累,而學(xué)習(xí)數(shù)學(xué)更在于知識的應(yīng)用經(jīng)驗(yàn)的積累。所以提高知識的應(yīng)用能力、增強(qiáng)錯(cuò)誤的預(yù)見能力是提高數(shù)學(xué)綜合能力的很重要的策略。

 。┓謱幼鳂I(yè),學(xué)以致用

  必做題:課本第36頁練習(xí)第1-2題。

  選做題:課本第39頁習(xí)題1、3A組第6題。

  思考題:課本第39頁習(xí)題1、3B組第3題。

  設(shè)計(jì)意圖:面向全體學(xué)生,注重個(gè)人差異,加強(qiáng)作業(yè)的針對性,對學(xué)生進(jìn)行分層作業(yè),既使學(xué)生掌握基礎(chǔ)知識,又使學(xué)有余力的學(xué)生有所提高,進(jìn)一步達(dá)到不同的人在數(shù)學(xué)上得到不同的發(fā)展。

高中數(shù)學(xué)說課稿11

  教學(xué)目標(biāo)

  依據(jù)教學(xué)大綱、考試說明及學(xué)生的實(shí)際認(rèn)知情況,設(shè)計(jì)目標(biāo)如下:

  1、知識與技能:

 。1)了解互為反函數(shù)的函數(shù)圖像間的關(guān)系,并能利用這一關(guān)系,由已知函數(shù)的圖像作出反函數(shù)的圖像。

  (2)通過由特殊到一般的歸納,培養(yǎng)學(xué)生探索問題的能力。

  2、過程與方法:由特殊事例出發(fā),由教師引導(dǎo),學(xué)生主動探索得出互為反函數(shù)的函數(shù)圖像間的關(guān)系,使學(xué)生探索知識的形成過程,本可采用自主探索,引導(dǎo)發(fā)現(xiàn),直觀演示等教學(xué)方法,同時(shí)滲透數(shù)形結(jié)合思想。

  3、情感態(tài)度價(jià)值觀:通過圖像的對稱變換是學(xué)生該授數(shù)學(xué)的對稱美和諧美,激發(fā)學(xué)生的學(xué)習(xí)興趣。

  重點(diǎn)難點(diǎn)

  根據(jù)教學(xué)目標(biāo),應(yīng)有一個(gè)讓學(xué)生參與實(shí)踐,發(fā)現(xiàn)規(guī)律,總結(jié)特點(diǎn)、歸納方法的探索認(rèn)知過程。特確定:

  重點(diǎn):互為反函數(shù)的函數(shù)圖像間的關(guān)系。

  難點(diǎn):發(fā)現(xiàn)數(shù)學(xué)規(guī)律。

  教學(xué)結(jié)構(gòu)

  教學(xué)過程設(shè)計(jì)

  創(chuàng)設(shè)情景,引入新課

  1、復(fù)習(xí)提問反函數(shù)的概念。

  〇學(xué)生活動學(xué)生回答,教師總結(jié)

 。1)用y表示x

 。2)把y當(dāng)自變量還是函數(shù)

  提出問題,探究問題

  一、畫出y=3x-2的圖像,并求出反函數(shù)。

  ●引導(dǎo)設(shè)問1原函數(shù)中的自變量與函數(shù)值和反函數(shù)中的自變量函數(shù)值什么關(guān)系?

  〇學(xué)生活動學(xué)生很容易回答

  原函數(shù)y=3x-2中反函數(shù)中

  y:函數(shù)x:自變量x:函數(shù)y:自變量

  ●引導(dǎo)設(shè)問2在原函數(shù)定義域內(nèi)任給定一個(gè)都有唯一的一個(gè)與之對應(yīng),即在原函數(shù)圖像上,那么哪一點(diǎn)在反函數(shù)圖像上?

  〇學(xué)因?yàn)?3-2成立,所以成立即(,)在反函數(shù)圖像上。

  ●引導(dǎo)設(shè)問3若連結(jié)BG,則BG與y=x什么關(guān)系?點(diǎn)B與點(diǎn)G什么關(guān)系?為什么?點(diǎn)B再換一個(gè)位置行嗎?

  〇學(xué)生活動學(xué)生根據(jù)圖形很容易得出y=x垂直平分BG,點(diǎn)B與點(diǎn)G關(guān)于y=x對稱。學(xué)生證法可能有OB=OG,BD=GD等。

  ▲教師引導(dǎo)教師用幾何花板,就上面的問題追隨學(xué)生的思路演示當(dāng)在y=3x-2圖像變化時(shí)(,)也隨之變化但始終有兩點(diǎn)關(guān)于y=x對稱。

  ●引導(dǎo)設(shè)問4若不求反函數(shù),你能畫出y=3x-2的反函數(shù)的圖像嗎?怎么畫?

  〇學(xué)生活動有了前面的鋪墊學(xué)生很容易想到只要找出點(diǎn)G的兩個(gè)位置便可以畫出反函數(shù)的圖像。

  ●引導(dǎo)設(shè)問5上題中原函數(shù)與反函數(shù)的圖像,這兩條直線什么關(guān)系?

  〇學(xué)生活動由前面容易得出(關(guān)于y=x對稱)

  ●引導(dǎo)設(shè)問6若把當(dāng)作原函數(shù)的圖像,那么它的反函數(shù)圖像是誰?

  〇學(xué)生活動由圖中可以看出關(guān)于y=x相互對稱所以他的反函數(shù)圖像應(yīng)是,另外由上節(jié)課原函數(shù)與反函數(shù)互為反函數(shù)也可得。

  ●引導(dǎo)設(shè)問7以上是一個(gè)特殊的函數(shù),圖像為直線,若對一個(gè)一般的函數(shù)圖像你能根據(jù)上題的原理畫出反函數(shù)的圖像嗎?如圖是的圖像,請你猜想出它的反函數(shù)圖像。

  〇學(xué)生活動由上題學(xué)生不難得出做y=x的對稱圖像(教師配合動畫演示)

  ●引導(dǎo)設(shè)問8通過上面的兩個(gè)問題我們可以得出原函數(shù)圖像與反函數(shù)圖像有什么關(guān)系?

