相交弦定理證明
證明:連結(jié)AC,BD
由圓周角定理的推論,得∠A=∠D,∠C=∠B。(圓周角推論2: 在同圓或等圓中,同(等)弧所對圓周角相等.)
∴△PAC∽△PDB
∴PA∶PD=PC∶PB,PA·PB=PC·PD
注:其逆定理可作為證明四邊形是圓的內(nèi)接四邊形的方法. P點若選在圓內(nèi)任意一點更具一般性。其逆定理也可用于證明四點共圓。
2024-09-05
相交弦定理證明
證明:連結(jié)AC,BD
由圓周角定理的推論,得∠A=∠D,∠C=∠B。(圓周角推論2: 在同圓或等圓中,同(等)弧所對圓周角相等.)
∴△PAC∽△PDB
∴PA∶PD=PC∶PB,PA·PB=PC·PD
注:其逆定理可作為證明四邊形是圓的內(nèi)接四邊形的方法. P點若選在圓內(nèi)任意一點更具一般性。其逆定理也可用于證明四點共圓。