初三數(shù)學(xué)知識點(diǎn)總結(jié)集合15篇
總結(jié)是對某一特定時(shí)間段內(nèi)的學(xué)習(xí)和工作生活等表現(xiàn)情況加以回顧和分析的一種書面材料,它可以促使我們思考,不妨讓我們認(rèn)真地完成總結(jié)吧。那么我們該怎么去寫總結(jié)呢?下面是小編為大家整理的初三數(shù)學(xué)知識點(diǎn)總結(jié),僅供參考,歡迎大家閱讀。
初三數(shù)學(xué)知識點(diǎn)總結(jié)1
1、圖形的相似
相似多邊形的對應(yīng)邊的比值相等,對應(yīng)角相等;
兩個(gè)多邊形的對應(yīng)角相等,對應(yīng)邊的比值也相等,那么這兩個(gè)多邊形相似;
相似比:相似多邊形對應(yīng)邊的比值。
2、相似三角形
判定:
平行于三角形一邊的直線和其它兩邊相交,所構(gòu)成的三角形和原三角形相似;
如果兩個(gè)三角形的三組對應(yīng)邊的比相等,那么這兩個(gè)三角形相似;
如果兩個(gè)三角形的兩組對應(yīng)邊的比相等,并且相應(yīng)的夾角相等,那么兩個(gè)三角形相似;
如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對應(yīng)相等,那么兩個(gè)三角形相似。
3相似三角形的周長和面積
相似三角形(多邊形)的周長的比等于相似比;
相似三角形(多邊形)的面積的比等于相似比的平方。
4位似
位似圖形:兩個(gè)多邊形相似,而且對應(yīng)頂點(diǎn)的連線相交于一點(diǎn),對應(yīng)邊互相平行,這樣的兩個(gè)圖形叫位似圖形,相交的點(diǎn)叫位似中心。
初三數(shù)學(xué)知識點(diǎn)總結(jié)2
單項(xiàng)式與多項(xiàng)式
僅含有一些數(shù)和字母的乘法包括乘方運(yùn)算的式子叫做單項(xiàng)式單獨(dú)的一個(gè)數(shù)或字母也是單項(xiàng)式。
單項(xiàng)式中的數(shù)字因數(shù)叫做這個(gè)單項(xiàng)式或字母因數(shù)的數(shù)字系數(shù),簡稱系數(shù)。
當(dāng)一個(gè)單項(xiàng)式的系數(shù)是1或—1時(shí),“1”通常省略不寫。
一個(gè)單項(xiàng)式中,所有字母的指數(shù)的和叫做這個(gè)單項(xiàng)式的次數(shù)。
如果在幾個(gè)單項(xiàng)式中,不管它們的系數(shù)是不是相同,只要他們所含的字母相同,并且相同字母的指數(shù)也分別相同,那么,這幾個(gè)單項(xiàng)式就叫做同類單項(xiàng)式,簡稱同類項(xiàng)所有的常數(shù)都是同類項(xiàng)。
1、多項(xiàng)式
有有限個(gè)單項(xiàng)式的代數(shù)和組成的式子,叫做多項(xiàng)式。
多項(xiàng)式里每個(gè)單項(xiàng)式叫做多項(xiàng)式的項(xiàng),不含字母的項(xiàng),叫做常數(shù)項(xiàng)。
單項(xiàng)式可以看作是多項(xiàng)式的特例
把同類單項(xiàng)式的系數(shù)相加或相減,而單項(xiàng)式中的字母的乘方指數(shù)不變。
在多項(xiàng)式中,所含的不同未知數(shù)的個(gè)數(shù),稱做這個(gè)多項(xiàng)式的元數(shù)經(jīng)過合并同類項(xiàng)后,多項(xiàng)式所含單項(xiàng)式的個(gè)數(shù),稱為這個(gè)多項(xiàng)式的項(xiàng)數(shù)所含個(gè)單項(xiàng)式中次項(xiàng)的次數(shù),就稱為這個(gè)多項(xiàng)式的次數(shù)。
2、多項(xiàng)式的值
任何一個(gè)多項(xiàng)式,就是一個(gè)用加、減、乘、乘方運(yùn)算把已知數(shù)和未知數(shù)連接起來的式子。
3、多項(xiàng)式的恒等
對于兩個(gè)一元多項(xiàng)式fx、gx來說,當(dāng)未知數(shù)x同取任一個(gè)數(shù)值a時(shí),如果它們所得的值都是相等的,即fa=ga,那么,這兩個(gè)多項(xiàng)式就稱為是恒等的記為fx==gx,或簡記為fx=gx。
性質(zhì)1如果fx==gx,那么,對于任一個(gè)數(shù)值a,都有fa=ga。
性質(zhì)2如果fx==gx,那么,這兩個(gè)多項(xiàng)式的個(gè)同類項(xiàng)系數(shù)就一定對應(yīng)相等。
4、一元多項(xiàng)式的根
一般地,能夠使多項(xiàng)式fx的值等于0的未知數(shù)x的值,叫做多項(xiàng)式fx的根。
多項(xiàng)式的加、減法,乘法
1、多項(xiàng)式的加、減法
2、多項(xiàng)式的乘法
單項(xiàng)式相乘,用它們系數(shù)作為積的系數(shù),對于相同的字母因式,則連同它的指數(shù)作為積的一個(gè)因式。
3、多項(xiàng)式的乘法
多項(xiàng)式與多項(xiàng)式相乘,先用一個(gè)多項(xiàng)式等每一項(xiàng)乘以另一個(gè)多項(xiàng)式的各項(xiàng),再把所得的積相加。
常用乘法公式
公式I平方差公式
a+ba—b=a^2—b^2
兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積等于這兩個(gè)數(shù)的平方差。
初三數(shù)學(xué)知識點(diǎn)總結(jié)3
初三數(shù)學(xué)知識點(diǎn)第一章二次根式
1二次根式:形如a(a0)的式子為二次根式;性質(zhì):a(a0)是一個(gè)非負(fù)數(shù);aaa0;
2a2aa0。
2二次根式的乘除:ababa0,b0;
aaa0,b0。bb3二次根式的加減:二次根式加減時(shí),先將二次根式華為最簡二次根式,再將被開方數(shù)相同的二次根式進(jìn)行合并。
4海倫-秦九韶公式:S是三角形的面積,Sp(p)(pb)(pc),p為pabc。2第二章一元二次方程
1一元二次方程:等號兩邊都是整式,且只有一個(gè)未知數(shù),未知數(shù)的最高次是2的方程。
2一元二次方程的解法
配方法:將方程的一邊配成完全平方式,然后兩邊開方;
bb24ac公式法:x
2a因式分解法:左邊是兩個(gè)因式的乘積,右邊為零。3一元二次方程在實(shí)際問題中的應(yīng)用
4韋達(dá)定理:設(shè)x1,x2是方程ax2bxc0的兩個(gè)根,那么有x1x2,x1x2第三章旋轉(zhuǎn)1圖形的旋轉(zhuǎn)
旋轉(zhuǎn):一個(gè)圖形繞某一點(diǎn)轉(zhuǎn)動一個(gè)角度的圖形變換性質(zhì):對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;
對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連的線段的夾角等于旋轉(zhuǎn)角旋轉(zhuǎn)前后的圖形全等。
2中心對稱:一個(gè)圖形繞一個(gè)點(diǎn)旋轉(zhuǎn)180度,和另一個(gè)圖
形重合,則兩個(gè)圖形關(guān)于這個(gè)點(diǎn)中心對稱;
中心對稱圖形:一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn)180度后得到的
圖形能夠和原來的圖形重合,則說這個(gè)圖形是中心對稱圖形;
3關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)第四章圓
1圓、圓心、半徑、直徑、圓弧、弦、半圓的定義2垂直于弦的直徑
圓是軸對稱圖形,任何一條直徑所在的直線都是它
的對稱軸;
垂直于弦的直徑平分弦,并且平方弦所對的兩條弧;平分弦的直徑垂直弦,并且平分弦所對的兩條弧。3弧、弦、圓心角
在同圓或等圓中,相等的圓心角所對的弧相等,所
baca對的弦也相等。
4圓周角
在同圓或等圓中,同弧或等弧所對的圓周角相等,都等
于這條弧所對的圓心角的一半;
半圓(或直徑)所對的圓周角是直角,90度的圓周角
所對的弦是直徑。
5點(diǎn)和圓的位置關(guān)系點(diǎn)在
dr
點(diǎn)在圓上d=r點(diǎn)在圓內(nèi)d相等,這一點(diǎn)和圓心的連線平分兩條切線的夾角。
三角形的內(nèi)切圓:和三角形各邊都相切的圓為它的內(nèi)切圓,
圓心是三角形的三條角平分線的交點(diǎn),為三角形的內(nèi)心。
7圓和圓的位置關(guān)系
外離d>R+r外切d=R+r相交R-r第五章概率初步
1概率意義:在大量重復(fù)試驗(yàn)中,事件A發(fā)生的頻率某個(gè)常數(shù)p附近,則常數(shù)p叫做事件A的概率。
2用列舉法求概率
一般的,在一次試驗(yàn)中,有n中可能的結(jié)果,并且它們發(fā)生的概率相等,事件A包含其中的m中結(jié)果,那么事件A發(fā)生的概率就是p(A)=
mnm穩(wěn)定在n3用頻率去估計(jì)概率
初三數(shù)學(xué)知識點(diǎn)總結(jié)4
1.不在同一直線上的三點(diǎn)確定一個(gè)圓。