  ▲學(xué)生總結(jié),教師補(bǔ)充結(jié)論

  (1)一個(gè)函數(shù)若存在反函數(shù)則原函數(shù)和反函數(shù)的圖像關(guān)于y=x這條直線對稱。

  (2)一個(gè)函數(shù)若存在反函數(shù)則這兩個(gè)函數(shù)許違反寒暑,若把其中一個(gè)圖像當(dāng)作原函數(shù)圖像則另一個(gè)圖象便是反函數(shù)圖像。

  習(xí)題精煉,深化概念

  ●引導(dǎo)設(shè)問9根據(jù)圖像判斷函數(shù)有沒有反函數(shù)?為什么?對自變量加上什么條件才能有反函數(shù)?

  〇學(xué)生活動學(xué)生從圖中可以發(fā)現(xiàn)在原函數(shù)中可以有兩個(gè)不等的自變量與同一個(gè)y相對應(yīng),當(dāng)我們用y表示x后,對一個(gè)y會有兩個(gè)x與之對應(yīng),所以應(yīng)加上自變量的范圍,使得原函數(shù)是從定義域到值域的一一映射。如:加上x>0;x

  ●引導(dǎo)設(shè)問10什么樣的函數(shù)具有反函數(shù)?

  ▲教師引導(dǎo)學(xué)生總結(jié)如果一個(gè)函數(shù)圖像關(guān)于y=x對稱后還能成為一個(gè)函數(shù)的圖像,那么這個(gè)函數(shù)就有反函數(shù),這個(gè)圖像就是反函數(shù)的圖像。這與反函數(shù)定義相對應(yīng)。即定義域到值域的一一映射,這樣的函數(shù)具有反函數(shù),而單調(diào)函數(shù)具備這個(gè)特點(diǎn),所以單調(diào)函數(shù)一定有反函數(shù)。

  ●引導(dǎo)設(shè)問11通過上圖我們發(fā)現(xiàn)保留圖像的單調(diào)增(減)的部分,那么它的反函數(shù)也為單調(diào)增(減)的。在看一下前面的幾個(gè)例子你能得到什么樣的結(jié)論?

  〇學(xué)生活動通過觀察學(xué)生容易得到"單調(diào)函數(shù)的反函數(shù)與原函數(shù)的單調(diào)性一致"然后教師進(jìn)一步追問為什么?(由前面我們知道若一個(gè)函數(shù)存在反函數(shù)則x與y之間是一個(gè)對一個(gè)的關(guān)系,而原函數(shù)是增函數(shù)即x越大y也越大,當(dāng)然y越大x也越大。)

  ●引導(dǎo)設(shè)問12由圖中原函數(shù)的圖像作出反函數(shù)的圖像,并回答原函數(shù)的定義域值域與反函數(shù)的定義域值域有什么關(guān)系?

  〇學(xué)生活動由上面結(jié)論很容易做出通過圖形的'樣式使學(xué)生進(jìn)一步認(rèn)識到原函數(shù)的定義域值域是反函數(shù)的值域定義域。

  總結(jié)反思,納入系統(tǒng):

  內(nèi)容總結(jié):

  1、在原函數(shù)圖像上,那么(,)在反函數(shù)圖像上。

  2、與(,)關(guān)于y=x對稱。

  3、原函數(shù)和反函數(shù)的圖像關(guān)于y=x這條直線對稱。

  思想總結(jié):

  由特殊到一般的思想,數(shù)形結(jié)合的思想

  布置作業(yè),承上啟下

  ●說明:教材中對反函數(shù)(第二課時(shí):互為反函數(shù)的函數(shù)圖像間的關(guān)系)的處理是通過畫幾個(gè)特殊的函數(shù)圖像得出一般結(jié)論的。我認(rèn)為這樣處理雖然可以使學(xué)生得出并記住這個(gè)結(jié)論,但學(xué)生對這個(gè)結(jié)論理解并不深刻。這樣處理也不利于培養(yǎng)學(xué)生嚴(yán)密的數(shù)學(xué)思維。而我對這節(jié)課的處理是在不增加教材難度的情況下(不嚴(yán)密證明)利用在原函數(shù)圖像上,那么(,)在反函數(shù)圖像上這一性質(zhì),從圖形上充分研究與(,)的關(guān)系。經(jīng)討論研究可得出結(jié)論"與(,)關(guān)于y=x對稱"。進(jìn)而通過任意點(diǎn)的對稱得出原函數(shù)和反函數(shù)的圖像關(guān)于y=x這條直線對稱,另外利用任意點(diǎn)來研究圖像也是以后數(shù)學(xué)中經(jīng)常用到的方法。具體操作大致如下:首先請學(xué)生畫出y=3x-2的圖像,并求出反函數(shù),然后提出問題1:原函數(shù)中的自變量與函數(shù)值和反函數(shù)中的自變量函數(shù)值什么關(guān)系?學(xué)生很容易得出原函數(shù)與反函數(shù)中的自變量,函數(shù)值正好對調(diào)即:原函數(shù)y=3x-2中y:函數(shù)x:自變量,反函數(shù)中x:函數(shù)y:自變量。問題2:在原函數(shù)定義域內(nèi)任給定一個(gè)都有唯一的一個(gè)與之對應(yīng),即在原函數(shù)圖像上,那么哪一點(diǎn)在反函數(shù)圖像上?對于這個(gè)問題有了上題的鋪墊,學(xué)生不難得出(,)在反函數(shù)圖像上。問題3:若連結(jié)B,G(,),則BG與y=x什么關(guān)系?點(diǎn)B與點(diǎn)G什么關(guān)系?為什么?點(diǎn)B再換一個(gè)位置行嗎?對于這個(gè)問題的設(shè)計(jì)重在幫助學(xué)生理解與(,)為什么關(guān)于y=x對稱,突出本課重點(diǎn)和難點(diǎn)。其它環(huán)節(jié)具體見教案。

高中數(shù)學(xué)說課稿12

  各位老師:

  大家好!

