男人天堂日韩,中文字幕18页,天天伊人网,成人性生交大片免费视频

數(shù)學(xué)知識點總結(jié)

時間:2022-11-12 17:38:02 知識點總結(jié) 我要投稿

數(shù)學(xué)知識點總結(jié)(通用15篇)

  總結(jié)是指對某一階段的工作、學(xué)習(xí)或思想中的經(jīng)驗或情況加以總結(jié)和概括的書面材料,他能夠提升我們的書面表達(dá)能力,不如靜下心來好好寫寫總結(jié)吧。我們該怎么寫總結(jié)呢?以下是小編整理的數(shù)學(xué)知識點總結(jié),僅供參考,希望能夠幫助到大家。

數(shù)學(xué)知識點總結(jié)(通用15篇)

數(shù)學(xué)知識點總結(jié)1

  1、學(xué)會三視圖的分析:

  2、斜二測畫法應(yīng)注意的地方:

 。1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時,把它畫成對應(yīng)軸o'x'、o'y'、使∠x'o'y'=45°(或135°);(2)平行于x軸的線段長不變,平行于y軸的線段長減半。(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度。

  3、表(側(cè))面積與體積公式:

  ⑴柱體:①表面積:S=S側(cè)+2S底;②側(cè)面積:S側(cè)=;③體積:V=S底h

 、棋F體:①表面積:S=S側(cè)+S底;②側(cè)面積:S側(cè)=;③體積:V=S底h:

  ⑶臺體①表面積:S=S側(cè)+S上底S下底②側(cè)面積:S側(cè)=

 、惹蝮w:①表面積:S=;②體積:V=

  4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書寫

 。1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。

 。2)平面與平面平行:①線面平行面面平行。

 。3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內(nèi)的兩條相交直線

  5、求角:(步驟———————Ⅰ。找或作角;Ⅱ。求角)

  ⑴異面直線所成角的求法:平移法:平移直線,構(gòu)造三角形;

 、浦本與平面所成的角:直線與射影所成的角

數(shù)學(xué)知識點總結(jié)2

  人教版小學(xué)數(shù)學(xué)知識點大全 基本概念

  第一章 數(shù)和數(shù)的運算 一、概念 (一)整數(shù)

  1、整數(shù)的意義

  自然數(shù)和0都是整數(shù)。

  2、自然數(shù)

  我們在數(shù)物體的時候,用來表示物體個數(shù)的1,2,3??叫做自然數(shù)。

  一個物體也沒有,用0表示。0也是自然數(shù)。

  3、計數(shù)單位

  一(個)、十、百、千、萬、十萬、百萬、千萬、億??都是計數(shù)單位。其中“一”是計數(shù)的基本單位。

  10個1是10,10個10是100??每相鄰兩個計數(shù)單位之間的進(jìn)率都是10。這樣的計數(shù)法叫做十進(jìn)制計數(shù)法。

  4、數(shù)位

  計數(shù)單位按照一定的順序排列起來,它們所占的位置叫做數(shù)位。

  5、整數(shù)的讀法:從高位到低位,一級一級地讀。讀億級、萬級時,先按照個級的讀法去讀,再在后面加一個“億”或“萬”字。每一級末尾的0都不讀出來,其它數(shù)位連續(xù)有幾個0都只讀一個零。

  6、整數(shù)的寫法:從高位到低位,一級一級地寫,哪一個數(shù)位上一個單位也沒有,就在那個數(shù)位上寫0。

  7、一個較大的多位數(shù),為了讀寫方便,常常把它改寫成用“萬”或“億”作單位的數(shù)。有時還可以根據(jù)需要,省略這個數(shù)某一位后面的數(shù),寫成近似數(shù)。

  ? 準(zhǔn)確數(shù):在實際生活中,為了計數(shù)的簡便,可以把一個較大的數(shù)改寫成以萬或億為單位的數(shù)。改寫后的數(shù)是原數(shù)的準(zhǔn)確數(shù)。 例如把 1254300000 改寫成以萬做單位的數(shù)是 125430 萬;改寫成 以億做單位 的數(shù) 12.543 億。

  ? 近似數(shù):根據(jù)實際需要,我們還可以把一個較大的數(shù),省略某一位后面的尾數(shù),用一個近似數(shù)來表示。 例如: 1302490015 省略億后面的尾數(shù)是 13 億。? 四舍五入法:求近似數(shù),看尾數(shù)最高位上的數(shù)是幾,比5小就舍去,是5或大于5舍去尾數(shù)向前一位進(jìn)1。這種求近似數(shù)的方法就叫做四舍五入法。

  8、整數(shù)大小的比較:位數(shù)多的那個數(shù)就大,如果位數(shù)相同,就看最高位,最高位上的數(shù)大,那個數(shù)就大;最高位上的數(shù)相同,就看下一位,哪一位上的數(shù)大那個數(shù)就大。以此類推。 (二)小數(shù)

  1、小數(shù)的意義

  把整數(shù)1平均分成10份、100份、1000份?? 得到的十分之幾、百分之幾、千分之幾?? 可以用小數(shù)表示。如1/10記作0.1,7/100記作0.07。

  一位小數(shù)表示十分之幾,兩位小數(shù)表示百分之幾,三位小數(shù)表示千分之幾??

  一個小數(shù)由整數(shù)部分、小數(shù)部分和小數(shù)點部分組成。數(shù)中的圓點叫做小數(shù)點,小數(shù)點左邊的數(shù)叫做整數(shù)部分,小數(shù)點左邊的數(shù)叫做整數(shù)部分,小數(shù)點右邊的數(shù)叫做小數(shù)部分。

  小數(shù)點右邊第一位叫十分位,計數(shù)單位是十分之一(0.1);第二位叫百分位,計數(shù)單位是百分之一(0.01)??小數(shù)部分最大的計數(shù)單位是十分之一,沒有最小的計數(shù)單位。小數(shù)部分有幾個數(shù)位,就叫做幾位小數(shù)。如0.36是兩位小數(shù),3.066是三位小數(shù)

  在小數(shù)里,每相鄰兩個計數(shù)單位之間的進(jìn)率都是10。小數(shù)部分的最高分?jǐn)?shù)單位“十分之一”和整數(shù)部分的最低單位“一”之間的進(jìn)率也是10。

  2、小數(shù)的讀法:讀小數(shù)的時候,整數(shù)部分按照整數(shù)的讀法讀,小數(shù)點讀作“點”,小數(shù)部分從左向右順次讀出每一位數(shù)位上的數(shù)字。

  3、小數(shù)的寫法:寫小數(shù)的時候,整數(shù)部分按照整數(shù)的寫法來寫,小數(shù)點寫在個位右下角,小數(shù)部分順次寫出每一個數(shù)位上的數(shù)字。

  4、比較小數(shù)的大。合瓤此鼈兊恼麛(shù)部分,,整數(shù)部分大的那個數(shù)就大;整數(shù)部分相同的,十分位上的數(shù)大的那個數(shù)就大;十分位上的數(shù)也相同的,百分位上的數(shù)大的那個數(shù)就大??

  5、小數(shù)的分類

  ? 純小數(shù):整數(shù)部分是零的小數(shù),叫做純小數(shù)。例如: 0.25 、 0.368 都是純小數(shù)。

  ? 帶小數(shù):整數(shù)部分不是零的小數(shù),叫做帶小數(shù)。 例如: 3.25 、 5.26 都是帶小數(shù)。

  ? 有限小數(shù):小數(shù)部分的數(shù)位是有限的小數(shù),叫做有限小數(shù)。 例如: 41.7 、 25.3 、 0.23 都是有限小數(shù)。

  ? 無限小數(shù):小數(shù)部分的數(shù)位是無限的小數(shù),叫做無限小數(shù)。 例如: 4.33 ?? 3.1415926 ??

  ? 無限不循環(huán)小數(shù):一個數(shù)的小數(shù)部分,數(shù)字排列無規(guī)律且位數(shù)無限,這樣的小數(shù)叫做無限不循環(huán)小數(shù)。 例如:∏

  ? 循環(huán)小數(shù):一個數(shù)的小數(shù)部分,有一個數(shù)字或者幾個數(shù)字依次不斷重復(fù)出現(xiàn),這個數(shù)叫做循環(huán)小數(shù)。 例如: 3.555 ?? 0.0333 ?? 12.109109 ??

  一個循環(huán)小數(shù)的小數(shù)部分,依次不斷重復(fù)出現(xiàn)的數(shù)字叫做這個循環(huán)小數(shù)的循環(huán)節(jié)。 例如: 3.99 ??的循環(huán)節(jié)是“ 9 ” , 0.5454 ??的循環(huán)節(jié)是“ 54 ” 。

  ? 純循環(huán)小數(shù):循環(huán)節(jié)從小數(shù)部分第一位開始的,叫做純循環(huán)小數(shù)。 例如: 3.111 ?? 0.5656 ??

  ? 混循環(huán)小數(shù):循環(huán)節(jié)不是從小數(shù)部分第一位開始的,叫做混循環(huán)小數(shù)。 3.1222 ?? 0.03333 ??

  寫循環(huán)小數(shù)的時候,為了簡便,小數(shù)的循環(huán)部分只需寫出一個循環(huán)節(jié),并在這個循環(huán)節(jié)的首、末位數(shù)字上各點一個圓點。如果循環(huán) 節(jié)只有一個數(shù)字,就只在它的上面點一個點。 (三)分?jǐn)?shù)

  1、分?jǐn)?shù)的意義

  把單位“1”平均分成若干份,表示這樣的一份或者幾份的數(shù)叫做分?jǐn)?shù)。

  在分?jǐn)?shù)里,中間的橫線叫做分?jǐn)?shù)線;分?jǐn)?shù)線下面的數(shù),叫做分母,表示把單位“1”平均分成多少份;分?jǐn)?shù)線下面的數(shù)叫做分子,表示有這樣的多少份。

  把單位“1”平均分成若干份,表示其中的一份的數(shù),叫做分?jǐn)?shù)單位。

  2、分?jǐn)?shù)的讀法:讀分?jǐn)?shù)時,先讀分母再讀“分之”然后讀分子,分子和分母按照整數(shù)的讀法來讀。

  3、分?jǐn)?shù)的寫法:先寫分?jǐn)?shù)線,再寫分母,最后寫分子,按照整數(shù)的寫法來寫。

  4、比較分?jǐn)?shù)的大小:

  ? 分母相同的分?jǐn)?shù),分子大的那個分?jǐn)?shù)就大。

  ? 分子相同的分?jǐn)?shù),分母小的那個分?jǐn)?shù)就大。

  ? 分母和分子都不同的分?jǐn)?shù),通常是先通分,轉(zhuǎn)化成通分母的分?jǐn)?shù),再比較大小。

  ? 如果被比較的分?jǐn)?shù)是帶分?jǐn)?shù),先要比較它們的整數(shù)部分,整數(shù)部分大的那個帶分?jǐn)?shù)就大;如果整數(shù)部分相同,再比較它們的分?jǐn)?shù)部分,分?jǐn)?shù)部分大的那個帶分?jǐn)?shù)就大。

  5、分?jǐn)?shù)的分類

  按照分子、分母和整數(shù)部分的不同情況,可以分成:真分?jǐn)?shù)、假分?jǐn)?shù)、帶分?jǐn)?shù)

  ? 真分?jǐn)?shù):分子比分母小的分?jǐn)?shù)叫做真分?jǐn)?shù)。真分?jǐn)?shù)小于1。

  ? 假分?jǐn)?shù):分子比分母大或者分子和分母相等的分?jǐn)?shù),叫做假分?jǐn)?shù)。假分?jǐn)?shù)大于或等于1。

  ? 帶分?jǐn)?shù):假分?jǐn)?shù)可以寫成整數(shù)與真分?jǐn)?shù)合成的數(shù),通常叫做帶分?jǐn)?shù)。

  6、分?jǐn)?shù)和除法的關(guān)系及分?jǐn)?shù)的基本性質(zhì)

  ? 除法是一種運算,有運算符號;分?jǐn)?shù)是一種數(shù)。因此,一般應(yīng)敘述為被除數(shù)相當(dāng)于分子,而不能說成被除數(shù)就是分子。? 由于分?jǐn)?shù)和除法有密切的關(guān)系,根據(jù)除法中“商不變”的性質(zhì)可得出分?jǐn)?shù)的基本性質(zhì)。

  ? 分?jǐn)?shù)的分子和分母都乘以或者除以相同的數(shù)(0除外),分?jǐn)?shù)的大小不變,這叫做分?jǐn)?shù)的基本性質(zhì),它是約分和通分的依據(jù)。