2.垂徑定理垂直于弦的直徑平分這條弦并且平分弦所對的兩條弧
推論1 ①平分弦不是直徑的直徑垂直于弦,并且平分弦所對的兩條弧
②弦的垂直平分線經(jīng)過圓心,并且平分弦所對的兩條弧
、燮椒窒宜鶎Φ囊粭l弧的直徑,垂直平分弦,并且平分弦所對的另一條弧
推論2圓的兩條平行弦所夾的弧相等
3.圓是以圓心為對稱中心的中心對稱圖形
4.圓是定點(diǎn)的距離等于定長的點(diǎn)的集合
5.圓的內(nèi)部可以看作是圓心的距離小于半徑的點(diǎn)的集合
6.圓的外部可以看作是圓心的距離大于半徑的點(diǎn)的集合
7.同圓或等圓的半徑相等
8.到定點(diǎn)的距離等于定長的點(diǎn)的軌跡,是以定點(diǎn)為圓心,定長為半徑的圓
9.定理在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦相等,所對的弦的弦心距相等
10.推論在同圓或等圓中,如果兩個(gè)圓心角、兩條弧、兩條弦或兩弦的弦心距中有一組量相等那么它們所對應(yīng)的其余各組量都相等。
11定理圓的內(nèi)接四邊形的對角互補(bǔ),并且任何一個(gè)外角都等于它的內(nèi)對角
12.①直線L和⊙O相交d
、谥本L和⊙O相切d=r
、壑本L和⊙O相離d>r
13.切線的判定定理經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線
14.切線的性質(zhì)定理圓的切線垂直于經(jīng)過切點(diǎn)的半徑
15.推論1經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)
16.推論2經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心
17.切線長定理從圓外一點(diǎn)引圓的兩條切線,它們的切線長相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角
18.圓的外切四邊形的兩組對邊的和相等外角等于內(nèi)對角
19.如果兩個(gè)圓相切,那么切點(diǎn)一定在連心線上
20.①兩圓外離d>R+r ②兩圓外切d=R+r
③.兩圓相交R-rr
、.兩圓內(nèi)切d=R-rR>r ⑤兩圓內(nèi)含dr
21.定理相交兩圓的連心線垂直平分兩圓的公共弦
22.定理把圓分成nn≥3:
、乓来芜B結(jié)各分點(diǎn)所得的多邊形是這個(gè)圓的內(nèi)接正n邊形
⑵經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個(gè)圓的外切正n邊形
23.定理任何正多邊形都有一個(gè)外接圓和一個(gè)內(nèi)切圓,這兩個(gè)圓是同心圓
24.正n邊形的每個(gè)內(nèi)角都等于n-2×180°/n
25.定理正n邊形的半徑和邊心距把正n邊形分成2n個(gè)全等的直角三角形
26.正n邊形的面積Sn=pnrn/2 p表示正n邊形的周長
27.正三角形面積√3a/4 a表示邊長
28.如果在一個(gè)頂點(diǎn)周圍有k個(gè)正n邊形的角,由于這些角的和應(yīng)為360°,因此k×n-2180°/n=360°化為n-2k-2=4
29.弧長計(jì)算公式:L=n兀R/180
30.扇形面積公式:S扇形=n兀R^2/360=LR/2
31.內(nèi)公切線長= d-R-r外公切線長= d-R+r
32.定理一條弧所對的圓周角等于它所對的圓心角的一半
33.推論1同弧或等弧所對的圓周角相等;同圓或等圓中,相等的圓周角所對的弧也相等
34.推論2半圓或直徑所對的圓周角是直角;90°的圓周角所對的弦是直徑
35.弧長公式l=ar a是圓心角的弧度數(shù)r >0扇形面積公式s=1/2lr
初三數(shù)學(xué)復(fù)習(xí)方法
一、回歸課本,夯實(shí)基礎(chǔ),做好預(yù)習(xí)。
數(shù)學(xué)的基本概念、定義、公式,數(shù)學(xué)知識點(diǎn)之間的內(nèi)在聯(lián)系,基本的數(shù)學(xué)解題思路與方法,是復(fù)習(xí)的重中之重;貧w課本,要先對知識點(diǎn)進(jìn)行梳理,把教材上的每一個(gè)例題、習(xí)題再做一遍,確保基本概念、公式等牢固掌握,要穩(wěn)扎穩(wěn)打,不要盲目攀高,欲速則不達(dá)。復(fù)習(xí)課的內(nèi)容多、時(shí)間緊。要提高復(fù)習(xí)效率,必須使自己的思維與老師的思維同步。而預(yù)習(xí)則是達(dá)到這一目的的重要途徑。沒有預(yù)習(xí),聽老師講課,會感到老師講的都重要,抓不住老師講的重點(diǎn);而預(yù)習(xí)了之后,再聽老師講課,就會在記憶上對老師講的內(nèi)容有所取舍,把重點(diǎn)放在自己還未掌握的內(nèi)容上,提高學(xué)習(xí)效率。
二、提高課堂聽課效率,多動腦,勤動手
初三的課只有兩種形式:復(fù)習(xí)課和評講課,到初三所有課都進(jìn)入復(fù)習(xí)階段,通過復(fù)習(xí),學(xué)生要知道自己哪些知識點(diǎn)掌握的比較好,哪些知識點(diǎn)有待提高,因此在復(fù)習(xí)課之前一定要有自已的思考,這樣聽課的目的就明確了,F(xiàn)在學(xué)生手中都會有一些復(fù)習(xí)資料,在老師講課之前,要把例題做一遍,做題中發(fā)現(xiàn)的難點(diǎn),就是聽課的重點(diǎn);對預(yù)習(xí)中遇到的沒有掌握好的舊知識,可進(jìn)行查漏補(bǔ)缺,以減少聽課過程中的困難,自己理解了的東西與老師的講解進(jìn)行比較、分析即可提高自己的數(shù)學(xué)思維;體會分析問題的思路和解決問題的思想方法,堅(jiān)持下去,就一定能舉一反三,事半功倍。此外對于老師講課中的難點(diǎn),重點(diǎn)要作好筆記,筆記不是記錄而是將上述聽課中的要點(diǎn),思維方法等作出簡單扼要的記錄,以便復(fù)習(xí),消化,思考。
三、建立錯(cuò)題本,查漏補(bǔ)缺
初三復(fù)習(xí),各類試題要做幾十套,甚至上百套。特級教師提醒學(xué)生可以建立一個(gè)錯(cuò)題本,把平時(shí)做錯(cuò)的題系統(tǒng)的整理好,在上面寫上評析和做錯(cuò)的原因,每過一段時(shí)間,就把“錯(cuò)題筆記”拿出來看一看。在看參考書時(shí),也可以把精彩之處或做錯(cuò)的題目做上標(biāo)記,以后再看這本書時(shí)就會有所側(cè)重。查漏補(bǔ)缺的過程就是反思的過程。除了把不同的問題弄懂以外,還要學(xué)會“舉一反三,融會貫通”,及時(shí)歸納總結(jié)。每次訂正試卷或作業(yè)時(shí),在錯(cuò)題旁邊要寫明做錯(cuò)的原因。
初三數(shù)學(xué)學(xué)習(xí)建議
培養(yǎng)良好的學(xué)習(xí)習(xí)慣
1制定計(jì)劃。從而使學(xué)習(xí)目的明確,時(shí)間安排合理,不慌不忙,穩(wěn)打穩(wěn)扎,它是推動學(xué)生主動學(xué)習(xí)和克服困難的內(nèi)在動力。但計(jì)劃一定要切實(shí)可行,既有長遠(yuǎn)打算,又有短期安排,執(zhí)行過程中嚴(yán)格要求自己,磨練學(xué)習(xí)意志。
2課前自學(xué)。這是上好新課,取得較好學(xué)習(xí)效果的基礎(chǔ)。課前自學(xué)不僅能培養(yǎng)自學(xué)能力,而且能提高學(xué)習(xí)新課的興趣,掌握學(xué)習(xí)的主動權(quán)。自學(xué)不能搞走過場,要講究質(zhì)量,力爭在課前把教材弄懂,上課著重聽老師講思路,把握重點(diǎn),突破難點(diǎn),盡可能把問題解決在課堂上。
3專心上課!皩W(xué)然后知不足”,這是理解和掌握基本知識、基本技能和基本方法的關(guān)鍵環(huán)節(jié)。課前自學(xué)過的學(xué)生上課更能專心聽課,他們知道什么地方該詳細(xì)聽,什么地方可以一帶而過,該記的地方才記下來,而不是全盤抄錄,顧此失彼。
4及時(shí)復(fù)習(xí)。這是高效率學(xué)習(xí)的重要一環(huán)。通過反復(fù)閱讀教材,多方面查閱有關(guān)資料,強(qiáng)化對基本概念知識體系的理解與記憶,將所學(xué)的新知識與有關(guān)舊知識聯(lián)系起來,進(jìn)行分析比效,一邊復(fù)習(xí)一邊將復(fù)習(xí)成果整理在筆記本上,使對所學(xué)的新知識由“懂”到“會”。
5獨(dú)立作業(yè)。這是掌握獨(dú)立思考,分析問題、解決問題,進(jìn)一步加深對所學(xué)新知識的理解和對新技能的必要過程。這一過程也是對學(xué)生意志毅力的考驗(yàn),通過作業(yè)練習(xí)使學(xué)生對所學(xué)知識由“會”到“熟”。
6解決疑難。這是指對獨(dú)立完成作業(yè)過程中暴露出來對知識理解的錯(cuò)誤,或由于思維受阻遺漏解答,通過點(diǎn)撥使思路暢通,補(bǔ)遺解答的過程。解決疑難一定要有鍥而不舍的精神,做錯(cuò)的作業(yè)再做一遍。對錯(cuò)誤的地方?jīng)]弄清楚要反復(fù)思考,實(shí)在解決不了的要請教老師和同學(xué),并經(jīng)常把容易錯(cuò)的地方拿來復(fù)習(xí)強(qiáng)化,作適當(dāng)?shù)闹貜?fù)性練習(xí),把從老師、同學(xué)處獲得的東西消化變成自己的知識,長期堅(jiān)持使對所學(xué)知識由“熟”到“活”。