  我叫***,來自**。我說課的題目是《簡單隨機(jī)抽樣》,內(nèi)容選自于新課程人教A版必修3第二章第一節(jié),課時(shí)安排為一個(gè)課時(shí)。下面我將從教材分析、教學(xué)目標(biāo)分析、教學(xué)方法與手段分析、和教學(xué)過程分析等四大方面來闡述我對這節(jié)課的分析和設(shè)計(jì):

  一、教材分析

  1.教材所處的地位和作用

  "簡單隨機(jī)抽樣"是"隨機(jī)抽樣"的基礎(chǔ),"隨機(jī)抽樣"又是"統(tǒng)計(jì)學(xué)"的基礎(chǔ),因此,在"統(tǒng)計(jì)學(xué)"中,"簡單隨機(jī)抽樣"是基礎(chǔ)的基礎(chǔ)。在初中學(xué)生已學(xué)過相關(guān)概念,如"抽樣""總體"、"個(gè)體"、"樣本"、"樣本容量"等,具有一定基礎(chǔ),新教材把"統(tǒng)計(jì)"這部分內(nèi)容編入必修部分,突出了統(tǒng)計(jì)在日常生活中的應(yīng)用,體現(xiàn)它在中學(xué)數(shù)學(xué)中的地位,但同時(shí)也給學(xué)生學(xué)習(xí)增加了難度。

  2教學(xué)的重點(diǎn)和難點(diǎn)

  重點(diǎn):掌握簡單隨機(jī)抽樣常見的兩種方法(抽簽法、隨機(jī)數(shù)表法)

  難點(diǎn):理解簡單隨機(jī)抽樣的科學(xué)性,以及由此推斷結(jié)論的可靠性

  二、教學(xué)目標(biāo)分析

  1.知識與技能目標(biāo):

  正確理解隨機(jī)抽樣的概念,掌握抽簽法、隨機(jī)數(shù)表法的一般步驟;

  2.過程與方法目標(biāo):

 。1)能夠從現(xiàn)實(shí)生活或其他學(xué)科中提出具有一定價(jià)值的統(tǒng)計(jì)問題;

  (2)在解決統(tǒng)計(jì)問題的過程中,學(xué)會用簡單隨機(jī)抽樣的方法從總體中抽取樣本。

  3.情感,態(tài)度和價(jià)值觀目標(biāo)

  通過對現(xiàn)實(shí)生活和其他學(xué)科中統(tǒng)計(jì)問題的`提出,體會數(shù)學(xué)知識與現(xiàn)實(shí)世界及各學(xué)科知識之間的聯(lián)系,認(rèn)識數(shù)學(xué)的重要性

  三、教學(xué)方法與手段分析

  為了充分讓學(xué)生自己分析、判斷、自主學(xué)習(xí)、合作交流。因此,我采用討論發(fā)現(xiàn)法教學(xué),并對學(xué)生滲透"從特殊到一般"的學(xué)習(xí)方法,由于本節(jié)課內(nèi)容實(shí)例多,信息容量大,文字多,我采用多媒體輔助教學(xué),節(jié)省時(shí)間,提高教學(xué)效率,另外采用這種形式也可強(qiáng)化學(xué)生感觀刺激,也能大大提高學(xué)生的學(xué)習(xí)興趣。

  四、教學(xué)過程分析

 。ㄒ唬┰O(shè)置情境,提出問題

  例1:請問下列調(diào)查是"普查"還是"抽樣"調(diào)查?

  A、一鍋水餃的味道B、旅客上飛機(jī)前的安全檢查

  c、一批炮彈的殺傷半徑D、一批彩電的質(zhì)量情況

  E、美國總統(tǒng)的民意支持率

  學(xué)生討論后,教師指出生活中處處有"抽樣"

  「設(shè)計(jì)意圖」生活中處處有"抽樣"調(diào)查,明確學(xué)習(xí)"抽樣"的必要性。

 。ǘ┲鲃犹骄,構(gòu)建新知

  例2:語文老師為了了解某班同學(xué)對某首詩的背誦情況,應(yīng)采用下列哪種抽查方式?為什么?

  A、在班級12名班委名單中逐個(gè)抽查5位同學(xué)進(jìn)行背誦

  B、在班級45名同學(xué)中逐一抽查10位同學(xué)進(jìn)行背誦

  先讓學(xué)生分析、選擇B后,師生一起歸納其特征:

 。1)不放回逐一抽樣,

 。2)抽樣有代表性(個(gè)體被抽到可能性相等),學(xué)生體驗(yàn)B種抽樣的科學(xué)性后,教師指出這是簡單隨機(jī)抽樣,并復(fù)習(xí)初中講過的有關(guān)概念,最后教師補(bǔ)充板書課題--(簡單隨機(jī))抽樣及其定義。

  「設(shè)計(jì)意圖」例2從正面分析簡單隨機(jī)抽樣的科學(xué)性、公平性,突出"等可能性"特征。這是突破教學(xué)難點(diǎn)的重要環(huán)節(jié)之一。

  例3我們班有44名學(xué)生,現(xiàn)從中抽出5名學(xué)生去參加學(xué)生座談會,要使每名學(xué)生的機(jī)會均等,我們應(yīng)該怎么做?談?wù)勀愕南敕ā?/p>

  先讓學(xué)生獨(dú)立思考,然后分小組合作學(xué)習(xí),最后各小組推薦一位同學(xué)發(fā)言,最后師生一起歸納"抽簽法"步驟:

 。1)編號制簽

 。2)攪拌均勻

  (3)逐個(gè)不放回抽取n次。教師板書上面步驟。

  「設(shè)計(jì)意圖」在自主探究,合作交流中構(gòu)建新知,體驗(yàn)"抽簽法"的公平性,從而突破難點(diǎn),突出重點(diǎn)。

  請一位同學(xué)說說例2采用"抽簽法"的實(shí)施步驟。

  「設(shè)計(jì)意圖」

  1、反饋練習(xí),落實(shí)知識點(diǎn),突出重點(diǎn)。

  2、體會"抽簽法"具有"簡單、易行"的優(yōu)點(diǎn)。

  〈屏幕出示〉

  例4、假設(shè)我們要考察某公司生產(chǎn)的500克袋裝牛奶的質(zhì)量是否達(dá)標(biāo),現(xiàn)從800袋牛奶中抽取60袋進(jìn)行檢驗(yàn)

  提問:這道題適合用抽簽法嗎?

  讓學(xué)生進(jìn)行思考,分析抽簽法的局限性,從而引入隨機(jī)數(shù)表法。教師出示一份隨機(jī)數(shù)表,并介紹隨機(jī)數(shù)表,強(qiáng)調(diào)數(shù)表上的數(shù)字都是隨機(jī)的,各個(gè)數(shù)字出現(xiàn)的可能性均等,結(jié)合上例讓學(xué)生討論隨機(jī)數(shù)表法的步驟,最后師生一起歸納步驟:

 。1)編號

 。2)在隨機(jī)數(shù)表上確定起始位置

  (3)取數(shù)。教師板書上面步驟。

  請一位同學(xué)說說例2采用"隨機(jī)數(shù)表法"的實(shí)施步驟。

  「設(shè)計(jì)意圖」

  1、體會隨機(jī)數(shù)表法的科學(xué)性

  2、體會隨機(jī)數(shù)表法的優(yōu)越性:避免制簽、攪拌。

  3、反饋練習(xí),落實(shí)知識點(diǎn),突出重點(diǎn)。

 、缯n堂小結(jié):

  1.簡單隨機(jī)抽樣及其兩種方法

  2.兩種方法的操作步驟

  (采用問答形式)

  「設(shè)計(jì)意圖」通過小結(jié)使學(xué)生們對知識有一個(gè)系統(tǒng)的認(rèn)識,突出重點(diǎn),抓住關(guān)鍵,培養(yǎng)概括能力。

 、璨贾米鳂I(yè)

  課本練習(xí)2、3

  [設(shè)計(jì)意圖]課后作業(yè)的布置是為了檢驗(yàn)學(xué)生對本節(jié)課內(nèi)容的理解和運(yùn)用程度以及實(shí)際接受情況,并促使學(xué)生進(jìn)一步鞏固和掌握所學(xué)內(nèi)容。

高中數(shù)學(xué)說課稿13

  一、教材分析:

  《向量的加法》是《必修》4第二章第二單元中"平面向量的線性運(yùn)算"的第一節(jié)課。本節(jié)資料有向量加法的平行四邊形法則、三角形法則及應(yīng)用,向量加法的運(yùn)算律及應(yīng)用,大約需要1課時(shí)。向量的加法是向量的線性運(yùn)算中最基本的一種運(yùn)算,向量的加法及其幾何意義為后繼學(xué)習(xí)向量的減法運(yùn)算及其幾何意義、向量的數(shù)乘運(yùn)算及其幾何意義奠定了基礎(chǔ);其中三角形法則適用于求任意多個(gè)向量的和,在空間向量與立體幾何中有很普遍的應(yīng)用。所以本課在"平面向量"及"空間向量"中有很重要的地位。

  二、學(xué)情分析:

  學(xué)生在上節(jié)課中學(xué)習(xí)了向量的定義及表示,相等向量,平行向量等概念,明白向量能夠自由移動,這是學(xué)習(xí)本節(jié)資料的基礎(chǔ)。學(xué)生對數(shù)的運(yùn)算了如指掌,并且在物理中學(xué)過力的合成、位移的合成等矢量的加法,所以向量的加法可經(jīng)過類比數(shù)的加法、以所學(xué)的物理模型為背景引入,這樣做有利于學(xué)生更好地理解向量加法的意義,準(zhǔn)確把握兩個(gè)加法法則的特點(diǎn)。

  三、教學(xué)目的:

  1、經(jīng)過對向量加法的探究,使學(xué)生掌握向量加法的概念,結(jié)合物理學(xué)實(shí)際理解向量加法的意義。能正確領(lǐng)會向量加法的平行四邊形法則和三角形法則的幾何意義,并能運(yùn)用法則作出兩個(gè)已知向量的和向量。

  2、在應(yīng)用活動中,理解向量加法滿足交換律和結(jié)合律以及表述兩個(gè)運(yùn)算律的幾何意義。掌握有特殊位置關(guān)系的兩個(gè)向量之和,比如共線向量,共起點(diǎn)向量、共終點(diǎn)向量等。

  3、經(jīng)過本節(jié)的學(xué)習(xí),培養(yǎng)學(xué)生類比、遷移、分類、歸納等數(shù)學(xué)方面的本事。

  四、教學(xué)重、難點(diǎn)

  重點(diǎn):向量的加法法則。探究向量的加法法則并正確應(yīng)用是本課的重點(diǎn)。兩個(gè)加法法則各有特點(diǎn),聯(lián)系緊密,你中有我,我中有你,實(shí)質(zhì)相同,可是三角形法則適用范圍更加廣泛,且簡便易行,所以是詳講資料,平行四邊形法則在本課中所占份量略少于三角形法則。

  難點(diǎn):對三角形法則的理解;方向相反的兩個(gè)向量的加法。主要是讓學(xué)生認(rèn)識到三角形法則的實(shí)質(zhì)是:將已知向量首尾相接,而不是表示向量的有向線段之間必須構(gòu)成三角形。