  7、約分和通分

  ? 分子、分母是互質(zhì)數(shù)的分?jǐn)?shù),叫做最簡分?jǐn)?shù)。

  ? 把一個分?jǐn)?shù)化成同它相等但分子、分母都比較小的分?jǐn)?shù),叫做約分。

  ? 約分的方法:用分子和分母的公約數(shù)(1除外)去除分子、分母;通常要除到得出最簡分?jǐn)?shù)為止。

  ? 把異分母分?jǐn)?shù)分別化成和原來分?jǐn)?shù)相等的同分母分?jǐn)?shù),叫做通分。

  ? 通分的方法:先求出原來幾個分母的最小公倍數(shù),然后把各分?jǐn)?shù)化成用這個最小公倍數(shù)作分母的分?jǐn)?shù)。

  8、倒 數(shù)

  ? 乘積是1的兩個數(shù)互為倒數(shù)。

  ? 求一個數(shù)(0除外)的倒數(shù),只要把這個數(shù)的分子、分母調(diào)換位置。

  ? 1的倒數(shù)是1,0沒有倒數(shù) (四)百分?jǐn)?shù)

  1、百分?jǐn)?shù)的意義

  表示一個數(shù)是另一個數(shù)的百分之幾的數(shù) 叫做百分?jǐn)?shù),也叫做百分率或百分比。百分?jǐn)?shù)通常用"%"來表示。百分號是表示百分?jǐn)?shù)的符號。

  2、百分?jǐn)?shù)的讀法:讀百分?jǐn)?shù)時,先讀百分之,再讀百分號前面的數(shù),讀數(shù)時按照整數(shù)的讀法來讀。

  3、百分?jǐn)?shù)的寫法:百分?jǐn)?shù)通常不寫成分?jǐn)?shù)形式,而在原來的分子后面加上百分號“%”來表示。

  4、百分?jǐn)?shù)與折數(shù)、成數(shù)的互化:

  例如:三折就是30%,七五折就是75%,成數(shù)就是十分之幾,如一成就是牐 闖砂俜質(zhì) 褪?0%,則六成五就是65%。

  5、納稅和利息:

  稅率:應(yīng)納稅額與各種收入的比率。

  利率:利息與本金的百分率。由銀行規(guī)定按年或按月計算。

  利息的計算公式:利息=本金×利率×?xí)r間

  6、百分?jǐn)?shù)與分?jǐn)?shù)的區(qū)別主要有以下三點:

  ? 意義不同。百分?jǐn)?shù)是“表示一個數(shù)是另一個數(shù)的百分之幾的數(shù)!彼荒鼙硎緝蓴(shù)之間的倍數(shù)關(guān)系,不能表示某一具體數(shù)量。如:可以說 1米 是 5米 的 20%,不可以說“一段繩子長為20%米!币虼耍俜?jǐn)?shù)后面不能帶單位名稱。分?jǐn)?shù)是“把單位‘1’平均分成若干份,表示這樣一份或幾份的數(shù)”。分?jǐn)?shù)不僅 可以表示兩數(shù)之間的倍數(shù)關(guān)系,如:甲數(shù)是3,乙數(shù)是4,甲數(shù)是乙數(shù)的?;還可以表示一定的數(shù)量,如:犌Э恕 米等。

  ? 應(yīng)用范圍不同。百分?jǐn)?shù)在生產(chǎn)、工作和生活中,常用于調(diào)查、統(tǒng)計、分析與比較。而分?jǐn)?shù)常常是在測量、計算中,得不到整數(shù)結(jié)果時使用。

  ? 書寫形式不同。百分?jǐn)?shù)通常不寫成分?jǐn)?shù)形式,而采用百分號“%”來表示。如:百分之四十五,寫作:45%;百分?jǐn)?shù)的分母固定為100,因此,不論百分?jǐn)?shù) 的分子、分母之間有多少個公約數(shù),都不約分;百分?jǐn)?shù)的分子可以是自然數(shù),也可以是小數(shù)。而分?jǐn)?shù)的分子只能是自然數(shù),它的表示形式有:真分?jǐn)?shù)、假分?jǐn)?shù)、帶分 數(shù),計算結(jié)果不是最簡分?jǐn)?shù)的一般要通過約分化成最簡分?jǐn)?shù),是假分?jǐn)?shù)的要化成帶分?jǐn)?shù)。

  7、數(shù)的互化

  ? 小數(shù)化成分?jǐn)?shù):原來有幾位小數(shù),就在1的后面寫幾個零作分母,把原來的小數(shù)去掉小數(shù)點作分子,能約分的要約分。

  ? 分?jǐn)?shù)化成小數(shù):用分母去除分子。能除盡的就化成有限小數(shù),有的不能除盡,不能化成有限小數(shù)的,一般保留三位小數(shù)。

  ? 一個最簡分?jǐn)?shù),如果分母中除了2和5以外,不含有其他的質(zhì)因數(shù),這個分?jǐn)?shù)就能化成有限小數(shù);如果分母中含有2和5 以外的質(zhì)因數(shù),這個分?jǐn)?shù)就不能化成有限小數(shù)。

  ? 小數(shù)化成百分?jǐn)?shù):只要把小數(shù)點向右移動兩位,同時在后面添上百分號。

  ? 百分?jǐn)?shù)化成小數(shù):把百分?jǐn)?shù)化成小數(shù),只要把百分號去掉,同時把小數(shù)點向左移動兩位。

  ? 分?jǐn)?shù)化成百分?jǐn)?shù):通常先把分?jǐn)?shù)化成小數(shù)(除不盡時,通常保留三位小數(shù)),再把小數(shù)化成百分?jǐn)?shù)。

  ? 百分?jǐn)?shù)化成小數(shù):先把百分?jǐn)?shù)改寫成分?jǐn)?shù),能約分的要約成最簡分?jǐn)?shù)。 (五)數(shù)的整除

  1、整除的意義

  整數(shù)a除以整數(shù)b(b ≠ 0),除得的商是整數(shù)而沒有余數(shù),我們就說a能被b整除,或者說b能整除a 。

  除盡的意義 甲數(shù)除以乙數(shù),所得的商是整數(shù)或有限小數(shù)而余數(shù)也為0時,我們就說甲數(shù)能被乙數(shù)除盡,(或者說乙數(shù)能除盡甲數(shù))這里的甲數(shù)、乙數(shù)可以是自然數(shù),也可以是小數(shù)(乙數(shù)不能為0)。

  2、約數(shù)和倍數(shù)

  ? 如果數(shù)a能被數(shù)b(b ≠ 0)整除,a就叫做b的倍數(shù),b就(來自:WWw.SmhaiDa.com :小學(xué)數(shù)學(xué)總結(jié))叫做a的約數(shù)(或a的因數(shù))。倍數(shù)和約數(shù)是相互依存的。

  ? 一個數(shù)的約數(shù)的個數(shù)是有限的,其中最小的約數(shù)是1,最大的約數(shù)是它本身。

  ? 一個數(shù)的倍數(shù)的個數(shù)是無限的,其中最小的倍數(shù)是它本身,沒有最大的倍數(shù)。

  3、奇數(shù)和偶數(shù)

  ? 自然數(shù)按能否被2 整除的特征可分為奇數(shù)和偶數(shù)。

 、 能被2整除的數(shù)叫做偶數(shù)。0也是偶數(shù)。

 、 不能被2整除的數(shù)叫做奇數(shù)。

  ? 奇數(shù)和偶數(shù)的運算性質(zhì):

 、 相鄰兩個自然數(shù)之和是奇數(shù),之積是偶數(shù)。

 、 奇數(shù)+奇數(shù)=偶數(shù),奇數(shù)+偶數(shù)=奇數(shù),偶數(shù)+偶數(shù)=偶數(shù);奇數(shù)-奇數(shù)=偶數(shù),

  奇數(shù)-偶數(shù)=奇數(shù),偶數(shù)-奇數(shù)=奇數(shù),偶數(shù)-偶數(shù)=偶數(shù);奇數(shù)×奇數(shù)=奇數(shù),奇數(shù)×偶數(shù)=偶數(shù),偶數(shù)×偶數(shù)=偶數(shù)。

  4、整除的特征

  ? 個位上是0、2、4、6、8的數(shù),都能被2整除。

  ? 個位上是0或5的數(shù),都能被5整除。

  ? 一個數(shù)的各位上的數(shù)的和能被3整除,這個數(shù)就能被3整除。

  ? 一個數(shù)各位數(shù)上的和能被9整除,這個數(shù)就能被9整除。

  ? 能被3整除的數(shù)不一定能被9整除,但是能被9整除的數(shù)一定能被3整除。

  ? 一個數(shù)的末兩位數(shù)能被4(或25)整除,這個數(shù)就能被4(或25)整除。

  ? 一個數(shù)的末三位數(shù)能被8(或125)整除,這個數(shù)就能被8(或125)整除。

  5、質(zhì)數(shù)和合數(shù)

  ? 一個數(shù),如果只有1和它本身兩個約數(shù),這樣的數(shù)叫做質(zhì)數(shù)(或素數(shù)),100以內(nèi)的質(zhì)數(shù)有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。

  ? 一個數(shù),如果除了1和它本身還有別的約數(shù),這樣的數(shù)叫做合數(shù),例如 4、6、8、9、12都是合數(shù)。

  ? 1不是質(zhì)數(shù)也不是合數(shù),自然數(shù)除了1外,不是質(zhì)數(shù)就是合數(shù)。如果把自然數(shù)按其約數(shù)的個數(shù)的不同分類,可分為質(zhì)數(shù)、合數(shù)和1。

  6、分解質(zhì)因數(shù)

  ? 質(zhì)因數(shù)

  每個合數(shù)都可以寫成幾個質(zhì)數(shù)相乘的形式。其中每個質(zhì)數(shù)都是這個合數(shù)的因數(shù),叫做這個合數(shù)的質(zhì)因數(shù),例如15=3×5,3和5 叫做15的質(zhì)因數(shù)。

  ? 分解質(zhì)因數(shù)

  把一個合數(shù)用質(zhì)因數(shù)相乘的形式表示出來,叫做分解質(zhì)因數(shù)。通常用短除法來分解質(zhì)因數(shù)。先用能整除這個合數(shù)的質(zhì)數(shù)去除,一直除到商是質(zhì)數(shù)為止,再把除數(shù)和商寫成連乘的形式。

  ? 公因(約)數(shù)

  幾個數(shù)公有的因數(shù)叫做這幾個數(shù)的公因數(shù)。其中最大的一個叫這幾個數(shù)的最大公因數(shù)。

  公因數(shù)只有1的兩個數(shù),叫做互質(zhì)數(shù)。成互質(zhì)關(guān)系的兩個數(shù),有下列幾種情況:①和任何自然數(shù)互質(zhì);

  ②相鄰的兩個自然數(shù)互質(zhì);

  ③當(dāng)合數(shù)不是質(zhì)數(shù)的倍數(shù)時,這個合數(shù)和這個質(zhì)數(shù)互質(zhì);

 、軆蓚合數(shù)的公約數(shù)只有1時,這兩個合數(shù)互質(zhì),如果幾個數(shù)中任意兩個都互質(zhì),就說這幾個數(shù)兩兩互質(zhì)。

  如果較小數(shù)是較大數(shù)的約數(shù),那么較小數(shù)就是這兩個數(shù)的最大公約數(shù)。

  如果兩個數(shù)是互質(zhì)數(shù),它們的最大公約數(shù)就是1。

  ? 公倍數(shù)

  ① 幾個數(shù)公有的倍數(shù)叫做這幾個數(shù)的公倍數(shù)。其中最大的一個叫這幾個數(shù)的最大公倍數(shù)。

  求幾個數(shù)的最大公約數(shù)的方法是:先用這幾個數(shù)的公約數(shù)連續(xù)去除,一直除到所得的商只有公約數(shù)1為止,然后把所有的除數(shù)連乘求積,這個積就是這幾個數(shù)的的最大公約數(shù)。

 、 幾個數(shù)公有的倍數(shù),叫做這幾個數(shù)的公倍數(shù),其中最小的一個,叫做這幾個數(shù)的最小公倍數(shù)。

  求幾個數(shù)的最小公倍數(shù)的方法是:先用這幾個數(shù)(或其中的部分?jǐn)?shù))的公約數(shù)去除,一直除到互質(zhì)(或兩兩互質(zhì))為止,然后把所有的除數(shù)和商連乘求積,這個積就是這幾個數(shù)的最小公倍數(shù)。

  如果較大數(shù)是較小數(shù)的倍數(shù),那么較大數(shù)就是這兩個數(shù)的最小公倍數(shù)。

  如果兩個數(shù)是互質(zhì)數(shù),那么這兩個數(shù)的積就是它們的最小公倍數(shù)。

  幾個數(shù)的公約數(shù)的個數(shù)是有限的,而幾個數(shù)的公倍數(shù)的個數(shù)是無限的。 二、性質(zhì)和規(guī)律 (一)商不變的規(guī)律

  商不變的規(guī)律:在除法里,被除數(shù)和除數(shù)同時擴大或者同時縮小相同的倍,商不變。 (二)小數(shù)的性質(zhì)

  小數(shù)的性質(zhì):在小數(shù)的末尾添上零或者去掉零小數(shù)的大小不變。 (三)小數(shù)點位置的移動引起小數(shù)大小的變化

  1、小數(shù)點向右移動一位,原來的數(shù)就擴大10倍;小數(shù)點向右移動兩位,原來的數(shù)就擴大100倍;小數(shù)點向右移動三位,原來的數(shù)就擴大1000倍??