7系統(tǒng)小結(jié)。這是通過積極思考,達(dá)到全面系統(tǒng)深刻地掌握知識和發(fā)展認(rèn)識能力的重要環(huán)節(jié)。小結(jié)要在系統(tǒng)復(fù)習(xí)的基礎(chǔ)上以教材為依據(jù),參照筆記與資料,通過分析、綜合、類比、概括,揭示知識間的內(nèi)在聯(lián)系,以達(dá)到對所學(xué)知識融會貫通的目的。經(jīng)常進(jìn)行多層次小結(jié),能對所學(xué)知識由“活”到“悟”。
8課外學(xué)習(xí)。課外學(xué)習(xí)是課內(nèi)學(xué)習(xí)的補(bǔ)充和繼續(xù),包括閱讀課外書籍與報(bào)刊,參加學(xué)科競賽與講座,走訪高年級同學(xué)或老師交流學(xué)習(xí)心得等。它不僅能豐富學(xué)生的文化科學(xué)知識,加深和鞏固課內(nèi)所學(xué)的知識,而且能夠滿足和發(fā)展學(xué)生的興趣愛好,培養(yǎng)獨(dú)立學(xué)習(xí)和工作的能力,激發(fā)求知欲與學(xué)習(xí)熱情。
初三數(shù)學(xué)知識點(diǎn)總結(jié)5
全套教科書包含了課程標(biāo)準(zhǔn)(實(shí)驗(yàn)稿)規(guī)定的“數(shù)與代數(shù)”“空間與圖形”“統(tǒng)計(jì)與概率”“實(shí)踐與綜合應(yīng)用”四個(gè)領(lǐng)域的內(nèi)容,在體系結(jié)構(gòu)的設(shè)計(jì)上力求反映這些內(nèi)容之間的聯(lián)系與綜合,使它們形成一個(gè)有機(jī)的整體。
九年級上冊包括二次根式、一元二次方程、旋轉(zhuǎn)、圓、概率初步五章內(nèi)容,學(xué)習(xí)內(nèi)容涉及到了《課程標(biāo)準(zhǔn)》的四個(gè)領(lǐng)域。本冊書內(nèi)容分析如下:
第21章二次根式
學(xué)生已經(jīng)學(xué)過整式與分式,知道用式子可以表示實(shí)際問題中的數(shù)量關(guān)系。解決與數(shù)量關(guān)系有關(guān)的問題還會遇到二次根式!岸胃健币徽戮蛠碚J(rèn)識這種式子,探索它的性質(zhì),掌握它的運(yùn)算。
在這一章,首先讓學(xué)生了解二次根式的概念,并掌握以下重要結(jié)論:
注:關(guān)于二次根式的運(yùn)算,由于二次根式的乘除相對于二次根式的加減來說更易于掌握,教科書先安排二次根式的乘除,再安排二次根式的加減!岸胃降某顺币还(jié)的內(nèi)容有兩條發(fā)展的線索。一條是用具體計(jì)算的例子體會二次根式乘除法則的合理性,并運(yùn)用二次根式的乘除法則進(jìn)行運(yùn)算;一條是由二次根式的乘除法則得到
并運(yùn)用它們進(jìn)行二次根式的化簡。
“二次根式的加減”一節(jié)先安排二次根式加減的內(nèi)容,再安排二次根式加減乘除混合運(yùn)算的內(nèi)容。在本節(jié)中,注意類比整式運(yùn)算的有關(guān)內(nèi)容。例如,讓學(xué)生比較二次根式的加減與整式的加減,又如,通過例題說明在二次根式的運(yùn)算中,多項(xiàng)式乘法法則和乘法公式仍然適用。這些處理有助于學(xué)生掌握本節(jié)內(nèi)容。
第22章一元二次方程
學(xué)生已經(jīng)掌握了用一元一次方程解決實(shí)際問題的方法。在解決某些實(shí)際問題時(shí)還會遇到一種新方程——一元二次方程!耙辉畏匠獭币徽戮蛠碚J(rèn)識這種方程,討論這種方程的解法,并運(yùn)用這種方程解決一些實(shí)際問題。
本章首先通過雕像設(shè)計(jì)、制作方盒、排球比賽等問題引出一元二次方程的概念,給出一元二次方程的一般形式。然后讓學(xué)生通過數(shù)值代入的方法找出某些簡單的一元二次方程的解,對一元二次方程的解加以體會,并給出一元二次方程的根的概念,
“22.2降次——解一元二次方程”一節(jié)介紹配方法、公式法、因式分解法三種解一元二次方程的方法。下面分別加以說明。
(1)在介紹配方法時(shí),首先通過實(shí)際問題引出形如的方程。這樣的方程可以化為更為簡單的形如的方程,由平方根的概念,可以得到這個(gè)方程的解。進(jìn)而舉例說明如何解形如的方程。然后舉例說明一元二次方程可以化為形如的方程,引出配方法。最后安排運(yùn)用配方法解一元二次方程的例題。在例題中,涉及二次項(xiàng)系數(shù)不是1的一元二次方程,也涉及沒有實(shí)數(shù)根的一元二次方程。對于沒有實(shí)數(shù)根的一元二次方程,學(xué)了“公式法”以后,學(xué)生對這個(gè)內(nèi)容會有進(jìn)一步的理解。
(2)在介紹公式法時(shí),首先借助配方法討論方程的解法,得到一元二次方程的求根公式。然后安排運(yùn)用公式法解一元二次方程的例題。在例題中,涉及有兩個(gè)相等實(shí)數(shù)根的一元二次方程,也涉及沒有實(shí)數(shù)根的一元二次方程。由此引出一元二次方程的解的三種情況。
(3)在介紹因式分解法時(shí),首先通過實(shí)際問題引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排運(yùn)用因式分解法解一元二次方程的例題。最后對配方法、公式法、因式分解法三種解一元二次方程的方法進(jìn)行小結(jié)。
“22.3實(shí)際問題與一元二次方程”一節(jié)安排了四個(gè)探究欄目,分別探究傳播、成本下降率、面積、勻變速運(yùn)動等問題,使學(xué)生進(jìn)一步體會方程是刻畫現(xiàn)實(shí)世界的一個(gè)有效的數(shù)學(xué)模型。
第23章旋轉(zhuǎn)
學(xué)生已經(jīng)認(rèn)識了平移、軸對稱,探索了它們的性質(zhì),并運(yùn)用它們進(jìn)行圖案設(shè)計(jì)。本書中圖形變換又增添了一名新成員――旋轉(zhuǎn)!靶D(zhuǎn)”一章就來認(rèn)識這種變換,探索它的性質(zhì)。在此基礎(chǔ)上,認(rèn)識中心對稱和中心對稱圖形。
“23.1旋轉(zhuǎn)”一節(jié)首先通過實(shí)例介紹旋轉(zhuǎn)的概念。然后讓學(xué)生探究旋轉(zhuǎn)的性質(zhì)。在此基礎(chǔ)上,通過例題說明作一個(gè)圖形旋轉(zhuǎn)后的圖形的方法。最后舉例說明用旋轉(zhuǎn)可以進(jìn)行圖案設(shè)計(jì)。
“23.2中心對稱”一節(jié)首先通過實(shí)例介紹中心對稱的概念。然后讓學(xué)生探究中心對稱的性質(zhì)。在此基礎(chǔ)上,通過例題說明作與一個(gè)圖形成中心對稱的圖形的方法。這些內(nèi)容之后,通過線段、平行四邊形引出中心對稱圖形的概念。最后介紹關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)的關(guān)系,以及利用這一關(guān)系作與一個(gè)圖形成中心對稱的圖形的方法。
“23.3課題學(xué)習(xí)圖案設(shè)計(jì)”一節(jié)讓學(xué)生探索圖形之間的變換關(guān)系(平移、軸對稱、旋轉(zhuǎn)及其組合),靈活運(yùn)用平移、軸對稱、旋轉(zhuǎn)的組合進(jìn)行圖案設(shè)計(jì)。
第24章圓
圓是一種常見的圖形。在“圓”這一章,學(xué)生將進(jìn)一步認(rèn)識圓,探索它的性質(zhì),并用這些知識解決一些實(shí)際問題。通過這一章的學(xué)習(xí),學(xué)生的解決圖形問題的能力將會進(jìn)一步提高。
“24.1圓”一節(jié)首先介紹圓及其有關(guān)概念。然后讓學(xué)生探究與垂直于弦的直徑有關(guān)的結(jié)論,并運(yùn)用這些結(jié)論解決問題。接下來,讓學(xué)生探究弧、弦、圓心角的關(guān)系,并運(yùn)用上述關(guān)系解決問題。最后讓學(xué)生探究圓周角與圓心角的關(guān)系,并運(yùn)用上述關(guān)系解決問題。
“24.2與圓有關(guān)的位置關(guān)系”一節(jié)首先介紹點(diǎn)和圓的三種位置關(guān)系、三角形的外心的概念,并通過證明“在同一直線上的三點(diǎn)不能作圓”引出了反證法。然后介紹直線和圓的三種位置關(guān)系、切線的概念以及與切線有關(guān)的結(jié)論。最后介紹圓和圓的位置關(guān)系。
“24.3正多邊形和圓”一節(jié)揭示了正多邊形和圓的關(guān)系,介紹了等分圓周得到正多邊形的方法。
“24.4弧長和扇形面積”一節(jié)首先介紹弧長公式。然后介紹扇形及其面積公式。最后介紹圓錐的側(cè)面積公式。
第25章概率初步
將一枚硬幣拋擲一次,可能出現(xiàn)正面也可能出現(xiàn)反面,出現(xiàn)正面的可能性大還是出現(xiàn)反面的可能性大呢?學(xué)了“概率”一章,學(xué)生就能更好地認(rèn)識這個(gè)問題了。掌握了概率的初步知識,學(xué)生還會解決更多的實(shí)際問題。