  五、教學(xué)方法

  本節(jié)采用以下教學(xué)方法:

  1、類比:由數(shù)的加法運(yùn)算類比向量的加法運(yùn)算。

  2、探究:由力的合成引入平行四邊形法則,在法則的運(yùn)用中觀察圖形得出三角形法則,探求共線向量的加法,發(fā)現(xiàn)三角形法則適用于任意向量相加;經(jīng)過圖形,觀察得出向量加法滿足交換律、結(jié)合律等,這些都體現(xiàn)探究式教學(xué)法的運(yùn)用。

  3、講解與練習(xí):對兩個(gè)法則特點(diǎn)的分析,例題都采取了引導(dǎo)與講解的方法,學(xué)生課堂完成教材中的練習(xí)。

  4、多媒體技術(shù)的運(yùn)用,能直觀地表現(xiàn)向量的平移,相等向量的意義,更能說清兩個(gè)法則的幾何意義及運(yùn)算律。

  六、數(shù)學(xué)思想的體現(xiàn):

  1、分類的思想:總的來說本課中向量的加法分為不共線向量及共線向量兩種形式,共線向量又分為方向相同與方向相反兩種情形,然后專門對零向量與任意向量相加作了規(guī)定,這樣對任意向量的加法都做了討論,線索清楚。

  2、類比思想:使之與數(shù)的加法進(jìn)行類比,使學(xué)生對向量的加法不致于太陌生,既有似曾相識的感覺,又能從比較中看出兩者的不一樣,效果較好。

  3、歸納思想:主要體此刻以下三個(gè)環(huán)節(jié):

  ①學(xué)完平行四邊形法則和三角形法則后,歸納總結(jié),對不共線向量相加,兩個(gè)法則都能夠選用。

 、谟晒簿向量的加法總結(jié)出三角形法則適用于任意兩個(gè)向量的相加,而三角形法則僅適用于不共線向量相加。

  ③對向量加法的結(jié)合律和探討中,又使學(xué)生發(fā)現(xiàn)了三角形法則還適用于任意多個(gè)向量的加法。歸納思想在這三個(gè)環(huán)節(jié)中的運(yùn)用,使得學(xué)生對兩個(gè)加法法則,尤其是三角形法則的理解,步步深入。

  七、教學(xué)過程:

  1、回顧舊知:本節(jié)要進(jìn)行向量的平移,且對向量加法分共線與不共線兩種情景,所以要復(fù)習(xí)向量、相等向量、共線向量等概念,這些都是新課學(xué)習(xí)中必要的知識鋪墊。

  2、引入新課:

 。1)平行四邊形法則的引入。

  學(xué)生在物理學(xué)中雖然接觸過位移的合成,可是并沒有構(gòu)成三角形法則的概念;而對平行四邊形法則學(xué)生已學(xué)過,很熟悉。所以我決定由力的合成引入向量加法的平行四邊形法則。平行四邊形法則的特點(diǎn)是起點(diǎn)相同,可是物理中力的合成是在有相同的作用點(diǎn)的條件下合成的,引入到數(shù)學(xué)中向量加法的平行四邊形法則,所給出的圖形也是現(xiàn)成的平行四邊形,而學(xué)生剛學(xué)完相等向量,對相等向量的概念還沒有深刻的認(rèn)識,易產(chǎn)生誤解:表示兩個(gè)已知向量的有向線段的起點(diǎn)必須在一齊才能用平行四邊形法則,不在一齊不能用。這時(shí)要經(jīng)過講解例1,使學(xué)生認(rèn)識到能夠經(jīng)過平移向量,使表示兩個(gè)向量的有向線段有共同的起點(diǎn)。這一點(diǎn)對理解及運(yùn)用法則求兩向量的和很重要。

  設(shè)計(jì)意圖:本著從學(xué)生最熟悉、離學(xué)生最近的知識經(jīng)驗(yàn)為接入點(diǎn),用學(xué)生熟知的方法來解決新的問題——向量的加法,這樣新中有舊,學(xué)生容易理解,也使學(xué)科間的滲透發(fā)揮了作用,加深了學(xué)生對向量加法的`平行四邊形法則的"起點(diǎn)相同"這一特點(diǎn)的認(rèn)識,例1的講解使學(xué)生認(rèn)識到當(dāng)表示向量的有向線段的起點(diǎn)不在一齊時(shí),須把起點(diǎn)移到一齊,至此才能使學(xué)生完成對平行四邊形法則理解真正到位。

  (2)三角形法則的引入。三角形法則沒有按照教材中利用位移的合成引入,而是從前面所講的平行四邊形法則的圖形中直接引入。

  所以這種把兩個(gè)向量相加的方法稱為三角形法則。接下來用幻燈片完整展示三角形法則,同時(shí)法則的作法敘述、作圖過程對學(xué)生也起到了示例的作用。于是前面的例1還能夠利用三角形法則來做。

  這時(shí),總結(jié)出兩個(gè)不共線向量求和時(shí),平行四邊形法則與三角形法則都能夠用。

  設(shè)計(jì)意圖:由平行四邊形法則的圖形引入三角形法則,能夠很清楚地使學(xué)生從向何意義上認(rèn)識到兩個(gè)法則之間的密切聯(lián)系,理解它們的實(shí)質(zhì),并且銜接自然,能夠使學(xué)生比較地得出兩個(gè)法則的特點(diǎn)與實(shí)質(zhì),并對兩個(gè)法則的特點(diǎn)有較深刻的印象。

 。3)共線向量的加法

  方向相同的兩個(gè)向量相加,對學(xué)生來說較易完成,"將它們接在一齊,取它們的方向及長度之和,作為和向量的方向與長度。"引導(dǎo)學(xué)生分析作法,結(jié)果發(fā)現(xiàn)還是運(yùn)用了三角形法則:首尾相接,方向由第一個(gè)向量的起點(diǎn)指向第二個(gè)向量的終點(diǎn)。