  2、小數(shù)點向左移動一位,原來的數(shù)就縮小10倍;小數(shù)點向左移動兩位,原來的數(shù)就縮小100倍;小數(shù)點向左移動三位,原來的數(shù)就縮小1000倍??

  3、小數(shù)點向左移或者向右移位數(shù)不夠時,要用“0"補足位。 (四)分?jǐn)?shù)的基本性質(zhì)

  分?jǐn)?shù)的基本性質(zhì):分?jǐn)?shù)的分子和分母都乘以或者除以相同的數(shù)(零除外),分?jǐn)?shù)的大小不變。 (五)分?jǐn)?shù)與除法的關(guān)系

  1、被除數(shù)÷除數(shù)= 被除數(shù)/除數(shù)

  2、因為零不能作除數(shù),所以分?jǐn)?shù)的分母不能為零。

  3、被除數(shù) 相當(dāng)于分子,除數(shù)相當(dāng)于分母。 三、運算法則 (一)整數(shù)四則運算的法則

  1、整數(shù)加法:

  把兩個數(shù)合并成一個數(shù)的運算叫做加法。

  在加法里,相加的數(shù)叫做加數(shù),加得的數(shù)叫做和。加數(shù)是部分?jǐn)?shù),和是總數(shù)。

  加數(shù)+加數(shù)=和一個加數(shù)=和-另一個加數(shù)

  2、整數(shù)減法:

  已知兩個加數(shù)的和與其中的一個加數(shù),求另一個加數(shù)的運算叫做減法。

  在減法里,已知的和叫做被減數(shù),已知的加數(shù)叫做減數(shù),未知的加數(shù)叫做差。被減數(shù)是總數(shù),減數(shù)和差分別是部分?jǐn)?shù)。

  加法和減法互為逆運算。

  3、整數(shù)乘法:

  求幾個相同加數(shù)的和的簡便運算叫做乘法。

  在乘法里,相同的加數(shù)和相同加數(shù)的個數(shù)都叫做因數(shù)。相同加數(shù)的和叫做積。

  在乘法里,0和任何數(shù)相乘都得0.1和任何數(shù)相乘都的任何數(shù)。

  一個因數(shù)× 一個因數(shù) =積一個因數(shù)=積÷另一個因數(shù)

  4、整數(shù)除法:

  已知兩個因數(shù)的積與其中一個因數(shù),求另一個因數(shù)的運算叫做除法。

  在除法里,已知的積叫做被除數(shù),已知的一個因數(shù)叫做除數(shù),所求的因數(shù)叫做商。

  乘法和除法互為逆運算。

  在除法里,0不能做除數(shù)。因為0和任何數(shù)相乘都得0,所以任何一個數(shù)除以0,均得不到一個確定的商。

  被除數(shù)÷除數(shù)=商 除數(shù)=被除數(shù)÷商 被除數(shù)=商×除數(shù)

  5、乘方:

  求幾個相同因數(shù)的積的運算叫做乘方。例如 3 × 3 =32 (二)小數(shù)四則運算

  1、小數(shù)加法:

  小數(shù)加法的意義與整數(shù)加法的意義相同。是把兩個數(shù)合并成一個數(shù)的運算。

數(shù)學(xué)知識點總結(jié)3

  1:一般式:Ax+By+C=0(A、B不同時為0)適用于所有直線

  K=-A/B,b=-C/B

  A1/A2=B1/B2≠C1/C2←→兩直線平行

  A1/A2=B1/B2=C1/C2←→兩直線重合

  橫截距a=-C/A

  縱截距b=-C/B

  2:點斜式:y-y0=k(x-x0)適用于不垂直于x軸的直線

  表示斜率為k,且過(x0,y0)的直線

  3:截距式:x/a+y/b=1適用于不過原點或不垂直于x軸、y軸的直線

  表示與x軸、y軸相交,且x軸截距為a,y軸截距為b的直線

  4:斜截式:y=kx+b適用于不垂直于x軸的直線

  表示斜率為k且y軸截距為b的直線

  5:兩點式:適用于不垂直于x軸、y軸的直線

  表示過(x1,y1)和(x2,y2)的直線

  (y-y1)/(y2-y1)=(x-x1)/(x2-x1)(x1≠x2,y1≠y2)

  6:交點式:f1(x,y)m+f2(x,y)=0適用于任何直線

  表示過直線f1(x,y)=0與直線f2(x,y)=0的交點的直線

  7:點平式:f(x,y)-f(x0,y0)=0適用于任何直線

  表示過點(x0,y0)且與直線f(x,y)=0平行的直線

  8:法線式:x·cosα+ysinα-p=0適用于不平行于坐標(biāo)軸的直線

  過原點向直線做一條的垂線段,該垂線段所在直線的傾斜角為α,p是該線段的長度

  9:點向式:(x-x0)/u=(y-y0)/v(u≠0,v≠0)適用于任何直線

  表示過點(x0,y0)且方向向量為(u,v)的直線

  10:法向式:a(x-x0)+b(y-y0)=0適用于任何直線

  表示過點(x0,y0)且與向量(a,b)垂直的直線

  11:點到直線距離

  點P(x0,y0)到直線Ι:Ax+By+C=0的距離

  d=|Ax0+By0+C|/√A2+B2

  兩平行線之間距離

  若兩平行直線的方程分別為:

  Ax+By+C1=OAx+By+C2=0則

  這兩條平行直線間的距離d為:

  d=丨C1-C2丨/√(A2+B2)

  12:各種不同形式的直線方程的局限性:

  (1)點斜式和斜截式都不能表示斜率不存在的直線;

  (2)兩點式不能表示與坐標(biāo)軸平行的直線;

  (3)截距式不能表示與坐標(biāo)軸平行或過原點的直線;

  (4)直線方程的一般式中系數(shù)A、B不能同時為零.

  13:位置關(guān)系

  若直線L1:A1x+B1y+C1=0與直線L2:A2x+B2y+C2=0

  1.當(dāng)A1B2-A2B1≠0時,相交

  2.A1/A2=B1/B2≠C1/C2,平行

  3.A1/A2=B1/B2=C1/C2,重合

  4.A1A2+B1B2=0,垂直

數(shù)學(xué)知識點總結(jié)4

  1.1柱、錐、臺、球的結(jié)構(gòu)特征

  1.2空間幾何體的三視圖和直觀圖

  11三視圖:

  正視圖:從前往后

  側(cè)視圖:從左往右

  俯視圖:從上往下

  22畫三視圖的原則:

  長對齊、高對齊、寬相等

  33直觀圖:斜二測畫法

  44斜二測畫法的步驟:

  (1).平行于坐標(biāo)軸的線依然平行于坐標(biāo)軸;

  (2).平行于y軸的線長度變半,平行于x,z軸的線長度不變;

  (3).畫法要寫好。

  5用斜二測畫法畫出長方體的步驟:(1)畫軸(2)畫底面(3)畫側(cè)棱(4)成圖

  1.3空間幾何體的表面積與體積

  (一)空間幾何體的表面積

  1棱柱、棱錐的表面積:各個面面積之和

  2圓柱的表面積3圓錐的表面積

  4圓臺的表面積

  5球的表面積

  (二)空間幾何體的體積

  1柱體的體積

  2錐體的體積

  3臺體的體積

  4球體的體積

  高二數(shù)學(xué)必修二知識點:直線與平面的位置關(guān)系

  2.1空間點、直線、平面之間的位置關(guān)系

  2.1.1

  1平面含義:平面是無限延展的

  2平面的畫法及表示

  (1)平面的畫法:水平放置的平面通常畫成一個平行四邊形,銳角畫成450,且橫邊畫成鄰邊的2倍長(如圖)

  (2)平面通常用希臘字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四邊形的四個頂點或者相對的兩個頂點的大寫字母來表示,如平面AC、平面ABCD等。

  3三個公理:

  (1)公理1:如果一條直線上的兩點在一個平面內(nèi),那么這條直線在此平面內(nèi)

  符號表示為

  A∈L

  B∈L=>Lα

  A∈α

  B∈α

  公理1作用:判斷直線是否在平面內(nèi)

  (2)公理2:過不在一條直線上的三點,有且只有一個平面。

  符號表示為:A、B、C三點不共線=>有且只有一個平面α,

  使A∈α、B∈α、C∈α。

  公理2作用:確定一個平面的依據(jù)。

  (3)公理3:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線。

  符號表示為:P∈α∩β=>α∩β=L,且P∈L

  公理3作用:判定兩個平面是否相交的依據(jù)

  2.1.2空間中直線與直線之間的位置關(guān)系

  1空間的兩條直線有如下三種關(guān)系:

  共面直線

  相交直線:同一平面內(nèi),有且只有一個公共點;

  平行直線:同一平面內(nèi),沒有公共點;

  異面直線:不同在任何一個平面內(nèi),沒有公共點。

  2公理4:平行于同一條直線的兩條直線互相平行。

  符號表示為:設(shè)a、b、c是三條直線

  a∥b

  c∥b

  強調(diào):公理4實質(zhì)上是說平行具有傳遞性,在平面、空間這個性質(zhì)都適用。

  公理4作用:判斷空間兩條直線平行的依據(jù)。

  3等角定理:空間中如果兩個角的兩邊分別對應(yīng)平行,那么這兩個角相等或互補

  4注意點:

 、賏'與b'所成的角的大小只由a、b的相互位置來確定,與O的選擇無關(guān),為了簡便,點O一般取在兩直線中的一條上;

 、趦蓷l異面直線所成的角θ∈(0,);

 、郛(dāng)兩條異面直線所成的角是直角時,我們就說這兩條異面直線互相垂直,記作a⊥b;

  ④兩條直線互相垂直,有共面垂直與異面垂直兩種情形;

  ⑤計算中,通常把兩條異面直線所成的角轉(zhuǎn)化為兩條相交直線所成的角。

  2.1.3—2.1.4空間中直線與平面、平面與平面之間的位置關(guān)系

  1、直線與平面有三種位置關(guān)系:

  (1)直線在平面內(nèi)——有無數(shù)個公共點

  (2)直線與平面相交——有且只有一個公共點

  (3)直線在平面平行——沒有公共點

  指出:直線與平面相交或平行的情況統(tǒng)稱為直線在平面外,可用aα來表示

  aαa∩α=Aa∥α

  2.2.直線、平面平行的判定及其性質(zhì)

  2.2.1直線與平面平行的判定

  1、直線與平面平行的判定定理:平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行。

  簡記為:線線平行,則線面平行。

  符號表示:

  aα

  bβ=>a∥α

  a∥b

  2.2.2平面與平面平行的判定

  1、兩個平面平行的判定定理:一個平面內(nèi)的兩條交直線與另一個平面平行,則這兩個平面平行。

  符號表示:

  aβ

  bβ

  a∩b=Pβ∥α

  a∥α

  b∥α

  2、判斷兩平面平行的方法有三種:

  (1)用定義;

  (2)判定定理;

  (3)垂直于同一條直線的兩個平面平行。

  2.2.3—2.2.4直線與平面、平面與平面平行的性質(zhì)

  1、定理:一條直線與一個平面平行,則過這條直線的任一平面與此平面的交線與該直線平行。

  簡記為:線面平行則線線平行。

  符號表示:

  a∥α

  aβa∥b

  α∩β=b

  作用:利用該定理可解決直線間的平行問題。

  2、定理:如果兩個平面同時與第三個平面相交,那么它們的交線平行。

  符號表示:

  α∥β

  α∩γ=aa∥b

  β∩γ=b

  作用:可以由平面與平面平行得出直線與直線平行

  2.3直線、平面垂直的判定及其性質(zhì)