“25.1概率”一節(jié)首先通過實(shí)例介紹隨機(jī)事件的概念,然后通過擲幣問題引出概率的概念。
“25.2用列舉法求概率”一節(jié)首先通過具體試驗(yàn)引出用列舉法求概率的方法。然后安排運(yùn)用這種方法求概率的例題。在例題中,涉及列表及畫樹形圖。
“25.3利用頻率估計(jì)概率”一節(jié)通過幼樹成活率和柑橘損壞率等問題介紹了用頻率估計(jì)概率的方法。
“25.4課題學(xué)習(xí)鍵盤上字母的排列規(guī)律”一節(jié)讓學(xué)生通過這一課題的研究體會概率的廣泛應(yīng)用。
初三數(shù)學(xué)知識點(diǎn)總結(jié)6
1二次根式:形如a(a0)的式子為二次根式;性質(zhì):a(a0)是一個(gè)非負(fù)數(shù);
a2aa0。
2二次根式的乘除:ababa0,b0;
aaa0,b0。bb3二次根式的加減:二次根式加減時(shí),先將二次根式華為最簡二次根式,再將被開方數(shù)相同的二次根式進(jìn)行合并。
4海倫-秦九韶公式:S是三角形的面積,Sp(p)(pb)(pc),p為pabc。2第二章一元二次方程
1一元二次方程:等號兩邊都是整式,且只有一個(gè)未知數(shù),未知數(shù)的最高次是2的方程。
2一元二次方程的解法
配方法:將方程的一邊配成完全平方式,然后兩邊開方;
bb24ac公式法:x2a因式分解法:左邊是兩個(gè)因式的乘積,右邊為零。
3一元二次方程在實(shí)際問題中的應(yīng)用
4韋達(dá)定理:設(shè)x1,x2是方程ax2bxc0的兩個(gè)根,那么有x1x2,x1x2第三章旋轉(zhuǎn)
1圖形的旋轉(zhuǎn)旋轉(zhuǎn):一個(gè)圖形繞某一點(diǎn)轉(zhuǎn)動一個(gè)角度的圖形變換性質(zhì):對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等;
對應(yīng)點(diǎn)與旋轉(zhuǎn)中心所連的線段的夾角等于旋轉(zhuǎn)角旋轉(zhuǎn)前后的圖形全等。
2中心對稱:一個(gè)圖形繞一個(gè)點(diǎn)旋轉(zhuǎn)180度,和另一個(gè)圖形重合,則兩個(gè)圖形關(guān)于這個(gè)點(diǎn)中心對稱;
中心對稱圖形:一個(gè)圖形繞某一點(diǎn)旋轉(zhuǎn)180度后得到的圖形能夠和原來的圖形重合,則說這個(gè)圖形是中心對稱圖形;
3關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)第四章圓
1圓、圓心、半徑、直徑、圓弧、弦、半圓的定義
2垂直于弦的直徑
圓是軸對稱圖形,任何一條直徑所在的直線都是它的對稱軸;
垂直于弦的直徑平分弦,并且平方弦所對的兩條;平分弦的直徑垂直弦,并且平分弦所對的兩條弧。
3弧、弦、圓心角
在同圓或等圓中,相等的圓心角所對的弧相等,所baca對的弦也相等。
4圓周角
在同圓或等圓中,同弧或等弧所對的圓周角相等,都等于這條弧所對的圓心角的一半;
半圓(或直徑)所對的圓周角是直角,90度的圓周角所對的弦是直徑。
5點(diǎn)和圓的位置關(guān)系點(diǎn)在dr點(diǎn)在圓上d=r點(diǎn)在圓內(nèi)d相等,這一點(diǎn)和圓心的連線平分兩條切線的夾角。
三角形的內(nèi)切圓:和三角形各邊都相切的圓為它的內(nèi)切圓,圓心是三角形的三條角平分線的交點(diǎn),為三角形的內(nèi)心。
6圓和圓的位置關(guān)系
外離d>R+r外切d=R+r相交R-r第五章概率初步
1概率意義:在大量重復(fù)試驗(yàn)中,事件A發(fā)生的頻率某個(gè)常數(shù)p附近,則常數(shù)p叫做事件A的概率。
2用列舉法求概率
一般的,在一次試驗(yàn)中,有n中可能的結(jié)果,并且它們發(fā)生的概率相等,事件A包含其中的m中結(jié)果,那么事件A發(fā)生的概率就是p(A)=mnm穩(wěn)定在n3用頻率去估計(jì)概率
初三數(shù)學(xué)知識點(diǎn)總結(jié)7
1、概念:
把一個(gè)圖形繞著某一點(diǎn)O轉(zhuǎn)動一個(gè)角度的圖形變換叫做旋轉(zhuǎn),點(diǎn)O叫做旋轉(zhuǎn)中心,轉(zhuǎn)動的角叫做旋轉(zhuǎn)角。
旋轉(zhuǎn)三要素:旋轉(zhuǎn)中心、旋轉(zhuǎn)方面、旋轉(zhuǎn)角。
2、旋轉(zhuǎn)的性質(zhì):
(1)旋轉(zhuǎn)前后的兩個(gè)圖形是全等形;
。2)兩個(gè)對應(yīng)點(diǎn)到旋轉(zhuǎn)中心的距離相等。
(3)兩個(gè)對應(yīng)點(diǎn)與旋轉(zhuǎn)中心的連線段的夾角等于旋轉(zhuǎn)角。
3、中心對稱:
把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180,如果它能夠與另一個(gè)圖形重合,那么就說這兩個(gè)圖形關(guān)于這個(gè)點(diǎn)對稱或中心對稱,這個(gè)點(diǎn)叫做對稱中心。
這兩個(gè)圖形中的對應(yīng)點(diǎn)叫做關(guān)于中心的對稱點(diǎn)。
4、中心對稱的性質(zhì):
。1)關(guān)于中心對稱的兩個(gè)圖形,對稱點(diǎn)所連線段都經(jīng)過對稱中心,而且被對稱中心所平分。
。2)關(guān)于中心對稱的兩個(gè)圖形是全等圖形。
5、中心對稱圖形:
把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個(gè)圖形叫做中心對稱圖形,這個(gè)點(diǎn)就是它的對稱中心。
6、坐標(biāo)系中的中心對稱
兩個(gè)點(diǎn)關(guān)于原點(diǎn)對稱時(shí),它們的坐標(biāo)符號相反,
即點(diǎn)P(x,y)關(guān)于原點(diǎn)O的對稱點(diǎn)P(―x,―y)。
初三數(shù)學(xué)知識點(diǎn)總結(jié)8
。ㄈ切沃形痪的定理)
三角形的中位線平行于三角形的第三邊,并且等于第三邊的一半。
。ㄆ叫兴倪呅蔚男再|(zhì))
、倨叫兴倪呅蔚膶呄嗟;
、谄叫兴倪呅蔚膶窍嗟龋
、燮叫兴倪呅蔚膶蔷互相平分。
(矩形的性質(zhì))
①矩形具有平行四邊形的一切性質(zhì);
、诰匦蔚乃膫(gè)角都是直角;
③矩形的對角線相等。
正方形的判定與性質(zhì)
1、判定方法:
1鄰邊相等的矩形;
2鄰邊垂直的菱形;
3對角線垂直的矩形;
4對角線相等的菱形;
2、性質(zhì):
1邊:四邊相等,對邊平行;
2角:四個(gè)角都相等都是直角,鄰角互補(bǔ);
3對角線互相平分、垂直、相等,且每長對角線平分一組內(nèi)角。
等腰三角形的判定定理
。ǖ妊切蔚呐卸ǚ椒ǎ
1、有兩條邊相等的三角形是等腰三角形。
2、判定定理:如果一個(gè)三角形有兩個(gè)角相等,那么這個(gè)三角形是等腰三角形簡稱:等角對等邊。
角平分線:把一個(gè)角平分的射線叫該角的角平分線。
定義中有幾個(gè)要點(diǎn)要注意一下的,學(xué)習(xí)方法,就是角的角平分線是一條射線,不是線段也不是直線,很多時(shí),在題目中會出現(xiàn)直線,這是角平分線的對稱軸才會用直線的,這也涉及到軌跡的問題,一個(gè)角個(gè)角平分線就是到角兩邊距離相等的點(diǎn)
性質(zhì)定理:角平分線上的點(diǎn)到該角兩邊的距離相等
判定定理:到角的兩邊距離相等的點(diǎn)在該角的角平分線上
標(biāo)準(zhǔn)差與方差
極差是什么:一組數(shù)據(jù)中數(shù)據(jù)與最小數(shù)據(jù)的差叫做極差,即極差=值—最小值。
計(jì)算器——求標(biāo)準(zhǔn)差與方差的一般步驟:
1、打開計(jì)算器,按“ON”鍵,按“MODE”“2”進(jìn)入統(tǒng)計(jì)SD狀態(tài)。
2、在開始數(shù)據(jù)輸入之前,請務(wù)必按“SHIFT”“CLR”“1”“=”鍵清除統(tǒng)計(jì)存儲器。
3、輸入數(shù)據(jù):按數(shù)字鍵輸入數(shù)值,然后按“M+”鍵,就能完成一個(gè)數(shù)據(jù)的輸入。如果想對此輸入同樣的數(shù)據(jù)時(shí),還可在步驟3后按“SHIET”“;”,后輸入該數(shù)據(jù)出現(xiàn)的頻數(shù),再按“M+”鍵。
4、當(dāng)所有的數(shù)據(jù)全部輸入結(jié)束后,按“SHIFT”“2”,選擇的是“標(biāo)準(zhǔn)差”,就可以得到所求數(shù)據(jù)的標(biāo)準(zhǔn)差;
5、標(biāo)準(zhǔn)差的平方就是方差。
初三數(shù)學(xué)知識點(diǎn)總結(jié)9
1、矩形的概念
有一個(gè)角是直角的平行四邊形叫做矩形。
2、矩形的性質(zhì)
(1)具有平行四邊形的一切性質(zhì)。
(2)矩形的四個(gè)角都是直角。
。3)矩形的對角線相等。
。4)矩形是軸對稱圖形。
3、矩形的判定
(1)定義:有一個(gè)角是直角的平行四邊形是矩形。
。2)定理1:有三個(gè)角是直角的四邊形是矩形。