  方向相反的兩個(gè)向量相加,對學(xué)生來說是個(gè)難點(diǎn),首先從作圖上不明白怎樣做?墒菍W(xué)生學(xué)過有理數(shù)加法中的異號兩數(shù)相加:"異號兩數(shù)相加,用較大的絕對值減去較小的絕對值,符號取絕對值較大的數(shù)的符號。"類比異號兩數(shù)相加,他們會用較長的模減去較短的模,方向取模較長的向量的方向。具體做法由教師引導(dǎo)學(xué)生嘗試運(yùn)用三角形法則去做,發(fā)現(xiàn)結(jié)論正確。

  反思過程,學(xué)生自然會想到方向相同的兩個(gè)向量相加,類似于同號兩數(shù)相加。這說明兩個(gè)共線向量相加依然可用三角形法則經(jīng)過以上幾個(gè)環(huán)節(jié)的討論,能夠作個(gè)簡單的小結(jié):兩個(gè)不共線向量相加,可采用平行四邊形法則或三角形法則,而兩個(gè)共線向量相加在本課所學(xué)方法中只能用三角形法則,說明三角形法則適用于任意兩個(gè)向量相加。

  設(shè)計(jì)意圖:經(jīng)過對共線向量加法的探討,拓寬了學(xué)生對三角形法則的認(rèn)識,使得不一樣位置的向量相加都有了依據(jù),并且采用類比的方法,使學(xué)生對共線向量的加法,尤其是方向相反的兩個(gè)向量的加法更易于理解,能夠化解難點(diǎn)。

 。4)向量加法的運(yùn)算律

 、俳粨Q律:交換律是利用平行四邊形法則的圖形,又結(jié)合三角

  形法則得出,理解起來沒什么困難,再一次強(qiáng)化了學(xué)生對兩個(gè)法則特點(diǎn)及實(shí)質(zhì)的認(rèn)識。

  ②結(jié)合律:結(jié)合律是經(jīng)過三個(gè)向量首尾相接,先加前兩個(gè)再與第三個(gè)向量相加,和先加后兩個(gè)向量再與第一個(gè)向量相加所得結(jié)果相同。

  接下來是對應(yīng)的兩個(gè)練習(xí),運(yùn)用交換律與結(jié)合律計(jì)算向量的和。

  設(shè)計(jì)意圖:運(yùn)算律的引入給加法運(yùn)算帶來方便,從后面的練習(xí)中學(xué)生能夠體會到這點(diǎn)。由結(jié)合律還使學(xué)生發(fā)現(xiàn),多個(gè)向量相加,同樣能夠運(yùn)用三角形法則:將所加向量首尾相接,和向量的方向是由第一個(gè)向量的起點(diǎn)指向最終一個(gè)向量的終點(diǎn)。這樣使學(xué)生明白,三角形法則適用于任意多個(gè)向量相加。

  3、小結(jié)

  先由學(xué)生小結(jié),檢查學(xué)生對本課重要知識的認(rèn)識,也給學(xué)生一個(gè)概括本節(jié)知識的機(jī)會,然后用課件展示小結(jié)資料,使學(xué)生印象更深。

 。1)平行四邊形法則:起點(diǎn)相同,適用于不共線向量的求和。

  (2)三角形法則首尾相接,適用于任意多個(gè)向量的求和。

 。3)運(yùn)算律

高中數(shù)學(xué)說課稿14

  各位評委:下午好!

  我叫 ,來自 。今天我說課的課題《 》(第 課時(shí))。下面我將圍繞本節(jié)課“教什么?”、“怎樣教?”以及“為什么這樣教?”三個(gè)問題,從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、課堂設(shè)計(jì)五方面逐一加以分析和說明。

  一、教材分析

 。ㄒ唬┙滩牡牡匚缓妥饔

  《 》是人教版出版社 第 冊、第 單元的內(nèi)容!丁芳仁 在知識上的延伸和發(fā)展,又是本章 的運(yùn)用與鞏固,也為下一章 教學(xué)作鋪墊,起著鏈條的作用。同時(shí),這部分內(nèi)容較好地反映了 的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊(yùn)含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀察能力、概括能力、探究能力及創(chuàng)新意識。

  概括地講,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎(chǔ)性,作用體現(xiàn)在它的工具性。

 。ǘ、學(xué)情分析

  通過前一階段的教學(xué),學(xué)生對 的認(rèn)識已有了一定的認(rèn)知結(jié)構(gòu),主要體現(xiàn)在三個(gè)層面:

  知識層面:學(xué)生在已初步掌握了 。

  能力層面:學(xué)生在初步已經(jīng)掌握了用

  初步具備了 思想。 情感層面:學(xué)生對數(shù)學(xué)新內(nèi)容的學(xué)習(xí)有相當(dāng)?shù)呐d趣和積極性。但探究問題的能力以及合作交流等方面發(fā)展不夠均衡.