  2.3.1直線與平面垂直的判定

  1、定義

  如果直線L與平面α內(nèi)的任意一條直線都垂直,我們就說直線L與平面α互相垂直,記作L⊥α,直線L叫做平面α的垂線,平面α叫做直線L的垂面。直線與平面垂直時,它們公共點P叫做垂足。

  2、判定定理:一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直。

  注意點:a)定理中的“兩條相交直線”這一條件不可忽視;

  b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想。

  2.3.2平面與平面垂直的判定

  1、二面角的概念:表示從空間一直線出發(fā)的兩個半平面所組成的圖形

  2、二面角的記法:二面角α-l-β或α-AB-β

  3、兩個平面互相垂直的判定定理:一個平面過另一個平面的垂線,則這兩個平面垂直。

  2.3.3—2.3.4直線與平面、平面與平面垂直的性質(zhì)

  1、定理:垂直于同一個平面的兩條直線平行。

  2性質(zhì)定理:兩個平面垂直,則一個平面內(nèi)垂直于交線的直線與另一個平面垂直。

數(shù)學(xué)知識點總結(jié)5

  考點要求:

  1、幾何體的展開圖、幾何體的三視圖仍是高考的熱點。

  2、三視圖和其他的知識點結(jié)合在一起命題是新教材中考查學(xué)生三視圖及幾何量計算的趨勢。

  3、重點掌握以三視圖為命題背景,研究空間幾何體的結(jié)構(gòu)特征的題型。

  4、要熟悉一些典型的幾何體模型,如三棱柱、長(正)方體、三棱錐等幾何體的三視圖。

  知識結(jié)構(gòu):

  1、多面體的結(jié)構(gòu)特征

 。1)棱柱有兩個面相互平行,其余各面都是平行四邊形,每相鄰兩個四邊形的公共邊平行。

  正棱柱:側(cè)棱垂直于底面的棱柱叫做直棱柱,底面是正多邊形的直棱柱叫做正棱柱。反之,正棱柱的底面是正多邊形,側(cè)棱垂直于底面,側(cè)面是矩形。

 。2)棱錐的底面是任意多邊形,側(cè)面是有一個公共頂點的三角形。

  正棱錐:底面是正多邊形,頂點在底面的射影是底面正多邊形的中心的棱錐叫做正棱錐。特別地,各棱均相等的正三棱錐叫正四面體。反過來,正棱錐的底面是正多邊形,且頂點在底面的射影是底面正多邊形的中心。

 。3)棱臺可由平行于底面的平面截棱錐得到,其上下底面是相似多邊形。

  2、旋轉(zhuǎn)體的結(jié)構(gòu)特征

  (1)圓柱可以由矩形繞一邊所在直線旋轉(zhuǎn)一周得到。

 。2)圓錐可以由直角三角形繞一條直角邊所在直線旋轉(zhuǎn)一周得到。

 。3)圓臺可以由直角梯形繞直角腰所在直線旋轉(zhuǎn)一周或等腰梯形繞上下底面中心所在直線旋轉(zhuǎn)半周得到,也可由平行于底面的平面截圓錐得到。

 。4)球可以由半圓面繞直徑旋轉(zhuǎn)一周或圓面繞直徑旋轉(zhuǎn)半周得到。

  3、空間幾何體的三視圖

  空間幾何體的三視圖是用平行投影得到,這種投影下,與投影面平行的平面圖形留下的影子,與平面圖形的形狀和大小是全等和相等的,三視圖包括正視圖、側(cè)視圖、俯視圖。

  三視圖的長度特征:“長對正,寬相等,高平齊”,即正視圖和側(cè)視圖一樣高,正視圖和俯視圖一樣長,側(cè)視圖和俯視圖一樣寬。若相鄰兩物體的表面相交,表面的交線是它們的分界線,在三視圖中,要注意實、虛線的畫法。

  4、空間幾何體的直觀圖

  空間幾何體的直觀圖常用斜二測畫法來畫,基本步驟是:

 。1)畫幾何體的底面

  在已知圖形中取互相垂直的x軸、y軸,兩軸相交于點O,畫直觀圖時,把它們畫成對應(yīng)的x′軸、y′軸,兩軸相交于點O′,且使∠x′O′y′=45°或135°,已知圖形中平行于x軸、y軸的線段,在直觀圖中平行于x′軸、y′軸。已知圖形中平行于x軸的線段,在直觀圖中長度不變,平行于y軸的線段,長度變?yōu)樵瓉淼囊话搿?/p>

 。2)畫幾何體的高

  在已知圖形中過O點作z軸垂直于xOy平面,在直觀圖中對應(yīng)的z′軸,也垂直于x′O′y′平面,已知圖形中平行于z軸的線段,在直觀圖中仍平行于z′軸且長度不變。

數(shù)學(xué)知識點總結(jié)6

  1、柱、錐、臺、球的結(jié)構(gòu)特征

  (1)棱柱:

  幾何特征:兩底面是對應(yīng)邊平行的全等多邊形;側(cè)面、對角面都是平行四邊形;側(cè)棱平行且相等;平行于底面的截面是與底面全等的多邊形.

  (2)棱錐

  幾何特征:側(cè)面、對角面都是三角形;平行于底面的截面與底面相似,其相似比等于頂點到截面距離與高的比的平方.

  (3)棱臺:

  幾何特征:①上下底面是相似的平行多邊形②側(cè)面是梯形③側(cè)棱交于原棱錐的頂點

  (4)圓柱:定義:以矩形的一邊所在的直線為軸旋轉(zhuǎn),其余三邊旋轉(zhuǎn)所成

  幾何特征:①底面是全等的圓;②母線與軸平行;③軸與底面圓的半徑垂直;④側(cè)面展開圖是一個矩形.

  (5)圓錐:定義:以直角三角形的一條直角邊為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

  幾何特征:①底面是一個圓;②母線交于圓錐的頂點;③側(cè)面展開圖是一個扇形.

  (6)圓臺:定義:以直角梯形的垂直與底邊的腰為旋轉(zhuǎn)軸,旋轉(zhuǎn)一周所成

  幾何特征:①上下底面是兩個圓;②側(cè)面母線交于原圓錐的頂點;③側(cè)面展開圖是一個弓形.

  (7)球體:定義:以半圓的直徑所在直線為旋轉(zhuǎn)軸,半圓面旋轉(zhuǎn)一周形成的幾何體

  幾何特征:①球的截面是圓;②球面上任意一點到球心的距離等于半徑.

  2、空間幾何體的三視圖

  定義三視圖:正視圖(光線從幾何體的前面向后面正投影);側(cè)視圖(從左向右)、

  俯視圖(從上向下)

  注:正視圖反映了物體的高度和長度;俯視圖反映了物體的長度和寬度;側(cè)視圖反映了物體的高度和寬度.

  3、空間幾何體的直觀圖——斜二測畫法

  斜二測畫法特點:①原來與x軸平行的線段仍然與x平行且長度不變;

 、谠瓉砼cy軸平行的線段仍然與y平行,長度為原來的一半.

  4、柱體、錐體、臺體的表面積與體積

  (1)幾何體的表面積為幾何體各個面的面積的和.

  (2)特殊幾何體表面積公式(c為底面周長,h為高,為斜高,l為母線)

  (3)柱體、錐體、臺體的體積公式

  2高中數(shù)學(xué)必修二知識點總結(jié):直線與方程

  (1)直線的傾斜角

  定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角.特別地,當(dāng)直線與x軸平行或重合時,我們規(guī)定它的傾斜角為0度.因此,傾斜角的取值范圍是0°≤α<180°

  (2)直線的斜率

 、俣x:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率.直線的斜率常用k表示.即.斜率反映直線與軸的傾斜程度.

  當(dāng)時,;當(dāng)時,;當(dāng)時,不存在.

  ②過兩點的直線的斜率公式:

  注意下面四點:(1)當(dāng)時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

  (2)k與P1、P2的順序無關(guān);(3)以后求斜率可不通過傾斜角而由直線上兩點的坐標(biāo)直接求得;

  (4)求直線的傾斜角可由直線上兩點的坐標(biāo)先求斜率得到.

  (3)直線方程

 、冱c斜式:直線斜率k,且過點

  注意:當(dāng)直線的斜率為0°時,k=0,直線的方程是y=y1.

  當(dāng)直線的斜率為90°時,直線的斜率不存在,它的方程不能用點斜式表示.但因l上每一點的橫坐標(biāo)都等于x1,所以它的方程是x=x1.

 、谛苯厥剑,直線斜率為k,直線在y軸上的截距為b

 、蹆牲c式:()直線兩點,

 、芙鼐厥剑

  其中直線與軸交于點,與軸交于點,即與軸、軸的截距分別為.

 、菀话闶剑(A,B不全為0)

  注意:各式的適用范圍特殊的方程如:

  平行于x軸的直線:(b為常數(shù));平行于y軸的直線:(a為常數(shù));

  (5)直線系方程:即具有某一共同性質(zhì)的直線

  (一)平行直線系

  平行于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))

  (二)垂直直線系

  垂直于已知直線(是不全為0的常數(shù))的直線系:(C為常數(shù))

  (三)過定點的直線系

  (ⅰ)斜率為k的直線系:,直線過定點;

  (ⅱ)過兩條直線,的交點的直線系方程為

  (為參數(shù)),其中直線不在直線系中.

  (6)兩直線平行與垂直

  注意:利用斜率判斷直線的平行與垂直時,要注意斜率的存在與否.

  (7)兩條直線的交點

  相交

  交點坐標(biāo)即方程組的一組解.

  方程組無解;方程組有無數(shù)解與重合

  (8)兩點間距離公式:設(shè)是平面直角坐標(biāo)系中的兩個點

  (9)點到直線距離公式:一點到直線的距離

  (10)兩平行直線距離公式

  在任一直線上任取一點,再轉(zhuǎn)化為點到直線的距離進(jìn)行求解.

  3高中數(shù)學(xué)必修二知識點總結(jié):圓的方程

  1、圓的定義:平面內(nèi)到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓的半徑.

  2、圓的方程

  (1)標(biāo)準(zhǔn)方程,圓心,半徑為r;

  (2)一般方程

  當(dāng)時,方程表示圓,此時圓心為,半徑為

  當(dāng)時,表示一個點;當(dāng)時,方程不表示任何圖形.

  (3)求圓方程的方法:

  一般都采用待定系數(shù)法:先設(shè)后求.確定一個圓需要三個獨立條件,若利用圓的標(biāo)準(zhǔn)方程,

  需求出a,b,r;若利用一般方程,需要求出D,E,F;

  另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點,以此來確定圓心的位置.

  高中數(shù)學(xué)必修二知識點總結(jié):直線與圓的位置關(guān)系:

  直線與圓的位置關(guān)系有相離,相切,相交三種情況:

  (1)設(shè)直線,圓,圓心到l的距離為,則有;;

  (2)過圓外一點的切線:①k不存在,驗證是否成立②k存在,設(shè)點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】

  (3)過圓上一點的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r2

  4、圓與圓的位置關(guān)系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.

  設(shè)圓,

  兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定.

  當(dāng)時兩圓外離,此時有公切線四條;

  當(dāng)時兩圓外切,連心線過切點,有外公切線兩條,內(nèi)公切線一條;

  當(dāng)時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

  當(dāng)時,兩圓內(nèi)切,連心線經(jīng)過切點,只有一條公切線;

  當(dāng)時,兩圓內(nèi)含;當(dāng)時,為同心圓.

  注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線

  4、空間點、直線、平面的位置關(guān)系

  公理1:如果一條直線的兩點在一個平面內(nèi),那么這條直線是所有的點都在這個平面內(nèi).

  應(yīng)用:判斷直線是否在平面內(nèi)

  用符號語言表示公理1:

  公理2:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線

  符號:平面α和β相交,交線是a,記作α∩β=a.

  符號語言:

  公理2的作用:

 、偎桥卸▋蓚平面相交的方法.

  ②它說明兩個平面的交線與兩個平面公共點之間的關(guān)系:交線必過公共點.

 、鬯梢耘袛帱c在直線上,即證若干個點共線的重要依據(jù).

  公理3:經(jīng)過不在同一條直線上的三點,有且只有一個平面.

  推論:一直線和直線外一點確定一平面;兩相交直線確定一平面;兩平行直線確定一平面.