。3)定理2:對角線相等的平行四邊形是矩形。
4、矩形的面積:S矩形=長×寬=ab
1、正方形的概念
有一組鄰邊相等并且有一個(gè)角是直角的平行四邊形叫做正方形。
2、正方形的性質(zhì)
(1)具有平行四邊形、矩形、菱形的一切性質(zhì);
。2)正方形的四個(gè)角都是直角,四條邊都相等;
(3)正方形的兩條對角線相等,并且互相垂直平分,每一條對角線平分一組對角;
。4)正方形是軸對稱圖形,有4條對稱軸;
。5)正方形的一條對角線把正方形分成兩個(gè)全等的等腰直角三角形,兩條對角線把正方形分成四個(gè)全等的小等腰直角三角形;
。6)正方形的一條對角線上的一點(diǎn)到另一條對角線的兩端點(diǎn)的距離相等。
3、正方形的判定
。1)判定一個(gè)四邊形是正方形的主要依據(jù)是定義,途徑有兩種:
先證它是矩形,再證有一組鄰邊相等。
先證它是菱形,再證有一個(gè)角是直角。
。2)判定一個(gè)四邊形為正方形的一般順序如下:
先證明它是平行四邊形;
再證明它是菱形(或矩形);
最后證明它是矩形(或菱形)。
初三數(shù)學(xué)知識點(diǎn)總結(jié)10
一、重要概念
1.數(shù)的分類及概念數(shù)系表:
說明:分類的原則:1)相稱(不重、不漏) 2)有標(biāo)準(zhǔn)
2.非負(fù)數(shù):正實(shí)數(shù)與零的統(tǒng)稱。(表為:x0)
性質(zhì):若干個(gè)非負(fù)數(shù)的和為0,則每個(gè)非負(fù)數(shù)均為0。
3.倒數(shù):
、俣x及表示法
、谛再|(zhì):A.a1/a(a1);B.1/a中,aa1時(shí),1/aD.積為1。
4.相反數(shù):
、俣x及表示法
、谛再|(zhì):A.a0時(shí),aB.a與-a在數(shù)軸上的位置;C.和為0,商為-1。
5.數(shù)軸:
、俣x(三要素)
、谧饔茫篈.直觀地比較實(shí)數(shù)的大小;B.明確體現(xiàn)絕對值意義;C.建立點(diǎn)與實(shí)數(shù)的一一對應(yīng)關(guān)系。
6.奇數(shù)、偶數(shù)、質(zhì)數(shù)、合數(shù)(正整數(shù)-自然數(shù))
定義及表示:
奇數(shù):2n-1
偶數(shù):2n(n為自然數(shù))
7.絕對值:
、俣x(兩種):
代數(shù)定義:
幾何定義:數(shù)a的絕對值頂?shù)膸缀我饬x是實(shí)數(shù)a在數(shù)軸上所對應(yīng)的點(diǎn)到原點(diǎn)的距離。
、讴│0,符號││是非負(fù)數(shù)的標(biāo)志;
、蹟(shù)a的絕對值只有一個(gè);
、芴幚砣魏晤愋偷念}目,只要其中有││出現(xiàn),其關(guān)鍵一步是去掉││符號。
二、實(shí)數(shù)的運(yùn)算
1.運(yùn)算法則(加、減、乘、除、乘方、開方)
2.運(yùn)算定律(五個(gè)-加法[乘法]交換律、結(jié)合律;[乘法對加法的]
分配律)
3.運(yùn)算順序:A.高級運(yùn)算到低級運(yùn)算;B.(同級運(yùn)算)從左
到右(如5 C.(有括號時(shí))由小到中到大。
三、應(yīng)用舉例(略)
附:典型例題
1.已知:a、b、x在數(shù)軸上的位置如下圖,求證:│x-a│+│x-b│=b-a.
2.已知:a-b=-2且ab0,(a0,b0),判斷a、b的符號。
初三數(shù)學(xué)知識點(diǎn)總結(jié)11
第21章二次根式知識框圖
理解并掌握下列結(jié)論:
。1)是非負(fù)數(shù);(2);(3);
I.二次根式的定義和概念:
1、定義:一般地,形如√。╝≥0)的代數(shù)式叫做二次根式。當(dāng)a>0時(shí),√a表示a的算數(shù)平方根,√0=0
2、概念:式子√ā(a≥0)叫二次根式!台。╝≥0)是一個(gè)非負(fù)數(shù)。
II.二次根式√ā的簡單性質(zhì)和幾何意義
1)a≥0;√ā≥0[雙重非負(fù)性]
2)(√。2=a(a≥0)[任何一個(gè)非負(fù)數(shù)都可以寫成一個(gè)數(shù)的平方的形式]3)√(a^2+b^2)表示平面間兩點(diǎn)之間的距離,即勾股定理推論。
IV.二次根式的乘法和除法
1運(yùn)算法則
√a√b=√ab(a≥0,b≥0)
√a/b=√a/√b(a≥0,b>0)
二數(shù)二次根之積,等于二數(shù)之積的二次根。2共軛因式
如果兩個(gè)含有根式的代數(shù)式的積不再含有根式,那么這兩個(gè)代數(shù)式叫做共軛因式,也稱互為有理化根式。
V.二次根式的加法和減法
1同類二次根式
一般地,把幾個(gè)二次根式化為最簡二次根式后,如果它們的被開方數(shù)相同,就把這幾個(gè)二次根式叫做同類二次根式。2合并同類二次根式
把幾個(gè)同類二次根式合并為一個(gè)二次根式就叫做合并同類二次根式。
3二次根式加減時(shí),可以先將二次根式化為最簡二次根式,再將被開方數(shù)相同的進(jìn)行合并
Ⅵ.二次根式的混合運(yùn)算
1確定運(yùn)算順序2靈活運(yùn)用運(yùn)算定律3正確使用乘法公式4大多數(shù)分母有理化要及時(shí)
5在有些簡便運(yùn)算中也許可以約分,不要盲目有理化
VII.分母有理化
分母有理化有兩種方法I.分母是單項(xiàng)式
如:√a/√b=√a×√b/√b×√b=√ab/b
II.分母是多項(xiàng)式要利用平方差公式
如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-bIII.分母是多項(xiàng)式要利用平方差公式
如1/√a+√b=√a-√b/(√a+√b)(√a-√b)=√a-√b/a-b第22章一元二次方程知識框圖
旋轉(zhuǎn)的定義
旋轉(zhuǎn)對稱中心
大于360°)。
把一個(gè)圖形繞著一個(gè)定點(diǎn)旋轉(zhuǎn)一個(gè)角度后,與初始圖形重合,這種
圖形叫做旋轉(zhuǎn)對稱圖形,這個(gè)定點(diǎn)叫做旋轉(zhuǎn)對稱中心,旋轉(zhuǎn)的角度叫做旋轉(zhuǎn)角(旋轉(zhuǎn)角小于0°,
也就是說:
、僦行膶ΨQ圖形:如果把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與自身重合,那么我們就說,這個(gè)圖形成中心對稱圖形。
、谥行膶ΨQ:如果把一個(gè)圖形繞著某一點(diǎn)旋轉(zhuǎn)180度后能與另一個(gè)圖形重合,那么我們就說,這兩個(gè)圖形成中心對稱。
中心對稱圖形
正(2N)邊形(N為大于1的正整數(shù)),線段,矩形,菱形,圓
只是中心對稱圖形
平行四邊形等.第24章圓知識框圖
圓和點(diǎn)的位置關(guān)系:以點(diǎn)P與圓O的為例(設(shè)P是一點(diǎn),則PO是點(diǎn)到圓心的距離),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O內(nèi),PO<r。
直線與圓有3種位置關(guān)系:無公共點(diǎn)為相離;有兩個(gè)公共點(diǎn)為相交,這條直線叫做圓的割線;圓與直線有唯一公共點(diǎn)為相切,這條直線叫做圓的切線,這個(gè)唯一的公共點(diǎn)叫做切點(diǎn)。以直線AB與圓O為例(設(shè)OP⊥AB于P,則PO是AB到圓心的距離):AB與⊙O相離,PO>r;AB與⊙O相切,PO=r;AB與⊙O相交,PO<r。
兩圓之間有5種位置關(guān)系:無公共點(diǎn)的,一圓在另一圓之外叫外離,在之內(nèi)叫內(nèi)含;有唯一公共點(diǎn)的,一圓在另一圓之外叫外切,在之內(nèi)叫內(nèi)切;有兩個(gè)公共點(diǎn)的叫相交。兩圓圓心之間的距離叫做圓心距。兩圓的半徑分別為R和r,且R≥r,圓心距為P:外離P>R+r;外切P=R+r;相交R-r<P<R+r;內(nèi)切P=R-r;內(nèi)含P<R-r。
圓的平面幾何性質(zhì)和定理
一有關(guān)圓的基本性質(zhì)與定理
、艌A的確定:不在同一直線上的三個(gè)點(diǎn)確定一個(gè)圓。
圓的對稱性質(zhì):圓是軸對稱圖形,其對稱軸是任意一條通過圓心的直線。圓也是中心對稱圖形,其對稱中心是圓心。垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的2條弧。逆定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的2條弧。
⑵有關(guān)圓周角和圓心角的性質(zhì)和定理在同圓或等圓中,如果兩個(gè)圓心角,兩個(gè)圓周角,兩組弧,兩條弦,兩條弦心距中有一組量相等,那么他們所對應(yīng)的其余各組量都分別相等。一條弧所對的圓周角等于它所對的圓心角的一半。直徑所對的圓周角是直角。90度的圓周角所對的弦是直徑。
、怯嘘P(guān)外接圓和內(nèi)切圓的性質(zhì)和定理
①一個(gè)三角形有唯一確定的外接圓和內(nèi)切圓。外接圓圓心是三角形各邊垂直平分線的交點(diǎn),到三角形三個(gè)頂點(diǎn)距離相等;