 。ㄈ┙虒W(xué)課時(shí)

  本節(jié)內(nèi)容分 課時(shí)學(xué)習(xí)。(本課時(shí),品味數(shù)學(xué)中的和諧美,體驗(yàn)成功的樂趣。)

  二、教學(xué)目標(biāo)分析

  根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點(diǎn)和高中生的認(rèn)知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:

  知識與技能:

  過程與方法:

  情感態(tài)度:

  (例如:創(chuàng)設(shè)問題情景,激發(fā)學(xué)生觀察、分析、探求的學(xué)習(xí)激情、強(qiáng)化學(xué)生參與意識及主體作用。在自主探究與討論交流過程中,培養(yǎng)學(xué)生的合作意識和創(chuàng)新精神. 通過 對立統(tǒng)一關(guān)系的認(rèn)識,對學(xué)生進(jìn)行辨證唯物主義教育)

  在探索過程中,培養(yǎng)獨(dú)立獲取數(shù)學(xué)知識的能力。在解決問題的過程中,讓學(xué)生感受到成功的喜悅,樹立學(xué)好數(shù)學(xué)的信心。在解答數(shù)學(xué)問題時(shí),讓學(xué)生養(yǎng)成理性思維的品質(zhì)。

  三、重難點(diǎn)分析

  重點(diǎn)確定為:

  要把握這個(gè)重點(diǎn)。關(guān)鍵在于理解

  其本質(zhì)就是

  本節(jié)課的難點(diǎn)確定為:

  要突破這個(gè)難點(diǎn),讓學(xué)生歸納

  作鋪墊。

  四、教法與學(xué)法分析

 。ㄒ唬⿲W(xué)法指導(dǎo)

  教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機(jī)會,教給了學(xué)生獲取知識的途徑、思考問題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會逐步感受到數(shù)學(xué)的美,會產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的`興趣;也只有這樣做,課堂教學(xué)才富有時(shí)代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。

 。ǘ┙谭ǚ治

  本節(jié)課設(shè)計(jì)的指導(dǎo)思想是:現(xiàn)代認(rèn)知心理學(xué)--建構(gòu)主義學(xué)習(xí)理論。

  建構(gòu)主義學(xué)習(xí)理論認(rèn)為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動的建構(gòu)活動,學(xué)生應(yīng)與一定的知識背景即情景相聯(lián)系,在實(shí)際情景下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識與經(jīng)驗(yàn)同化和索引出當(dāng)前要學(xué)習(xí)的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。

  本節(jié)課采用“誘思探究教學(xué)法”( 陜西師范大學(xué)教育研究所張熊飛教授)。在課堂教學(xué)中凸顯學(xué)生主體地位的重要性,不再是以教師為中心去設(shè)計(jì)教學(xué)過程,而是以學(xué)生為主體去組織教學(xué)進(jìn)程。把課堂真正地交給了學(xué)生,學(xué)生主體地位得以實(shí)現(xiàn)。

  五、說教學(xué)過程

  本節(jié)課的教學(xué)設(shè)計(jì)充分體現(xiàn)以學(xué)生發(fā)展為本,培養(yǎng)學(xué)生的觀察、概括和探究能力,遵循學(xué)生的認(rèn)知規(guī)律,體現(xiàn)理論聯(lián)系實(shí)際、循序漸進(jìn)和因材施教的教學(xué)原則,通過問題情境的創(chuàng)設(shè),激發(fā)興趣,使學(xué)生在問題解決的探索過程中,由學(xué)會走向會學(xué),由被動答題走向主動探究。

 。ㄒ唬﹦(chuàng)設(shè)情景………………….

  (二)比舊悟新………………….

 。ㄈw納提煉…………………

 。ㄋ模⿷(yīng)用新知,熟練掌握 …………………

 。ㄎ澹┛偨Y(jié)…………………

  (六)作業(yè)布置…………………

 。ㄆ撸┌鍟O(shè)計(jì)…………………

  以上是我對本節(jié)課的一些粗淺的認(rèn)識和構(gòu)想,如有不妥之處,懇請各位專家批評指正。謝謝

  著名美國數(shù)學(xué)家和數(shù)學(xué)教育家波利亞 包括“弄清問題”、“擬定計(jì)劃”、“實(shí)現(xiàn)計(jì)劃”和“回顧反思”四大步驟的解題全過程,它們就好比是尋找和發(fā)現(xiàn)解法的思維過程進(jìn)行分解,使我們對解題的思維過程看得見,摸得著,易于操作。精髓是啟發(fā)你去聯(lián)想。聯(lián)想什么?怎樣聯(lián)想?

高中數(shù)學(xué)說課稿15

  教學(xué)目標(biāo)

  (1)知識目標(biāo):掌握拋物線的定義,掌握拋物線的四種標(biāo)準(zhǔn)方程形式,及其對應(yīng)的焦點(diǎn)、準(zhǔn)線。

 。2)能力目標(biāo):通過對拋物線概念和標(biāo)準(zhǔn)方程的學(xué)習(xí),培養(yǎng)學(xué)生分析和概括的能力,提高建立坐標(biāo)系的能力,由圓錐曲線的統(tǒng)一定義,形成學(xué)生對事物運(yùn)動變化、對立、統(tǒng)一的辨證唯物主義觀點(diǎn)。

  (3)德育目標(biāo):通過拋物線概念和標(biāo)準(zhǔn)方程的學(xué)習(xí),培養(yǎng)學(xué)生勇于探索、嚴(yán)密細(xì)致的科學(xué)態(tài)度,通過提問、討論、思考等教學(xué)活動,調(diào)動學(xué)生積極參與教學(xué),培養(yǎng)良好的學(xué)習(xí)習(xí)慣。

  教學(xué)重點(diǎn):

 。1)拋物線的定義及焦點(diǎn)、準(zhǔn)線;

 。2)利用坐標(biāo)法求出拋物線的四種標(biāo)準(zhǔn)方程;

 。3)會根據(jù)拋物線的焦點(diǎn)坐標(biāo),準(zhǔn)線方程求拋物線的標(biāo)準(zhǔn)方程。

  教學(xué)難點(diǎn):

 。1)拋物線的四種圖形及標(biāo)準(zhǔn)方程的區(qū)分;

 。2)拋物線定義及焦點(diǎn)、準(zhǔn)線等知識的靈活運(yùn)用。

  教學(xué)方法:

  啟發(fā)引導(dǎo)法(通過橢圓與雙曲線第二定義引出拋物線)。

  依據(jù)建構(gòu)主義教學(xué)原理,通過類比、歸納把新知識化歸到原有的認(rèn)知結(jié)構(gòu)中去(二次函數(shù)與拋物線方程的對比,移圖與建立適當(dāng)建立坐標(biāo)系的方法的歸納)。

  利用多媒體教學(xué)

  教學(xué)過程:

  一、課題引入

  利用學(xué)生已有知識提問學(xué)生:1、橢圓的第二種定義:到定點(diǎn)與到定直線的距離的比是小于1的常數(shù)的點(diǎn)的軌跡是橢圓。(用課件演示)

  2、雙曲線的第二種定義:到定點(diǎn)與到定直線的距離的比是大于1的常數(shù)的點(diǎn)的軌跡是雙曲線。(用課件演示)

  由此引出:到定點(diǎn)的距離和到定直線的距離的比是等于1的常數(shù)的點(diǎn)的軌跡是什么?