  公理3及其推論作用:①它是空間內(nèi)確定平面的依據(jù)②它是證明平面重合的依據(jù)

  公理4:平行于同一條直線的兩條直線互相平行

  4高中數(shù)學(xué)必修二知識點總結(jié):空間直線與直線之間的位置關(guān)系

 、佼惷嬷本定義:不同在任何一個平面內(nèi)的兩條直線

 、诋惷嬷本性質(zhì):既不平行,又不相交.

 、郛惷嬷本判定:過平面外一點與平面內(nèi)一點的直線與平面內(nèi)不過該店的直線是異面直線

 、墚惷嬷本所成角:作平行,令兩線相交,所得銳角或直角,即所成角.兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直.

  求異面直線所成角步驟:

  A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上.B、證明作出的角即為所求角C、利用三角形來求角

  (7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那么這兩角相等或互補.

  (8)空間直線與平面之間的位置關(guān)系

  直線在平面內(nèi)——有無數(shù)個公共點.

  三種位置關(guān)系的符號表示:aαa∩α=Aa‖α

  (9)平面與平面之間的位置關(guān)系:平行——沒有公共點;α‖β

  相交——有一條公共直線.α∩β=b

  5、空間中的平行問題

  (1)直線與平面平行的判定及其性質(zhì)

  線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行.

  線線平行線面平行

  線面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,

  那么這條直線和交線平行.線面平行線線平行

  (2)平面與平面平行的判定及其性質(zhì)

  兩個平面平行的判定定理

  (1)如果一個平面內(nèi)的兩條相交直線都平行于另一個平面,那么這兩個平面平行

  (線面平行→面面平行),

  (2)如果在兩個平面內(nèi),各有兩組相交直線對應(yīng)平行,那么這兩個平面平行.

  (線線平行→面面平行),

  (3)垂直于同一條直線的兩個平面平行,

  兩個平面平行的性質(zhì)定理

  (1)如果兩個平面平行,那么某一個平面內(nèi)的直線與另一個平面平行.(面面平行→線面平行)

  (2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行.(面面平行→線線平行)

  7、空間中的垂直問題

  (1)線線、面面、線面垂直的定義

 、賰蓷l異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直.

  ②線面垂直:如果一條直線和一個平面內(nèi)的任何一條直線垂直,就說這條直線和這個平面垂直.

 、燮矫婧推矫娲怪保喝绻麅蓚平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直.

  (2)垂直關(guān)系的判定和性質(zhì)定理

 、倬面垂直判定定理和性質(zhì)定理

  判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個平面.

  性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行.

 、诿婷娲怪钡呐卸ǘɡ砗托再|(zhì)定理

  判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直.

  性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于他們的交線的直線垂直于另一個平面.

  9、空間角問題

  (1)直線與直線所成的角

 、賰善叫兄本所成的角:規(guī)定為.

 、趦蓷l相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角.

  ③兩條異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角.

  (2)直線和平面所成的角

 、倨矫娴钠叫芯與平面所成的角:規(guī)定為.②平面的垂線與平面所成的角:規(guī)定為.

  ③平面的斜線與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個平面所成的角.

  求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計算”.

  在“作角”時依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點到面的垂線,

  在解題時,注意挖掘題設(shè)中兩個主要信息:(1)斜線上一點到面的垂線;(2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線.

  (3)二面角和二面角的平面角

 、俣娼堑亩x:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面.

  ②二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角.

 、壑倍娼牵浩矫娼鞘侵苯堑亩娼墙兄倍娼.

  兩相交平面如果所組成的二面角是直二面角,那么這兩個平面垂直;反過來,如果兩個平面垂直,那么所成的二面角為直二面角

 、芮蠖娼堑姆椒

  定義法:在棱上選擇有關(guān)點,過這個點分別在兩個面內(nèi)作垂直于棱的射線得到平面角

  垂面法:已知二面角內(nèi)一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角

  5高中數(shù)學(xué)必修二知識點總結(jié):解三角形

  (1)正弦定理和余弦定理

  掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題.

  (2)應(yīng)用

  能夠運用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關(guān)的實際問題.

  6高中數(shù)學(xué)必修二知識點總結(jié):數(shù)列

  (1)數(shù)列的概念和簡單表示法

 、倭私鈹(shù)列的概念和幾種簡單的表示方法(列表、圖象、通項公式).

 、诹私鈹(shù)列是自變量為正整數(shù)的一類函數(shù).

  (2)等差數(shù)列、等比數(shù)列

 、倮斫獾炔顢(shù)列、等比數(shù)列的概念.

 、谡莆盏炔顢(shù)列、等比數(shù)列的通項公式與前項和公式.

 、勰茉诰唧w的問題情境中,識別數(shù)列的等差關(guān)系或等比關(guān)系,并能用有關(guān)知識解決相應(yīng)的問題.

 、芰私獾炔顢(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關(guān)系.

  高中數(shù)學(xué)必修二知識點總結(jié):不等式

  7高中數(shù)學(xué)必修二知識點總結(jié):不等關(guān)系

  了解現(xiàn)實世界和日常生活中的不等關(guān)系,了解不等式(組)的實際背景.

  (2)一元二次不等式

  ①會從實際情境中抽象出一元二次不等式模型.

 、谕ㄟ^函數(shù)圖象了解一元二次不等式與相應(yīng)的二次函數(shù)、一元二次方程的聯(lián)系.

 、蹠庖辉尾坏仁,對給定的一元二次不等式,會設(shè)計求解的程序框圖.

  (3)二元一次不等式組與簡單線性規(guī)劃問題

  ①會從實際情境中抽象出二元一次不等式組.

 、诹私舛淮尾坏仁降膸缀我饬x,能用平面區(qū)域表示二元一次不等式組.

 、蹠䦶膶嶋H情境中抽象出一些簡單的二元線性規(guī)劃問題,并能加以解決.

  (4)基本不等式:

 、倭私饣静坏仁降淖C明過程.

  ②會用基本不等式解決簡單的最大(小)值問題圓的輔助線一般為連圓心與切線或者連圓心與弦中點

數(shù)學(xué)知識點總結(jié)7

  高考數(shù)學(xué)解答題部分主要考查七大主干知識:

  第一,函數(shù)與導(dǎo)數(shù)。主要考查集合運算、函數(shù)的有關(guān)概念定義域、值域、解析式、函數(shù)的極限、連續(xù)、導(dǎo)數(shù)。

  第二,平面向量與三角函數(shù)、三角變換及其應(yīng)用。這一部分是高考的重點但不是難點,主要出一些基礎(chǔ)題或中檔題。

  第三,數(shù)列及其應(yīng)用。這部分是高考的重點而且是難點,主要出一些綜合題。

  第四,不等式。主要考查不等式的求解和證明,而且很少單獨考查,主要是在解答題中比較大小。是高考的重點和難點。

  第五,概率和統(tǒng)計。這部分和我們的生活聯(lián)系比較大,屬應(yīng)用題。

  第六,空間位置關(guān)系的定性與定量分析,主要是證明平行或垂直,求角和距離。

  第七,解析幾何。是高考的難點,運算量大,一般含參數(shù)。

  高考對數(shù)學(xué)基礎(chǔ)知識的考查,既全面又突出重點,扎實的數(shù)學(xué)基礎(chǔ)是成功解題的關(guān)鍵。針對數(shù)學(xué)高考強調(diào)對基礎(chǔ)知識與基本技能的考查我們一定要全面、系統(tǒng)地復(fù)習(xí)高中數(shù)學(xué)的基礎(chǔ)知識,正確理解基本概念,正確掌握定理、原理、法則、公式、并形成記憶,形成技能。以不變應(yīng)萬變。

  對數(shù)學(xué)思想和方法的考查是對數(shù)學(xué)知識在更高層次上的抽象和概括的考查,考查時與數(shù)學(xué)知識相結(jié)合。

  對數(shù)學(xué)能力的考查,強調(diào)“以能力立意”,就是以數(shù)學(xué)知識為載體,從問題入手,把握學(xué)科的整體意義,用統(tǒng)一的數(shù)學(xué)觀點組織材料,側(cè)重體現(xiàn)對知識的理解和應(yīng)用,尤其是綜合和靈活的應(yīng)用,所有數(shù)學(xué)考試最終落在解題上。考綱對數(shù)學(xué)思維能力、運算能力、空間想象能力以及實踐能力和創(chuàng)新意識都提出了十分明確的考查要求,而解題訓(xùn)練是提高能力的必要途徑,所以高考復(fù)習(xí)必須把解題訓(xùn)練落到實處。訓(xùn)練的內(nèi)容必須根據(jù)考綱的要求精心選題,始終緊扣基礎(chǔ)知識,多進(jìn)行解題的回顧、總結(jié),概括提煉基本思想、基本方法,形成對通性通法的.認(rèn)識,真正做到解一題,會一類。

  在臨近高考的數(shù)學(xué)復(fù)習(xí)中,考生們更應(yīng)該從三個層面上整體把握,同步推進(jìn)。

  1.知識層面

  也就是對每個章節(jié)、每個知識點的再認(rèn)識、再記憶、再應(yīng)用。數(shù)學(xué)高考內(nèi)容選修加必修,可歸納為12個章節(jié),75個知識點細(xì)化為160個小知識點,而這些知識點又是縱橫交錯,互相關(guān)聯(lián),是“你中有我,我中有你”的?忌鷤冊谇謇磉@些知識點時,首先是點點必記,不可遺漏。再是建立相關(guān)聯(lián)的網(wǎng)絡(luò),做到取自一點,連成一線,使之橫豎縱橫都逐個、逐級并網(wǎng)連遍,從而牢固記憶、靈活運用。

  2.能力層面

  從知識點的掌握到解題能力的形成,是綜合,更是飛躍,將知識點的內(nèi)容轉(zhuǎn)化為高強的數(shù)學(xué)能力,這要通過大量練習(xí),通過大腦思維、再思維,從而沉淀而得到數(shù)學(xué)思想的精華,就是數(shù)學(xué)解題能力。我們通常說的解題能力、計算能力、轉(zhuǎn)化問題的能力、閱讀理解題意的能力等等,都來自于千錘百煉的解題之中。

  3.創(chuàng)新層面

  數(shù)學(xué)解題要創(chuàng)新,首先是思想創(chuàng)新,我們稱之為“函數(shù)的思想”、“討論的方法”。函數(shù)是高中數(shù)學(xué)的主線,我們可以用函數(shù)的思想去分析一切數(shù)學(xué)問題,從初等數(shù)學(xué)到高等數(shù)學(xué)、從圖形問題到運算問題、從高散型到連續(xù)型、從指數(shù)與對數(shù)、從微分與積分等等,這一切都要突出函數(shù)的思想;另外,現(xiàn)在的高考題常常用增加題目中參數(shù)的方法來提高題目的難度,用于區(qū)別學(xué)生之間解題能力的差異。我們常常應(yīng)對參數(shù)的策略點是消去參數(shù),化未知為已知;或討論參數(shù),分類找出參數(shù)的含義;或分離參數(shù),將參數(shù)問題化成函數(shù)問題,使問題迎刃而解。這些,我稱之為解題創(chuàng)新之舉。

  ☆

  還有一類數(shù)學(xué)解題中的創(chuàng)新,是代換,構(gòu)造新函數(shù)新圖形等等,俗稱代換法、構(gòu)造法,這里有更大的思維跨越,在解題的某一階段有時出現(xiàn)山窮水盡,無計可施時,用代換與構(gòu)造,就會使思路豁然開朗、柳暗花明、思路順暢、解答優(yōu)美,體現(xiàn)數(shù)學(xué)之美。常見的代換有變量代換,三角代換,整體代換;常用的構(gòu)造有構(gòu)造函數(shù)、構(gòu)造圖形、構(gòu)造數(shù)列、構(gòu)造不等式、構(gòu)造相關(guān)模型等等。

  ☆

  總之,數(shù)學(xué)是一門規(guī)律性強、邏輯結(jié)構(gòu)嚴(yán)密的學(xué)科,它有規(guī)律、有模型、有式子、有圖形,只要我們掌握了它的規(guī)律、看清了模型、了解了式子、記住了圖形,數(shù)學(xué)就會變成一門簡單而有趣的科學(xué)。這種戰(zhàn)略上的藐視與戰(zhàn)術(shù)上的重視,將會使考生們超常發(fā)揮,取得優(yōu)異的成績。

  高等數(shù)學(xué)學(xué)習(xí)方法

  養(yǎng)成良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣

  多質(zhì)疑、勤思考、好動手、重歸納、注意應(yīng)用。學(xué)生在學(xué)習(xí)數(shù)學(xué)的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣包括課前自學(xué)、專心上課、及時復(fù)習(xí)、獨立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個方面。