、趦(nèi)切圓的圓心是三角形各內(nèi)角平分線的交點(diǎn),到三角形三邊距離相等。③S三角=1/2*△三角形周長*內(nèi)切圓半徑
、軆上嗲袌A的連心線過切點(diǎn)(連心線:兩個(gè)圓心相連的線段)
、輬AO中的弦PQ的中點(diǎn)M,過點(diǎn)M任作兩弦AB,CD,弦AD與BC分別交PQ于X,Y,則M為XY之中點(diǎn)。
〖有關(guān)切線的性質(zhì)和定理〗
圓的切線垂直于過切點(diǎn)的半徑;經(jīng)過半徑的一端,并且垂直于這條半徑的直線,是這個(gè)圓的切線。
切線的判定方法:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線。
切線的性質(zhì):(1)經(jīng)過切點(diǎn)垂直于這條半徑的直線是圓的切線。(2)經(jīng)過切點(diǎn)垂直于切線的直線必經(jīng)過圓心。(3)圓的切線垂直于經(jīng)過切點(diǎn)的半徑。
切線長定理:從圓外一點(diǎn)到圓的兩條切線的長相等,那點(diǎn)與圓心的連線平分切線的夾角!加嘘P(guān)圓的計(jì)算公式〗
1.圓的周長C=2πr=πd2.圓的面積S=πr^2;3.扇形弧長l=nπr/1804.扇形面積S=π(R^2-r^2)5.圓錐側(cè)面積S=πrl
第25章概率初步知識框圖
第26章二次函數(shù)
知識框圖
定義與定義表達(dá)式
一般地,自變量x和因變量y之間存在如下關(guān)系:
一般式:y=ax^2+bx+c(a≠0,a、b、c為常數(shù)),則稱y為x的二次函數(shù)。頂點(diǎn)式:y=a(x-h)^2+k
交點(diǎn)式(與x軸):y=a(x-x1)(x-x2)
重要概念:(a,b,c為常數(shù),a≠0,且a決定函數(shù)的開口方向,a>0時(shí),開口方向向上,a
1.拋物線是軸對稱圖形。對稱軸為直線x=-b/2a。
對稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)P。
特別地,當(dāng)b=0時(shí),拋物線的對稱軸是y軸(即直線x=0)2.拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為P(-b/2a,(4ac-b)/4a)當(dāng)-b/2a=0時(shí),P在y軸上;當(dāng)Δ=b-4ac=0時(shí),P在x軸上。3.二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。
當(dāng)a>0時(shí),拋物線向上開口;當(dāng)a<0時(shí),拋物線向下開口。|a|越大,則拋物線的開口越小。
4.一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對稱軸的位置。
當(dāng)a與b同號時(shí)(即ab>0),對稱軸在y軸左;因?yàn)槿魧ΨQ軸在左邊則對稱軸小于0,也就是-b/2a0,所以b/2a要小于0,所以a、b要異號
事實(shí)上,b有其自身的幾何意義:拋物線與y軸的交點(diǎn)處的該拋物線切線的函數(shù)解析式(一次函數(shù))的斜率k的值?赏ㄟ^對二次函數(shù)求導(dǎo)得到。5.常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。拋物線與y軸交于(0,c)6.拋物線與x軸交點(diǎn)個(gè)數(shù)
Δ=b-4ac>0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。Δ=b-4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。_______
Δ=b-4ac<0時(shí),拋物線與x軸沒有交點(diǎn)。X的取值是虛數(shù)(x=-b±√b-4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)
當(dāng)a>0時(shí),函數(shù)在x=-b/2a處取得最小值f(-b/2a)=4ac-b/4a;在{x|x-b/2a}上是增函數(shù);拋物線的開口向上;函數(shù)的值域是{y|y≥4ac-b/4a}相反不變
當(dāng)b=0時(shí),拋物線的對稱軸是y軸,這時(shí),函數(shù)是偶函數(shù),解析式變形為y=ax+c(a≠0)解析式:
第27章相似知識框圖
相似三角形的認(rèn)識
對應(yīng)角相等,對應(yīng)邊成比例的兩個(gè)三角形叫做相似三角形。(similartriangles);橄嗨菩蔚娜切谓凶鱿嗨迫切
相似三角形的判定方法
根據(jù)相似圖形的特征來判斷。(對應(yīng)邊成比例,對應(yīng)角相等)
1.平行于三角形一邊的直線(或兩邊的延長線)和其他兩邊相交,所構(gòu)成的三角形與原三角形相似;
(這是相似三角形判定的引理,是以下判定方法證明的基礎(chǔ)。這個(gè)引理的證明方法需要平行線分線段成比例的證明)
2.如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對應(yīng)相等,那么這兩個(gè)三角形相似;
直角三角形相似判定定理
1.斜邊與一條直角邊對應(yīng)成比例的兩直角三角形相似。
2.直角三角形被斜邊上的高分成的兩個(gè)直角三角形與原直角三角形相似,并且分成的兩個(gè)直角三角形也相似。射影定理
三角形相似的判定定理推論
推論一:頂角或底角相等的那個(gè)的兩個(gè)等腰三角形相似。推論二:腰和底對應(yīng)成比例的兩個(gè)等腰三角形相似。推論三:有一個(gè)銳角相等的兩個(gè)直角三角形相似。
推論四:直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形都相似。
推論五:如果一個(gè)三角形的兩邊和其中一邊上的中線與另一個(gè)三角形的對應(yīng)部分成比例,那么這兩個(gè)三角形相似。
推論六:如果一個(gè)三角形的兩邊和第三邊上的中線與另一個(gè)三角形的對應(yīng)部分成比例,那么這兩個(gè)三角形相似。
相似三角形的性質(zhì)
1.相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比。
2.相似三角形周長的比等于相似比。3.相似三角形面積的比等于相似比的平方。
相似三角形的特例
能夠完全重合的兩個(gè)三角形叫做全等三角形。(congruenttriangles)全等三角形是相似三角形的特例。全等三角形的特征:1.形狀完全相同,相似比是k=1。
全等三角形一定是相似三角形,而相似三角形不一定是全等三角形。
因此,相似三角形包括全等三角形。全等三角形的定義
能夠完全重合的兩個(gè)三角形稱為全等三角形。(注:全等三角形是相似三角形中的特殊情況)當(dāng)兩個(gè)三角形完全重合時(shí),互相重合的頂點(diǎn)叫做對應(yīng)頂點(diǎn),互相重合的邊叫做對應(yīng)邊,互相重合的角叫做對應(yīng)角。
由此,可以得出:全等三角形的對應(yīng)邊相等,對應(yīng)角相等。
(1)全等三角形對應(yīng)角所對的邊是對應(yīng)邊,兩個(gè)對應(yīng)角所夾的邊是對應(yīng)邊;(2)全等三角形對應(yīng)邊所對的角是對應(yīng)角,兩條對應(yīng)邊所夾的角是對應(yīng)角;(3)有公共邊的,公共邊一定是對應(yīng)邊;(4)有公共角的,角一定是對應(yīng)角;(5)有對頂角的,對頂角一定是對應(yīng)角;三角形全等的判定公理及推論
1、三組對應(yīng)邊分別相等的兩個(gè)三角形全等(簡稱SSS或“邊邊邊”),這一條也說明了三角形具有穩(wěn)定性的原因。
2、有兩邊及其夾角對應(yīng)相等的兩個(gè)三角形全等(SAS或“邊角邊”)。3、有兩角及其夾邊對應(yīng)相等的兩個(gè)三角形全等(ASA或“角邊角”)。由3可推到
4、有兩角及一角的對邊對應(yīng)相等的兩個(gè)三角形全等(AAS或“角角邊”)
5、直角三角形全等條件有:斜邊及一直角邊對應(yīng)相等的兩個(gè)直角三角形全等(HL或“斜邊,直角邊”)
所以,SSS,SAS,ASA,AAS,HL均為判定三角形全等的定理。
注意:在全等的判定中,沒有AAA和SSA,這兩種情況都不能唯一確定三角形的`形狀。A是英文角的縮寫(angle),S是英文邊的縮寫(side)。全等三角形的性質(zhì)
1、全等三角形的對應(yīng)角相等、對應(yīng)邊相等。2、全等三角形的對應(yīng)邊上的高對應(yīng)相等。3、全等三角形的對應(yīng)角平分線相等。4、全等三角形的對應(yīng)中線相等。5、全等三角形面積相等。6、全等三角形周長相等。
7、三邊對應(yīng)相等的兩個(gè)三角形全等。(SSS)
8、兩邊和它們的夾角對應(yīng)相等的兩個(gè)三角形全等。(SAS)9、兩角和它們的夾邊對應(yīng)相等的兩個(gè)三角形全等。(ASA)
10、兩個(gè)角和其中一個(gè)角的對邊對應(yīng)相等的兩個(gè)三角形全等。(AAS)11、斜邊和一條直角邊對應(yīng)相等的兩個(gè)直角三角形全等。(HL)全等三角形的運(yùn)用