  (以問題為出發(fā)點(diǎn),創(chuàng)設(shè)情景,提高學(xué)生求知欲)

  教師用直尺、三角板和細(xì)繩演示,學(xué)生觀察所得曲線。

  從而引出本節(jié)課的學(xué)習(xí)內(nèi)容。

  二、講授新課

  1、對拋物線的初步認(rèn)識

  物理中拋物線的運(yùn)動軌跡;數(shù)學(xué)中二次函數(shù)的圖象;生活中拋物線的實(shí)例(圖片顯示)等。

  2、拋物線的定義

  3、拋物線標(biāo)準(zhǔn)方程的推導(dǎo):

 、賹W(xué)生回顧求曲線方程的步驟(建系、設(shè)點(diǎn)、列方程);

 、谌艚裹c(diǎn)F和準(zhǔn)線的距離為()這樣建立坐標(biāo)系?由學(xué)生思考:可能出現(xiàn)的結(jié)果:

  四、課堂小結(jié)

  1、本節(jié)課的內(nèi)容:拋物線的定義,焦點(diǎn)、準(zhǔn)線的`意義及四種標(biāo)準(zhǔn)方程;

  2、理解參數(shù)的幾何意義(焦準(zhǔn)距)

  3、利用坐標(biāo)法求曲線方程是坐標(biāo)系的適當(dāng)選取。

  課后作業(yè):119頁習(xí)題8.52

  4、設(shè)計(jì)說明:學(xué)生在初中學(xué)習(xí)二次函數(shù)時(shí)知道二次函數(shù)的圖象是一個(gè)拋物線,在物理的學(xué)習(xí)中也接觸過拋物線(物體的運(yùn)動軌跡)。因而對拋物線的認(rèn)識比對前面學(xué)習(xí)的兩種圓錐曲線橢圓和雙曲線更多。所以學(xué)生學(xué)起來會輕松。但是要注意的是,現(xiàn)在所學(xué)的拋物線是方程的曲線而不是函數(shù)的圖象。本節(jié)內(nèi)容是在學(xué)習(xí)了橢圓和雙曲線的基礎(chǔ)上,利用圓錐曲線的第二定義統(tǒng)一進(jìn)行展開的,因而對于拋物線的系統(tǒng)學(xué)習(xí)具有雙重的目標(biāo)性。

  拋物線作為點(diǎn)的軌跡,其標(biāo)準(zhǔn)方程的推導(dǎo)過程充滿了辨證法,處處是數(shù)與形之間的對照和相互轉(zhuǎn)化。而要得到拋物線的標(biāo)準(zhǔn)方程,必須建立適當(dāng)?shù)淖鴺?biāo)系,還要依賴焦點(diǎn)和準(zhǔn)線的相互位置關(guān)系,這是拋物線標(biāo)準(zhǔn)方程有四種而不象橢圓和雙曲線只有兩種形式。因而拋物線的標(biāo)準(zhǔn)方程的推導(dǎo)也是培養(yǎng)辨證唯物主義觀點(diǎn)的好素材。

  利用圓錐曲線第二定義通過類比方法,引導(dǎo)學(xué)生觀察和對比,啟發(fā)學(xué)生猜想與概括,利用建立坐標(biāo)系求出拋物線的四種標(biāo)準(zhǔn)方程,讓每一個(gè)學(xué)生都能動手,動口,動腦參與教學(xué)過程,真正貫徹“教師為主導(dǎo),學(xué)生為主體”的教學(xué)思想。對于標(biāo)準(zhǔn)方程中的參數(shù)及其幾何意義,焦點(diǎn)坐標(biāo)和準(zhǔn)線方程與的關(guān)系是本節(jié)課的重點(diǎn)內(nèi)容,必須讓學(xué)生掌握如何根據(jù)標(biāo)準(zhǔn)方程求、焦點(diǎn)坐標(biāo)、準(zhǔn)線方程或根據(jù)后三者求拋物線的標(biāo)準(zhǔn)方程。特別對于一些有關(guān)距離的問題,要能靈活運(yùn)用拋物線的定義給予解決。

  當(dāng)前素質(zhì)教育的主流是培養(yǎng)學(xué)生的能力,讓學(xué)生學(xué)會學(xué)習(xí)。本節(jié)課采用學(xué)生通過探索、觀察、對比分析,自己發(fā)現(xiàn)結(jié)論的學(xué)習(xí)方法,培養(yǎng)了學(xué)生邏輯思維能力,動手實(shí)踐能力以及探索的精神。

【高中數(shù)學(xué)說課稿】相關(guān)文章:

高中數(shù)學(xué)的說課稿06-13

高中數(shù)學(xué)說課稿[精選]06-10

高中數(shù)學(xué)說課稿06-12

高中數(shù)學(xué)說課稿11-14

高中數(shù)學(xué)向量說課稿09-09

高中數(shù)學(xué)的說課稿【精】06-13

高中數(shù)學(xué)說課稿06-25

關(guān)于高中數(shù)學(xué)說課稿11-26

關(guān)于高中數(shù)學(xué)說課稿11-29

高中數(shù)學(xué)說課稿【推薦】01-06