  及時了解、掌握常用的數(shù)學(xué)思想和方法

  中學(xué)數(shù)學(xué)學(xué)習(xí)要重點掌握的的數(shù)學(xué)思想有以上幾個:集合與對應(yīng)思想,分類討論思想,數(shù)形結(jié)合思想,運動思想,轉(zhuǎn)化思想,變換思想。

  有了數(shù)學(xué)思想以后,還要掌握具體的方法,比如:換元、待定系數(shù)、數(shù)學(xué)歸納法、分析法、綜合法、反證法等等。在具體的方法中,常用的有:觀察與實驗,聯(lián)想與類比,比較與分類,分析與綜合,歸納與演繹,一般與特殊,有限與無限,抽象與概括等。

  高等數(shù)學(xué)學(xué)習(xí)技巧

  1.先看筆記后做作業(yè)。

  有的同學(xué)感到,老師講過的,自己已經(jīng)聽得明明白白了。但是為什么你這么做有那么多困難呢?原因是學(xué)生對教師所說的理解沒有達(dá)到教師要求的水平。

  因此,每天做作業(yè)之前,我們必須先看一下課本的相關(guān)內(nèi)容和當(dāng)天的課堂筆記。能否如此堅持,常常是好學(xué)生與差學(xué)生的最大區(qū)別。尤其是當(dāng)練習(xí)不匹配時,老師通常沒有剛剛講過的練習(xí)類型,因此它們不能被比較和消化。如果你不重視這個實施,在很長一段時間內(nèi),會造成很大的損失。

  2.做題之后加強反思。

  學(xué)生一定要明確,現(xiàn)在正做著的題,一定不是考試的題目。但使用現(xiàn)在做主題的解決問題的思路和方法。因此,我們應(yīng)該反思我們所做的每一個問題,并總結(jié)我們自己的收獲。

  要總結(jié)出:這是一道什么內(nèi)容的題,用的是什么方法。做到知識成片,問題成串。日復(fù)一日,建立科學(xué)的網(wǎng)絡(luò)系統(tǒng)的內(nèi)容和方法。俗話說: 有錢難買回頭看 。做完作業(yè),回頭細(xì)看,價值極大。這一回顧,是學(xué)習(xí)過程中一個非常重要的環(huán)節(jié)。

數(shù)學(xué)知識點總結(jié)8

  等腰直角三角形面積公式:S=a2/2,S=ch/2=c2/4(其中a為直角邊,c為斜邊,h為斜邊上的高)。

  面積公式

  若假設(shè)等腰直角三角形兩腰分別為a,b,底為c,則可得其面積:

  S=ab/2。

  且由等腰直角三角形性質(zhì)可知:底邊c上的高h(yuǎn)=c/2,則三角面積可表示為:

  S=ch/2=c2/4。

  等腰直角三角形是一種特殊的三角形,具有所有三角形的性質(zhì):穩(wěn)定性,兩直角邊相等直角邊夾一直角銳角45°,斜邊上中線角平分線垂線三線合一。

  反正弦函數(shù)的導(dǎo)數(shù):正弦函數(shù)y=sinx在[-π/2,π/2]上的反函數(shù),叫做反正弦函數(shù)。記作arcsinx,表示一個正弦值為x的角,該角的范圍在[-π/2,π/2]區(qū)間內(nèi)。定義域[-1,1],值域[-π/2,π/2]。

  反函數(shù)求導(dǎo)方法

  若F(X),G(X)互為反函數(shù),

  則:F'(X)_'(X)=1

  E.G.:y=arcsin_siny

  y'_'=1(arcsinx)'_siny)'=1

  y'=1/(siny)'=1/(cosy)=1/根號(1-sin^2y)=1/根號(1-x^2)

  其余依此類推

數(shù)學(xué)知識點總結(jié)9

  一、勾股定理

  1、勾股定理

  直角三角形兩直角邊a,b的平方和等于斜邊c的平方,即a2+b2=c2。

  2、勾股定理的逆定理

  如果三角形的三邊長a,b,c有這種關(guān)系,那么這個三角形是直角三角形。

  3、勾股數(shù)

  滿足的三個正整數(shù),稱為勾股數(shù)。

  常見的勾股數(shù)組有:(3,4,5);(5,12,13);(8,15,17);(7,24,25);(20,21,29);(9,40,41);……(這些勾股數(shù)組的倍數(shù)仍是勾股數(shù))。

  二、證明

  1、對事情作出判斷的句子,就叫做命題。即:命題是判斷一件事情的句子。

  2、三角形內(nèi)角和定理:三角形三個內(nèi)角的和等于180度。

  (1)證明三角形內(nèi)角和定理的思路是將原三角形中的三個角湊到一起組成一個平角。一般需要作輔助。

  (2)三角形的外角與它相鄰的內(nèi)角是互為補角。

  3、三角形的外角與它不相鄰的內(nèi)角關(guān)系

  (1)三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和。

  (2)三角形的一個外角大于任何一個和它不相鄰的內(nèi)角。

  4、證明一個命題是真命題的基本步驟

  (1)根據(jù)題意,畫出圖形。

  (2)根據(jù)條件、結(jié)論,結(jié)合圖形,寫出已知、求證。

  (3)經(jīng)過分析,找出由已知推出求證的途徑,寫出證明過程。在證明時需注意:①在一般情況下,分析的過程不要求寫出來。②證明中的每一步推理都要有根據(jù)。如果兩條直線都和第三條直線平行,那么這兩條直線也相互平行。

  八年級上冊數(shù)學(xué)知識點

  (一)運用公式法

  我們知道整式乘法與因式分解互為逆變形。如果把乘法公式反過來就是把多項式分解因式。于是有:

  a2-b2=(a+b)(a-b)

  a2+2ab+b2=(a+b)2

  a2-2ab+b2=(a-b)2

  如果把乘法公式反過來,就可以用來把某些多項式分解因式。這種分解因式的方法叫做運用公式法。

  (二)平方差公式

  平方差公式

  (1)式子:a2-b2=(a+b)(a-b)

  (2)語言:兩個數(shù)的平方差,等于這兩個數(shù)的和與這兩個數(shù)的差的積。這個公式就是平方差公式。

  (三)因式分解

  1.因式分解時,各項如果有公因式應(yīng)先提公因式,再進(jìn)一步分解。

  2.因式分解,必須進(jìn)行到每一個多項式因式不能再分解為止。

  (四)完全平方公式

  (1)把乘法公式(a+b)2=a2+2ab+b2和(a-b)2=a2-2ab+b2反過來,就可以得到:

  a2+2ab+b2=(a+b)2

  a2-2ab+b2=(a-b)2

  這就是說,兩個數(shù)的平方和,加上(或者減去)這兩個數(shù)的積的2倍,等于這兩個數(shù)的和(或者差)的平方。

  把a2+2ab+b2和a2-2ab+b2這樣的式子叫完全平方式。

  上面兩個公式叫完全平方公式。

  (2)完全平方式的形式和特點

 、夙棓(shù):三項

 、谟袃身検莾蓚數(shù)的的平方和,這兩項的符號相同。

  ③有一項是這兩個數(shù)的積的兩倍。

  (3)當(dāng)多項式中有公因式時,應(yīng)該先提出公因式,再用公式分解。

  (4)完全平方公式中的a、b可表示單項式,也可以表示多項式。這里只要將多項式看成一個整體就可以了。

  (5)分解因式,必須分解到每一個多項式因式都不能再分解為止。

  (五)分組分解法

  我們看多項式am+an+bm+bn,這四項中沒有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式.

  如果我們把它分成兩組(am+an)和(bm+bn),這兩組能分別用提取公因式的方法分別分解因式.

  原式=(am+an)+(bm+bn)

  =a(m+n)+b(m+n)

  做到這一步不叫把多項式分解因式,因為它不符合因式分解的意義.但不難看出這兩項還有公因式(m+n),因此還能繼續(xù)分解,所以

  原式=(am+an)+(bm+bn)

  =a(m+n)+b(m+n)

  =(m+n)×(a+b).

  初二下冊數(shù)學(xué)知識點歸納北師大版

  一、多邊形

  1、多邊形:由一些線段首尾順次連結(jié)組成的圖形,叫做多邊形。

  2、多邊形的邊:組成多邊形的各條線段叫做多邊形的邊。

  3、多邊形的頂點:多邊形每相鄰兩邊的公共端點叫做多邊形的頂點。

  4、多邊形的對角線:連結(jié)多邊形不相鄰的兩個頂點的線段叫做多邊形的對角線。

  5、多邊形的周長:多邊形各邊的長度和叫做多邊形的周長。

  6、凸多邊形:把多邊形的任何一條邊向兩方延長,如果多邊形的其他各邊都在延長線所得直線的問旁,這樣的多邊形叫凸多邊形。

  說明:一個多邊形至少要有三條邊,有三條邊的叫做三角形;有四條邊的叫做四邊形;有幾條邊的叫做幾邊形。今后所說的多邊形,如果不特別聲明,都是指凸多邊形。

  7、多邊形的角:多邊形相鄰兩邊所組成的角叫做多邊形的內(nèi)角,簡稱多邊形的角。

  8、多邊形的外角:多邊形的角的一邊與另一邊的反向延長線所組成的角叫做多邊形的外角。

  注意:多邊形的外角也就是與它有公共頂點的內(nèi)角的鄰補角。

  9、多邊形內(nèi)角和定理:n邊形內(nèi)角和等于(n-2)180°。

  10、多邊形內(nèi)角和定理的推論:n邊形的外角和等于360°。

  說明:多邊形的外角和是一個常數(shù)(與邊數(shù)無關(guān)),利用它解決有關(guān)計算題比利用多邊形內(nèi)角和公式及對角線求法公式簡單。無論用哪個公式解決有關(guān)計算,都要與解方程聯(lián)系起來,掌握計算方法。

數(shù)學(xué)知識點總結(jié)10

  第一:高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié)。

  主要是考函數(shù)和導(dǎo)數(shù),這是我們整個高中階段里最核心的板塊,在這個板塊里,重點考察兩個方面:第一個函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問題,但是這個分布重點還包含兩個分析就是二次方程的分布的問題,這是第一個板塊。

  第二:平面向量和三角函數(shù)。

  重點考察三個方面:

  一個是劃減與求值。

  第一,重點掌握公式,重點掌握五組基本公式。

  第二,是三角函數(shù)的圖像和性質(zhì),這里重點掌握正弦函數(shù)和余弦函數(shù)的性質(zhì)。

  第三,正弦定理和余弦定理來解三角形。難度比較小。

  第三:數(shù)列。

  數(shù)列這個板塊,重點考兩個方面:一個通項;一個是求和。

  第四:空間向量和立體幾何。

  在里面重點考察兩個方面:一個是證明;一個是計算。

  第五:概率和統(tǒng)計。

  這一板塊主要是屬于數(shù)學(xué)應(yīng)用問題的范疇,當(dāng)然應(yīng)該掌握下面幾個方面:

  第一……等可能的概率。

  第二………事件。

  第三是獨立事件,還有獨立重復(fù)事件發(fā)生的概率。

  第六:解析幾何。

  這是我們比較頭疼的問題,是整個試卷里難度比較大,計算量的題,當(dāng)然這一類題,我總結(jié)下面五類?嫉念}型,包括第一類所講的直線和曲線的位置關(guān)系,這是考試最多的內(nèi)容?忌鷳(yīng)該掌握它的通法,第二類我們所講的動點問題,第三類是弦長問題,第四類是對稱問題,這也是20xx年高考已經(jīng)考過的一點,第五類重點問題,這類題時往往覺得有思路,但是沒有答案,當(dāng)然這里我相等的是,這道題盡管計算量很大,但是造成計算量大的原因,往往有這個原因,我們所選方法不是很恰當(dāng),因此,在這一章里我們要掌握比較好的算法,來提高我們做題的準(zhǔn)確度,這是我們所講的第六大板塊。

  第七:押軸題。

  考生在備考復(fù)習(xí)時,應(yīng)該重點不等式計算的方法,雖然說難度比較大,我建議考生,采取分部得分整個試卷不要留空白。這是高考所考的七大板塊核心的考點。

數(shù)學(xué)知識點總結(jié)11

  動點與函數(shù)圖象問題常見的四種類型:

   1、三角形中的動點問題:動點沿三角形的邊運動,根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.

  2、四邊形中的動點問題:動點沿四邊形的邊運動,根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.

  3、圓中的動點問題:動點沿圓周運動,根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.

  4、直線、雙曲線、拋物線中的動點問題:動點沿直線、雙曲線、拋物線運動,根據(jù)問題中的常量與變量之間的關(guān)系,判斷函數(shù)圖象.

