y,那么yy;(對稱性)
2.如果x>y,y>z;那么x>z;(傳遞性)
3.如果x>y,而z為任意實數或整式,那么x+z>y+z,即不等式兩邊同時加或減去同一個整式,不等號方向不變;">

男人天堂日韩,中文字幕18页,天天伊人网,成人性生交大片免费视频

不等式的8條基本性質是什么

回答
瑞文問答

2021-10-12

1.如果x>y,那么yy;(對稱性)
2.如果x>y,y>z;那么x>z;(傳遞性)
3.如果x>y,而z為任意實數或整式,那么x+z>y+z,即不等式兩邊同時加或減去同一個整式,不等號方向不變;

擴展資料

  4.如果x>y,z>0,那么xz>yz ,即不等式兩邊同時乘以(或除以)同一個大于0的整式,不等號方向不變;

  5.如果x>y,z<0,那么xz<yz, 即不等式兩邊同時乘以(或除以)同一個小于0的整式,不等號方向改變;

  6.如果x>y,m>n,那么x+m>y+n;

  7.如果x>y>0,m>n>0,那么xm>yn;

  8.如果x>y>0,那么x的.n次冪>y的n次冪(n為正數),x的n次冪<y的n次冪(n為負數)。

  或者說,不等式的基本性質的另一種表達方式有:

 、賹ΨQ性;

  ②傳遞性;

  ③加法單調性,即同向不等式可加性;

 、艹朔▎握{性;

  ⑤同向正值不等式可乘性;

 、拚挡坏仁娇沙朔;

 、哒挡坏仁娇砷_方;

  ⑧倒數法則。

  如果由不等式的基本性質出發(fā),通過邏輯推理,可以論證大量的初等不等式。

  基本不等式中常用公式:

 。1)√((a+b)/2)≥(a+b)/2≥√ab≥2/(1/a+1/b)。(當且僅當a=b時,等號成立)

 。2)√(ab)≤(a+b)/2。(當且僅當a=b時,等號成立)

 。3)a+b≥2ab。(當且僅當a=b時,等號成立)

 。4)ab≤(a+b)/4。(當且僅當a=b時,等號成立)

  (5)||a|-|b| |≤|a+b|≤|a|+|b|。(當且僅當a=b時,等號成立)