  圖形運動與函數(shù)圖象問題常見的三種類型:

  1、線段與多邊形的運動圖形問題:把一條線段沿一定方向運動經(jīng)過三角形或四邊形,根據(jù)問題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數(shù)圖象.

  2、多邊形與多邊形的運動圖形問題:把一個三角形或四邊形沿一定方向運動經(jīng)過另一個多邊形,根據(jù)問題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數(shù)圖象.

  3、多邊形與圓的運動圖形問題:把一個圓沿一定方向運動經(jīng)過一個三角形或四邊形,或把一個三角形或四邊形沿一定方向運動經(jīng)過一個圓,根據(jù)問題中的常量與變量之間的關(guān)系,進(jìn)行分段,判斷函數(shù)圖象.

  動點問題常見的四種類型:

  1、三角形中的動點問題:動點沿三角形的邊運動,通過全等或相似,探究構(gòu)成的新圖形與原圖形的邊或角的關(guān)系.

  2、四邊形中的動點問題:動點沿四邊形的邊運動,通過探究構(gòu)成的新圖形與原圖形的全等或相似,得出它們的邊或角的關(guān)系.

  3、圓中的動點問題:動點沿圓周運動,探究構(gòu)成的新圖形的邊角等關(guān)系.

  4、直線、雙曲線、拋物線中的動點問題:動點沿直線、雙曲線、拋物線運動,探究是否存在動點構(gòu)成的三角形是等腰三角形或與已知圖形相似等問題.

  總結(jié)反思:

   本題是二次函數(shù)的綜合題,考查了待定系數(shù)法求二次函數(shù)的解析式,一次函數(shù)的解析式,三角形全等的判定和性質(zhì),等腰直角三角形的性質(zhì),平行線的性質(zhì)等,數(shù)形結(jié)合思想的應(yīng)用是解題的關(guān)鍵.

  解答動態(tài)性問題通常是對幾何圖形運動過程有一個完整、清晰的認(rèn)識,發(fā)掘“動”與“靜”的內(nèi)在聯(lián)系,尋求變化規(guī)律,從變中求不變,從而達(dá)到解題目的.

  解答函數(shù)的圖象問題一般遵循的步驟:

   1、根據(jù)自變量的取值范圍對函數(shù)進(jìn)行分段.

  2、求出每段的解析式.

  3、由每段的解析式確定每段圖象的形狀.

  對于用圖象描述分段函數(shù)的實際問題,要抓住以下幾點:

  1、自變量變化而函數(shù)值不變化的圖象用水平線段表示.

  2、自變量變化函數(shù)值也變化的增減變化情況.

  3、函數(shù)圖象的最低點和最高點.

數(shù)學(xué)知識點總結(jié)12

  平方根與立方根知識點

  平方根:

  概括1:一般地,如果一個數(shù)的平方等于a,這個數(shù)就叫做a的平方根(或二次方根)。就是說,如果x=a,那么x就叫做a的平方根。如:23與-23都是529的平方根。

  因為(±23)=529,所以±23是529的平方根。問:(1)16,49,100,1100都是正數(shù),它們有幾個平方根?平方根之間有什么關(guān)系?(2)0的平方根是什么?

  概括2:一個正數(shù)有兩個平方根,它們互為相反數(shù);0有一個平方根,它是0本身;負(fù)數(shù)沒有平方根。

  概括3:求一個數(shù)a(a≥0)的平方根的運算,叫做開平方。

  開平方運算是已知指數(shù)和冪求底數(shù)。平方與開平方互為逆運算。一個數(shù)可以是正數(shù)、負(fù)數(shù)或者是0,它的平方數(shù)只有一個,正數(shù)或負(fù)數(shù)的平方都是正數(shù),0的平方是0。但一個正數(shù)的平方根卻有兩個,這兩個數(shù)互為相反數(shù),0的平方根是0。負(fù)數(shù)沒有平方根。因為平方與開平方互為逆運算,因此我們可以通過平方運算來求一個數(shù)的平方根,也可以通過平方運算來檢驗一個數(shù)是不是另一個數(shù)的平方根。

  一、算術(shù)平方根的概念

  正數(shù)a有兩個平方根(表示為?根,表示為a。0的平方根也叫做0的算術(shù)平方根,因此0的算術(shù)平方根是0,即0!笔撬阈g(shù)平方根的符號,a就表示a的算術(shù)平方根。a的意義有兩點:a,我們把其中正的平方根,叫做a的算術(shù)平方

  (1)被開方數(shù)a表示非負(fù)數(shù),即a≥0;

  (2)a也表示非負(fù)數(shù),即a≥0。也就是說,非負(fù)數(shù)的“算術(shù)”平方根是非負(fù)數(shù)。負(fù)數(shù)不存在算術(shù)平方根,即a<0時,a無意義。

  如:=3,8是64的算術(shù)平方根,6無意義。9既表示對9進(jìn)行開平方運算,也表示9的正的平方根。

  二、平方根與算術(shù)平方根的區(qū)別在于

  ①定義不同;

 、趥數(shù)不同:一個正數(shù)有兩個平方根,而一個正數(shù)的算術(shù)平方根只有一個;③表示方法不同:正數(shù)a的平方根表示為?a,正數(shù)a的算術(shù)平方根表示為a;④取值范圍不同:正數(shù)的算術(shù)平方根一定是正數(shù),正數(shù)的平方根是一正一負(fù).⑤0的平方根與算術(shù)平方根都是0.

  三、例題講解:

  例1、求下列各數(shù)的算術(shù)平方根:

  (1)100;

  (2)49;

  (3)0.8164

  注意:由于正數(shù)的算術(shù)平方根是正數(shù),零的算術(shù)平方根是零,可將它們概括成:非負(fù)數(shù)的算

  術(shù)平方根是非負(fù)數(shù),即當(dāng)a≥0時,a≥0(當(dāng)a<0時,a無意義)

  用幾何圖形可以直觀地表示算術(shù)平方根的意義如有一個面積為a(a應(yīng)是非負(fù)數(shù))、邊長為

  的正方形就表示a的算術(shù)平方根。

  這里需要說明的是,算術(shù)平方根的符號“”不僅是一個運算符號,如a≥0時,a表示對非負(fù)數(shù)a進(jìn)行開平方運算,另一方面也是一個性質(zhì)符號,即表示非負(fù)數(shù)a的正的平方根。

  3、立方根

  (1)立方根的定義:如果一個數(shù)x的立方等于a,這個數(shù)叫做a的立方根(也叫做三次方根),即如果x?a,那么x叫做a的立方根

  (2)一個數(shù)a的立方根,讀作:“三次根號a”,其中a叫被開方數(shù),3叫根指數(shù),不能省略,若省略表示平方。

  (3)一個正數(shù)有一個正的立方根;0有一個立方根,是它本身;一個負(fù)數(shù)有一個負(fù)的立方根;任何數(shù)都有的立方根。

  (4)利用開立方和立方互為逆運算關(guān)系,求一個數(shù)的立方根,就可以利用這種互逆關(guān)系,檢驗其正確性,求負(fù)數(shù)的立方根,可以先求出這個負(fù)數(shù)的絕對值的立方根,再取其相反數(shù)。

數(shù)學(xué)知識點總結(jié)13

  一、指數(shù)函數(shù)

  (一)指數(shù)與指數(shù)冪的運算

  1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈_.

  當(dāng)是奇數(shù)時,正數(shù)的次方根是一個正數(shù),負(fù)數(shù)的次方根是一個負(fù)數(shù).此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(shù)(radicalexponent),叫做被開方數(shù)(radicand).

  當(dāng)是偶數(shù)時,正數(shù)的次方根有兩個,這兩個數(shù)互為相反數(shù).此時,正數(shù)的正的次方根用符號表示,負(fù)的次方根用符號-表示.正的次方根與負(fù)的次方根可以合并成±(>0).由此可得:負(fù)數(shù)沒有偶次方根;0的任何次方根都是0,記作。

  注意:當(dāng)是奇數(shù)時,當(dāng)是偶數(shù)時,

  2.分?jǐn)?shù)指數(shù)冪

  正數(shù)的分?jǐn)?shù)指數(shù)冪的意義,規(guī)定:

  0的正分?jǐn)?shù)指數(shù)冪等于0,0的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義

  指出:規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運算性質(zhì)也同樣可以推廣到有理數(shù)指數(shù)冪.

  3.實數(shù)指數(shù)冪的運算性質(zhì)

  (二)指數(shù)函數(shù)及其性質(zhì)

  1、指數(shù)函數(shù)的概念:一般地,函數(shù)叫做指數(shù)函數(shù)(exponential),其中x是自變量,函數(shù)的定義域為R.

  注意:指數(shù)函數(shù)的底數(shù)的取值范圍,底數(shù)不能是負(fù)數(shù)、零和1.

  2、指數(shù)函數(shù)的圖象和性質(zhì)

  【第三章:第三章函數(shù)的應(yīng)用】

  1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。

  2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標(biāo)。即:

  方程有實數(shù)根函數(shù)的圖象與軸有交點函數(shù)有零點.

  3、函數(shù)零點的求法:

  求函數(shù)的零點:

  (1)(代數(shù)法)求方程的實數(shù)根;

  (2)(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點.

  4、二次函數(shù)的零點:

  二次函數(shù).

  1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點.  2)△=0,方程有兩相等實根(二重根),二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點.

  3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點.

  3.2.1幾類不同增長的函數(shù)模型

  【課 型】新授課

  【教學(xué)目標(biāo)】

  結(jié)合實例體會直線上升、指數(shù)爆炸、對數(shù)增長等不同增長的函數(shù)模型意義, 理解它們的增長差異性.

  【教學(xué)重點、難點】

  1. 教學(xué)重點 將實際問題轉(zhuǎn)化為函數(shù)模型,比較常數(shù)函數(shù)、一次函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)模型的增長差異,結(jié)合實例體會直線上升、指數(shù)爆炸、對數(shù)增長等不同函數(shù)類型增長的含義.

  2.教學(xué)難點 選擇合適的數(shù)學(xué)模型分析解決實際問題.

  【學(xué)法與教學(xué)用具】

  1. 學(xué)法:學(xué)生通過閱讀教材,動手畫圖,自主學(xué)習(xí)、思考,并相互討論,進(jìn)行探索.

  2.教學(xué)用具:多媒體.

  【教學(xué)過程】

  (一)引入實例,創(chuàng)設(shè)情景.

  教師引導(dǎo)學(xué)生閱讀例1,分析其中的數(shù)量關(guān)系,思考應(yīng)當(dāng)選擇怎樣的函數(shù)模型來描述;由學(xué)生自己根據(jù)數(shù)量關(guān)系,歸納概括出相應(yīng)的函數(shù)模型,寫出每個方案的函數(shù)解析式,教師在數(shù)量關(guān)系的分析、函數(shù)模型的選擇上作指導(dǎo).

  (二)互動交流,探求新知.

  1. 觀察數(shù)據(jù),體會模型.

  教師引導(dǎo)學(xué)生觀察例1表格中三種方案的數(shù)量變化情況,體會三種函數(shù)的增長差異,說出自己的發(fā)現(xiàn),并進(jìn)行交流.

  2. 作出圖象,描述特點.

  教師引導(dǎo)學(xué)生借助計算器作出三個方案的函數(shù)圖象,分析三種方案的不同變化趨勢,并進(jìn)行描述,為方案選擇提供依據(jù).

  (三)實例運用,鞏固提高.

  1. 教師引導(dǎo)學(xué)生分析影響方案選擇的因素,使學(xué)生認(rèn)識到要做出正確選擇除了考慮每天的收益,還要考慮一段時間內(nèi)的總收益.學(xué)生通過自主活動,分析整理數(shù)據(jù),并根據(jù)其中的信息做出推理判斷,獲得累計收益并給出本例的完整解答,然后全班進(jìn)行交流.

  2. 教師引導(dǎo)學(xué)生分析例2中三種函數(shù)的不同增長情況對于獎勵模型的影響,使學(xué)生明確問題的實質(zhì)就是比較三個函數(shù)的增長情況,進(jìn)一步體會三種基本函數(shù)模型在實際中廣泛應(yīng)用,體會它們的增長差異.

  3.教師引導(dǎo)學(xué)生分析得出:要對每一個獎勵模型的獎金總額是否超出5萬元,以及獎勵比例是否超過25%進(jìn)行分析,才能做出正確選擇,學(xué)會對數(shù)據(jù)的特點與作用進(jìn)行分析、判斷。

  4.教師引導(dǎo)學(xué)生利用解析式,結(jié)合圖象,對例2的三個模型的增長情況進(jìn)行分析比較,寫出完整的解答過程.進(jìn)一步認(rèn)識三個函數(shù)模型的增長差異,并掌握解答的規(guī)范要求.

  5.教師引導(dǎo)學(xué)生通過以上具體函數(shù)進(jìn)行比較分析,探究冪函數(shù)(>0)、指數(shù)函數(shù)(>1)、對數(shù)函數(shù)(>1)在區(qū)間(0,+∞)上的增長差異,并從函數(shù)的性質(zhì)上進(jìn)行研究、論證,同學(xué)之間進(jìn)行交流總結(jié),形成結(jié)論性報告.教師對學(xué)生的結(jié)論進(jìn)行評析,借助信息技術(shù)手段進(jìn)行驗證演示.

  6. 課堂練習(xí)

  教材P98練習(xí)1、2,并由學(xué)生演示,進(jìn)行講評。

  (四)歸納總結(jié),提升認(rèn)識.

  教師通過計算機作圖進(jìn)行總結(jié),使學(xué)生認(rèn)識直線上升、指數(shù)爆炸、對數(shù)增長等不同函數(shù)模型的含義及其差異,認(rèn)識數(shù)學(xué)與現(xiàn)實生活、與其他學(xué)科的密切聯(lián)系,從而體會數(shù)學(xué)的實用價值和內(nèi)在變化規(guī)律.

  (五)布置作業(yè)

  教材P107練習(xí)第2題

  收集一些社會生活中普遍使用的遞增的一次函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)的實例,對它們的增長速度進(jìn)行比較,了解函數(shù)模型的廣泛應(yīng)用,并思考。有時同一個實際問題可以建立多個函數(shù)模型,在具體應(yīng)用函數(shù)模型時,應(yīng)該怎樣選用合理的函數(shù)模型.

  3.2.2 函數(shù)模型的應(yīng)用實例(Ⅰ)

  【課 型】新授課

  【教學(xué)目標(biāo)】

  能夠找出簡單實際問題中的函數(shù)關(guān)系式,初步體會應(yīng)用一次函數(shù)、二次函數(shù)模型解決實際問題.

  【教學(xué)重點與難點】

  1.教學(xué)重點:運用一次函數(shù)、二次函數(shù)模型解決一些實際問題.

  2. 教學(xué)難點:將實際問題轉(zhuǎn)變?yōu)閿?shù)學(xué)模型.

  【學(xué)法與教學(xué)用具】

  1. 學(xué)法:學(xué)生自主閱讀教材,采用嘗試、討論方式進(jìn)行探究.

  2. 教學(xué)用具:多媒體

  【教學(xué)過程】

  (一)創(chuàng)設(shè)情景,揭示課題

  引例:大約在一千五百年前,大數(shù)學(xué)家孫子在《孫子算經(jīng)》中記載了這樣的一道題:“今有雛兔同籠,上有三十五頭,下有九十四足,問雛兔各幾何?”這四句的意思就是:有若干只有幾只雞和兔?你知道孫子是如何解答這個“雞兔同籠”問題的嗎?你有什么更好的方法?老師介紹孫子的大膽解法:他假設(shè)砍去每只雞和兔一半的腳,則每只雞和兔就變成了“獨腳雞”和“雙腳兔”.這樣,“獨腳雞”和“雙腳兔”腳的數(shù)量與它們頭的數(shù)量之差,就是兔子數(shù),即:47-35=12;雞數(shù)就是:35-12=23.

  比例激發(fā)學(xué)生學(xué)習(xí)興趣,增強其求知欲望.

  可引導(dǎo)學(xué)生運用方程的思想解答“雞兔同籠”問題.

  (二)結(jié)合實例,探求新知

  例1. 某列火車眾北京西站開往石家莊,全程277km,火車出發(fā)10min開出13km后,以120km/h勻速行駛.試寫出火車行駛的總路程S與勻速行駛的時間t之間的關(guān)系式,并求火車離開北京2h內(nèi)行駛的路程.

  探索:

  1)本例所涉及的變量有哪些?它們的取值范圍怎樣;

  2)所涉及的變量的關(guān)系如何?

  3)寫出本例的解答過程.

  老師提示:路程S和自變量t的取值范圍(即函數(shù)的定義域),注意t的實際意義.

  學(xué)生獨立思考,完成解答,并相互討論、交流、評析.

  例2.某商店出售茶壺和茶杯,茶壺每只定價20元,茶杯每只定價5元,該商店制定了兩種優(yōu)惠辦法:

  1)本例所涉及的變量之間的關(guān)系可用何種函數(shù)模型來描述?

  2)本例涉及到幾個函數(shù)模型?

  3)如何理解“更省錢?”;

  4)寫出具體的解答過程.

  在學(xué)生自主思考,相互討論完成本例題解答之后,老師小結(jié):通過以上兩例,數(shù)學(xué)模型是用數(shù)學(xué)語言模擬現(xiàn)實的一種模型,它把實際問題中某些事物的主要特征和關(guān)系抽象出來,并用數(shù)學(xué)語言來表達(dá),這一過程稱為建模,是解應(yīng)用題的關(guān)鍵。數(shù)學(xué)模型可采用各種形式,如方程(組),函數(shù)解析式,圖形與網(wǎng)絡(luò)等.

數(shù)學(xué)知識點總結(jié)14

  三角函數(shù)關(guān)系

  倒數(shù)關(guān)系

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  商的關(guān)系

  sinα/cosα=tanα=secα/cscα

  cosα/sinα=cotα=cscα/secα

  平方關(guān)系

  sin^2(α)+cos^2(α)=1

  1+tan^2(α)=sec^2(α)

  1+cot^2(α)=csc^2(α)

  同角三角函數(shù)關(guān)系六角形記憶法

  構(gòu)造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。

  倒數(shù)關(guān)系

  對角線上兩個函數(shù)互為倒數(shù);

  商數(shù)關(guān)系

  六邊形任意一頂點上的函數(shù)值等于與它相鄰的兩個頂點上函數(shù)值的乘積。(主要是兩條虛線兩端的三角函數(shù)值的乘積,下面4個也存在這種關(guān)系。)。由此,可得商數(shù)關(guān)系式。

  平方關(guān)系

  在帶有陰影線的三角形中,上面兩個頂點上的三角函數(shù)值的平方和等于下面頂點上的三角函數(shù)值的平方。

  銳角三角函數(shù)定義

  銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數(shù)。

  正弦(sin)等于對邊比斜邊;sinA=a/c

  余弦(cos)等于鄰邊比斜邊;cosA=b/c

  正切(tan)等于對邊比鄰邊;tanA=a/b

  余切(cot)等于鄰邊比對邊;cotA=b/a

  正割(sec)等于斜邊比鄰邊;secA=c/b

  余割(csc)等于斜邊比對邊。cscA=c/a

  互余角的三角函數(shù)間的關(guān)系

  sin(90°-α)=cosα,cos(90°-α)=sinα,

  tan(90°-α)=cotα,cot(90°-α)=tanα.

  平方關(guān)系:

  sin^2(α)+cos^2(α)=1

  tan^2(α)+1=sec^2(α)

  cot^2(α)+1=csc^2(α)

  積的關(guān)系:

  sinα=tanα·cosα

  cosα=cotα·sinα

  tanα=sinα·secα

  cotα=cosα·cscα

  secα=tanα·cscα

  cscα=secα·cotα

  倒數(shù)關(guān)系:

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  中考數(shù)學(xué)知識點

  1、反比例函數(shù)的概念

  一般地,函數(shù)(k是常數(shù),k0)叫做反比例函數(shù)。反比例函數(shù)的解析式也可以寫成的形式。自變量x的取值范圍是x0的一切實數(shù),函數(shù)的取值范圍也是一切非零實數(shù)。

  2、反比例函數(shù)的圖像

  反比例函數(shù)的圖像是雙曲線,它有兩個分支,這兩個分支分別位于第一、三象限,或第二、四象限,它們關(guān)于原點對稱。由于反比例函數(shù)中自變量x0,函數(shù)y0,所以,它的圖像與x軸、y軸都沒有交點,即雙曲線的兩個分支無限接近坐標(biāo)軸,但永遠(yuǎn)達(dá)不到坐標(biāo)軸。

  3、反比例函數(shù)的性質(zhì)

  反比例函數(shù)k的符號k>0k<0圖像yO xyO x性質(zhì)①x的取值范圍是x0,

  y的取值范圍是y0;

 、诋(dāng)k>0時,函數(shù)圖像的兩個分支分別

  在第一、三象限。在每個象限內(nèi),y

  隨x 的增大而減小。

 、賦的取值范圍是x0,

  y的取值范圍是y0;

  ②當(dāng)k<0時,函數(shù)圖像的兩個分支分別

  在第二、四象限。在每個象限內(nèi),y

  隨x 的增大而增大。

  4、反比例函數(shù)解析式的確定

  確定及誒是的方法仍是待定系數(shù)法。由于在反比例函數(shù)中,只有一個待定系數(shù),因此只需要一對對應(yīng)值或圖像上的一個點的坐標(biāo),即可求出k的值,從而確定其解析式。

  5、反比例函數(shù)的幾何意義

  設(shè)是反比例函數(shù)圖象上任一點,過點P作軸、軸的垂線,垂足為A,則

  (1)△OPA的面積.

  (2)矩形OAPB的面積。這就是系數(shù)的幾何意義.并且無論P怎樣移動,△OPA的面積和矩形OAPB的面積都保持不變。

  矩形PCEF面積=,平行四邊形PDEA面積=

數(shù)學(xué)知識點總結(jié)15

  1.等差數(shù)列的定義

  如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d表示.

  2.等差數(shù)列的通項公式

  若等差數(shù)列{an}的首項是a1,公差是d,則其通項公式為an=a1+(n-1)d.

  3.等差中項

  如果A=(a+b)/2,那么A叫做a與b的等差中項.

  4.等差數(shù)列的常用性質(zhì)

  (1)通項公式的推廣:an=am+(n-m)d(n,m∈N_).

  (2)若{an}為等差數(shù)列,且m+n=p+q,

  則am+an=ap+aq(m,n,p,q∈N_).

  (3)若{an}是等差數(shù)列,公差為d,則ak,ak+m,ak+2m,…(k,m∈N_)是公差為md的等差數(shù)列.

  (4)數(shù)列Sm,S2m-Sm,S3m-S2m,…也是等差數(shù)列.

  (5)S2n-1=(2n-1)an.

  (6)若n為偶數(shù),則S偶-S奇=nd/2;

  若n為奇數(shù),則S奇-S偶=a中(中間項).

  注意:

  一個推導(dǎo)

  利用倒序相加法推導(dǎo)等差數(shù)列的前n項和公式:

  Sn=a1+a2+a3+…+an,①

  Sn=an+an-1+…+a1,②

 、+②得:Sn=n(a1+an)/2

  兩個技巧

  已知三個或四個數(shù)組成等差數(shù)列的一類問題,要善于設(shè)元.

  (1)若奇數(shù)個數(shù)成等差數(shù)列且和為定值時,可設(shè)為…,a-2d,a-d,a,a+d,a+2d,….

  (2)若偶數(shù)個數(shù)成等差數(shù)列且和為定值時,可設(shè)為…,a-3d,a-d,a+d,a+3d,…,其余各項再依據(jù)等差數(shù)列的定義進(jìn)行對稱設(shè)元.

  四種方法

  等差數(shù)列的判斷方法

  (1)定義法:對于n≥2的任意自然數(shù),驗證an-an-1為同一常數(shù);

  (2)等差中項法:驗證2an-1=an+an-2(n≥3,n∈N_)都成立;

  (3)通項公式法:驗證an=pn+q;

  (4)前n項和公式法:驗證Sn=An2+Bn.

  注:后兩種方法只能用來判斷是否為等差數(shù)列,而不能用來證明等差數(shù)列.

【數(shù)學(xué)知識點總結(jié)】相關(guān)文章:

小升初數(shù)學(xué)的知識點總結(jié)04-11

數(shù)學(xué)相似知識點總結(jié)03-29

數(shù)學(xué)圓知識點總結(jié)11-03

數(shù)學(xué)知識點總結(jié)11-07

初中數(shù)學(xué)知識點總結(jié)01-23

初中數(shù)學(xué)圓的知識點總結(jié)04-12

初中數(shù)學(xué)必考知識點總結(jié)02-17

大學(xué)數(shù)學(xué)知識點總結(jié)12-02

中考數(shù)學(xué)知識點總結(jié)08-11

小升初數(shù)學(xué)圓的知識點總結(jié)03-29