1、性質(zhì)中三角形全等是條件,結(jié)論是對應(yīng)角、對應(yīng)邊相等。而全等的判定卻剛好相反。2、利用性質(zhì)和判定,學(xué)會準(zhǔn)確地找出兩個(gè)全等三角形中的對應(yīng)邊與對應(yīng)角是關(guān)鍵。在寫兩個(gè)三角形全等時(shí),一定把對應(yīng)的頂點(diǎn),角、邊的順序?qū)懸恢拢瑸檎覍?yīng)邊,角提供方便。3,當(dāng)圖中出現(xiàn)兩個(gè)以上等邊三角形時(shí),應(yīng)首先考慮用SAS找全等三角形。
第28章銳角三角函數(shù)
知識框圖
第29章投影與視圖知識框圖
代數(shù)重點(diǎn)難點(diǎn)總結(jié)
方程(組)
一、基本概念
1.方程、方程的解(根)、方程組的解、解方程(組)二、一元二次方程1.定義及一般形式:
2.解法:⑴直接開平方法(注意特征)⑵配方法(注意步驟推倒求根公式)⑶公式法:⑷因式分解法(特征:左邊=0)3.根的判別式:b24ac
bc4.根與系數(shù)的關(guān)系(韋達(dá)定理):x1+x2=,x1x2=
aa逆定理:若,則以x1,x2為根的一元二次方程是:a(x-x1)(x-x2)=0。5.常用等式:
三、可化為一元二次方程的方程1.分式方程⑴定義
、苹舅枷耄喝シ帜
⑶基本解法:①去分母法②換元法(如,)⑷驗(yàn)根及方法2.無理方程⑴定義
、苹舅枷耄悍帜赣欣砘
⑶基本解法:①乘方法(注意技巧。。趽Q元法(例,)⑷驗(yàn)根及方法
3.簡單的二元二次方程組
由一個(gè)二元一次方程和一個(gè)二元二次方程組成的二元二次方程組都可用代入法解。四、列方程解應(yīng)用題一概述
列方程(組)解應(yīng)用題是中學(xué)數(shù)學(xué)聯(lián)系實(shí)際的一個(gè)重要方面。其具體步驟是:
、艑忣}。理解題意。弄清問題中已知量是什么,未知量是什么,問題給出和涉及的相等關(guān)系是什么。
、圃O(shè)元(未知數(shù))。①直接未知數(shù)②間接未知數(shù)(往往二者兼用)。一般來說,未知數(shù)越多,方程越易列,但越難解。
、怯煤粗獢(shù)的代數(shù)式表示相關(guān)的量。
⑷尋找相等關(guān)系(有的由題目給出,有的由該問題所涉及的等量關(guān)系給出),列方程。一般地,未知數(shù)個(gè)數(shù)與方程個(gè)數(shù)是相同的。⑸解方程及檢驗(yàn)。⑹答案。
綜上所述,列方程解應(yīng)用題實(shí)質(zhì)是先把實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題(設(shè)元、列方程),在由數(shù)學(xué)問題的解決而導(dǎo)致實(shí)際問題的解決(列方程、寫出答案)。在這個(gè)過程中,列方程起著承前啟后的作用。因此,列方程是解應(yīng)用題的關(guān)鍵。
函數(shù)及其圖象
★重難點(diǎn)★二次函數(shù)的圖象和性質(zhì)。一、平面直角坐標(biāo)系
1.各象限內(nèi)點(diǎn)的坐標(biāo)的特點(diǎn)2.坐標(biāo)軸上點(diǎn)的坐標(biāo)的特點(diǎn)
3.關(guān)于坐標(biāo)軸、原點(diǎn)對稱的點(diǎn)的坐標(biāo)的特點(diǎn)4.坐標(biāo)平面內(nèi)點(diǎn)與有序?qū)崝?shù)對的對應(yīng)關(guān)系二、函數(shù)
1.表示方法:⑴解析法;⑵列表法;⑶圖象法。
2.確定自變量取值范圍的原則:⑴使代數(shù)式有意義;⑵使實(shí)際問題有意義。
3.畫函數(shù)圖象:⑴列表;⑵描點(diǎn);⑶連線。三、二次函數(shù)(定義→圖象→性質(zhì))⑴定義:
⑵圖象:拋物線(用描點(diǎn)法畫出:先確定頂點(diǎn)、對稱軸、開口方向,再對稱地描點(diǎn))。用配方法變?yōu),則頂點(diǎn)為(h,k);對稱軸為直線x=h;a>0時(shí),開口向上;a0時(shí),在對稱軸左側(cè),右側(cè);a
四邊形
★重難點(diǎn)★相交線與平行線、三角形、四邊形的有關(guān)概念、判定、性質(zhì)。分類表:
1.一般性質(zhì)(角)⑴內(nèi)角和:360°
、祈槾芜B結(jié)各邊中點(diǎn)得平行四邊形。
推論1:順次連結(jié)對角線相等的四邊形各邊中點(diǎn)得菱形。
推論2:順次連結(jié)對角線互相垂直的四邊形各邊中點(diǎn)得矩形。⑶外角和:360°2.特殊四邊形
、叛芯克鼈兊囊话惴椒:
⑵平行四邊形、矩形、菱形、正方形;梯形、等腰梯形的定義、性質(zhì)和判定⑶判定步驟:四邊形→平行四邊形→矩形→正方形┗→菱形↑
、葘蔷的紐帶作用:3.對稱圖形
、泡S對稱(定義及性質(zhì));⑵中心對稱(定義及性質(zhì))4.有關(guān)定理:①平行線等分線段定理及其推論1、2②三角形、梯形的中位線定理
、燮叫芯間的距離處處相等。(如,找下圖中面積相等的三角形)
5.重要輔助線:①常連結(jié)四邊形的對角線;②梯形中!捌揭埔谎薄ⅰ捌揭茖蔷”、“作高”、“連結(jié)頂點(diǎn)和對腰中點(diǎn)并延長與底邊相交”轉(zhuǎn)化為三角形。6.作圖:任意等分線段。
第十章圓
★重難點(diǎn)★①圓的重要性質(zhì);②直線與圓、圓與圓的位置關(guān)系;③與圓有關(guān)的角的定理;④與圓有關(guān)的比例線段定理。一、圓的基本性質(zhì)1.圓的定義
2.有關(guān)概念:弦、直徑;弧、等弧、優(yōu)弧、劣弧、半圓;弦心距;等圓、同圓、同心圓。3.“三點(diǎn)定圓”定理4.垂徑定理及其推論
5.“等對等”定理及其推論
5.與圓有關(guān)的角:⑴圓心角定義(等對等定理)⑵圓周角定義(圓周角定理,與圓心角的關(guān)系)⑶弦切角定義(弦切角定理)二、直線和圓的位置關(guān)系
1.三種位置及判定與性質(zhì):相離、相切、相交2.切線的性質(zhì)(重點(diǎn))
3.切線的判定定理(重點(diǎn))。圓的切線的判定有⑴⑵
4.切線長定理
三、圓換圓的位置關(guān)系
1.五種位置關(guān)系及判定與性質(zhì):(重點(diǎn):相切)外離、外切、相交、內(nèi)切、內(nèi)含
2.相切(交)兩圓連心線的性質(zhì)定理3.兩圓的公切線:⑴定義⑵性質(zhì)四、與圓有關(guān)的比例線段1.相交弦定理2.切割線定理
五、與和正多邊形
1.圓的內(nèi)接、外切多邊形(三角形、四邊形)2.三角形的外接圓、內(nèi)切圓及性質(zhì)3.圓的外切四邊形、內(nèi)接四邊形的性質(zhì)4.正多邊形及計(jì)算中心角:
內(nèi)角的一半:(解Rt△OAM可求出相關(guān)元素等)六、一組計(jì)算公式1.圓周長公式2.圓面積公式3.扇形面積公式4.弧長公式
5.弓形面積的計(jì)算方法
6.圓柱、圓錐的側(cè)面展開圖及相關(guān)計(jì)算七、點(diǎn)的軌跡六條基本軌跡八、有關(guān)作圖
1.作三角形的外接圓、內(nèi)切圓2.平分已知弧
3.作已知兩線段的比例中項(xiàng)4.等分圓周:4、8;6、3等分九、基本圖形十、重要輔助線1.作半徑
2.見弦往往作弦心距
3.見直徑往往作直徑上的圓周角4.切點(diǎn)圓心莫忘連
5.兩圓相切公切線(連心線)6.兩圓相交公共弦
初三數(shù)學(xué)知識點(diǎn)總結(jié)12
圓的全章復(fù)習(xí)
圓的基礎(chǔ)知識(1)圓的有關(guān)概念:
弦,弧,半圓,弓形,弓形高,等。[含同圓等圓),弦心距,直徑等。
(2)圓的確定
圓心決定位置,半徑?jīng)Q定大小,不共線的三點(diǎn)確定一個(gè)圓。注意:作圖(兩邊中垂線找交點(diǎn)),外心的位置,外心到三角形各頂點(diǎn)距離等
圓的對稱性:軸對稱,中心對稱,旋轉(zhuǎn)不變性
2.圓與其它圖形
(1)點(diǎn)與圓三種
。2)直線與圓
相離dr
、僖粭l直線與圓三種相切dr
相交d
r②兩條直線與圓有關(guān)的角:圓周角,弦切角,圓外角等比例線段:圓冪定理等
、廴龡l直線與圓即三角形與圓
三角形“四心”的區(qū)別:垂心意義三條高的交點(diǎn)性質(zhì)等式積:位置銳角三角形:內(nèi)部直角三角形:直角頂點(diǎn)鈍角三角形:外部必在三角形內(nèi)部ahabhbchc重心三條中線的交點(diǎn)同一中線上重心到頂點(diǎn)的距離是它到該頂點(diǎn)的對邊距離的2倍外心
1.外接圓的圓心
2.三邊中垂線的交點(diǎn)
3.內(nèi)切圓的圓心
4.三條角平分線的交點(diǎn)到三角形三頂點(diǎn)距離相等銳角三角形:內(nèi)部直角三角形:斜邊中點(diǎn)鈍角三角形:外部到三角形三邊距離相等與頂點(diǎn)連線平分該內(nèi)角必在三角形內(nèi)部內(nèi)心
、芩臈l直線與圓為180內(nèi)切四邊形:對角之和的和相等外切四邊形:兩組對邊
。3)兩圓與直線
兩圓外切時(shí)連心線過內(nèi)公切線切點(diǎn)與該切線垂直。兩圓內(nèi)切時(shí)連心線過切點(diǎn),垂直于過切點(diǎn)的切線。
兩圓相交時(shí),連心線垂直于公共弦,并且平分公共弦。
3.圓與圓的位置關(guān)系:
(1).掌握圓與圓的五種位置關(guān)系,類比于點(diǎn)與圓,直線與圓的位置關(guān)系,能通過兩圓半徑r1,r2及圓心距d三者的數(shù)量關(guān)系,判斷兩圓位置關(guān)系,或通過位置關(guān)系,判斷數(shù)量關(guān)系。
(2).在數(shù)軸上表示當(dāng)d在不同位置時(shí),兩圓的位置關(guān)系。
(3).在證明兩圓的或多圓的圖形時(shí),常加的輔助線:公共弦、公切線;圓心距,連心線。
(4).當(dāng)兩圓相交時(shí),連心線垂直平分公共弦。當(dāng)兩圓內(nèi)切時(shí),連心線垂直于公切線。當(dāng)兩圓外切時(shí),連心線垂直于內(nèi)公切線。
(5).公切線是指兩個(gè)圓公共的切線,如果兩圓在公切線同旁則稱外公切線,如果兩圓在公切線兩旁則稱內(nèi)切線。公切線上兩切點(diǎn)間線段的長叫公切線長。(Rr)(外離時(shí))
(6).如圖內(nèi)公切線長d(Rr)(外離、外切、相交時(shí))外公切線長dd圓心距
R大圓半徑
r小圓半徑
R≥r
2222
內(nèi)公切線Rr夾角一半sin
d的正弦值
外公切線Rr夾角一半sin
d的正弦值
(7).公切線條數(shù)①內(nèi)含0條0dRr②內(nèi)切1條dRr③相交2條RrdRr④外切3條dRr⑤外離4條dRr4,定理
。1)垂徑定理及推論:過圓心;垂直弦;平分弦(非直徑);平分優(yōu)弧;平分劣弧;知2求3。
。2)圓心角,弦,弦心距,弧之間關(guān)系:同圓等圓中知1得3。
。3)與圓有關(guān)的角:圓心角,圓周角,弦切角,圓內(nèi)角,圓外角,圓內(nèi)接四邊形外角,內(nèi)對角,對角
1.一條弧所對圓周角等于它所對的圓心角的一它所對弧度數(shù)的一半半,圓周角的度數(shù)等于角相等;
2.同弧或等弧所對的圓周圓周角的性質(zhì)相等的圓周角所對的弧也相等
3.直徑所對的圓周角是直角,90的圓周角所對的弦是直角
(4)切線的判定、性質(zhì):
、倥卸ǎ撼R姷淖C法連半徑,證垂直,判斷切線,“連垂切”或作垂直證d=r
②性質(zhì):若一條直線滿足過圓心、過切點(diǎn),垂直于切線中任意兩條,可得另外一條。常見“切連垂”
。5)和圓有關(guān)的比例線段:
相交弦定理及推論,切割線定理及推論,圓冪定理
5.和圓有關(guān)的計(jì)算
(1)求線段
、僦睆、半徑
、诖箯蕉ɡ恚呵笙议L、弦心距、拱高
③切線長、公切線長(外公切線長,內(nèi)公切線長)
、苤苯侨切蝺(nèi)切圓半徑
、萑我馊切蝺(nèi)切圓半徑與面積、周長的關(guān)系
、薜冗吶切蝺(nèi)切圓半徑:外接圓半徑=1:2
、吲c圓有關(guān)的比例線段、弦長、切線長等
。2)求角
圓心角,圓周角,弦切角,兩切線夾角,公切線夾角
6.常見輔助線
半徑、直徑、弦心距、“切連垂”、連心線、公共弦、公切線
7.圓中常見圖形
直角三角形等腰三角形圓內(nèi)接四邊形相似三角形
8.正多邊形和圓
(n2)180正n邊形的內(nèi)角和為(n2)180有n個(gè)相等的內(nèi)角,每個(gè)內(nèi)角的度數(shù)為
n注意:正多邊形的外交和始終為3609.弧長公式:lnR
180nR210.扇形面積公式:3
初三數(shù)學(xué)知識點(diǎn)總結(jié)13
不等式的概念
1、不等式:用不等號表示不等關(guān)系的式子,叫做不等式。
2、不等式的解集:對于一個(gè)含有未知數(shù)的不等式,任何一個(gè)適合這個(gè)不等式的未知數(shù)的值,都叫做這個(gè)不等式的解。
3、對于一個(gè)含有未知數(shù)的不等式,它的所有解的集合叫做這個(gè)不等式的解的集合,簡稱這個(gè)不等式的解集。
4、求不等式的解集的過程,叫做解不等式。
5、用數(shù)軸表示不等式的方法。
不等式基本性質(zhì)
1、不等式兩邊都加上或減去同一個(gè)數(shù)或同一個(gè)整式,不等號的方向不變。
2、不等式兩邊都乘以或除以同一個(gè)正數(shù),不等號的方向不變。
3、不等式兩邊都乘以或除以同一個(gè)負(fù)數(shù),不等號的方向改變。
4、說明:①在一元一次不等式中,不像等式那樣,等號是不變的,是隨著加或乘的運(yùn)算改變。②如果不等式乘以0,那么不等號改為等號所以在題目中,要求出乘以的數(shù),那么就要看看題中是否出現(xiàn)一元一次不等式,如果出現(xiàn)了,那么不等式乘以的數(shù)就不等為0,否則不等式不成立。
一元一次不等式
1、一元一次不等式的概念:一般地,不等式中只含有一個(gè)未知數(shù),未知數(shù)的次數(shù)是1,且不等式的兩邊都是整式,這樣的不等式叫做一元一次不等式。
2、解一元一次不等式的一般步驟:1去分母2去括號3移項(xiàng)4合并同類項(xiàng)5將x項(xiàng)的系數(shù)化為1。
一元一次不等式組
1、一元一次不等式組的概念:幾個(gè)一元一次不等式合在一起,就組成了一個(gè)一元一次不等式組。
2、幾個(gè)一元一次不等式的解集的公共部分,叫做它們所組成的一元一次不等式組的解集。
3、求不等式組的解集的過程,叫做解不等式組。
4、當(dāng)任何數(shù)x都不能使不等式同時(shí)成立,我們就說這個(gè)不等式組無解或其解為空集。
5、一元一次不等式組的解法
1分別求出不等式組中各個(gè)不等式的解集。
2利用數(shù)軸求出這些不等式的解集的公共部分,即這個(gè)不等式組的解集。
6、不等式與不等式組
不等式:①用符號〉,=,〈號連接的式子叫不等式。②不等式的兩邊都加上或減去同一個(gè)整式,不等號的方向不變。③不等式的兩邊都乘以或者除以一個(gè)正數(shù),不等號方向不變。④不等式的兩邊都乘以或除以同一個(gè)負(fù)數(shù),不等號方向相反。
7、不等式的解集:
、倌苁共坏仁匠闪⒌奈粗獢(shù)的值,叫做不等式的解。
、谝粋(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。
、矍蟛坏仁浇饧倪^程叫做解不等式。
初三數(shù)學(xué)知識點(diǎn)總結(jié)14
1、弧長公式
n°的圓心角所對的弧長l的計(jì)算公式為L=nπr/180
2、扇形面積公式,其中n是扇形的圓心角度數(shù),R是扇形的半徑,l是扇形的弧長.
S=﹙n/360﹚πR2=1/2×lR
3、圓錐的側(cè)面積,其中l(wèi)是圓錐的母線長,r是圓錐的地面半徑.
S=1/2×l×2πr=πrl
4、弦切角定理
弦切角:圓的切線與經(jīng)過切點(diǎn)的弦所夾的角,叫做弦切角.
弦切角定理:弦切角等于弦與切線夾的弧所對的圓周角.
一、選擇題
1.(20xxo珠海,第4題3分)已知圓柱體的底面半徑為3cm,髙為4cm,則圓柱體的側(cè)面積為()
A.24πcm2B.36πcm2C.12cm2D.24cm2
考點(diǎn):圓柱的計(jì)算.
分析:圓柱的側(cè)面積=底面周長×高,把相應(yīng)數(shù)值代入即可求解.
解答:解:圓柱的側(cè)面積=2π×3×4=24π.
故選A.
點(diǎn)評:本題考查了圓柱的計(jì)算,解題的關(guān)鍵是弄清圓柱的側(cè)面積的計(jì)算方法.
2.(20xxo廣西賀州,第11題3分)如圖,以AB為直徑的⊙O與弦CD相交于點(diǎn)E,且AC=2,AE=,CE=1.則弧BD的長是()
A.B.C.D.
考點(diǎn):垂徑定理;勾股定理;勾股定理的逆定理;弧長的計(jì)算.
分析:連接OC,先根據(jù)勾股定理判斷出△ACE的形狀,再由垂徑定理得出CE=DE,故=,由銳角三角函數(shù)的定義求出∠A的度數(shù),故可得出∠BOC的度數(shù),求出OC的長,再根據(jù)弧長公式即可得出結(jié)論.
解答:解:連接OC,
∵△ACE中,AC=2,AE=,CE=1,
∴AE2+CE2=AC2,
∴△ACE是直角三角形,即AE⊥CD,
∵sinA==,
∴∠A=30°,
∴∠COE=60°,
∴=sin∠COE,即=,解得OC=,
∵AE⊥CD,
∴=,
∴===.
故選B.
初三數(shù)學(xué)知識點(diǎn)總結(jié)15
三角形的外心定義:
外心:是三角形三條邊的垂直平分線的交點(diǎn),即外接圓的圓心。
外心定理:三角形的三邊的垂直平分線交于一點(diǎn)。該點(diǎn)叫做三角形的外心。
三角形的外心的性質(zhì):
1、三角形三條邊的垂直平分線的交于一點(diǎn),該點(diǎn)即為三角形外接圓的圓心;
2、三角形的外接圓有且只有一個(gè),即對于給定的三角形,其外心是的,但一個(gè)圓的內(nèi)接三角形卻有無數(shù)個(gè),這些三角形的外心重合;
3、銳角三角形的外心在三角形內(nèi);
鈍角三角形的外心在三角形外;
直角三角形的外心與斜邊的中點(diǎn)重合。
在△ABC中
4、OA=OB=OC=R
5、∠BOC=2∠BAC,∠AOB=2∠ACB,∠COA=2∠CBA
6、S△ABC=abc/4R
【初三數(shù)學(xué)知識點(diǎn)總結(jié)】相關(guān)文章:
初三數(shù)學(xué)知識點(diǎn)總結(jié)12-07
初三數(shù)學(xué)中考知識點(diǎn)總結(jié)09-21
初三數(shù)學(xué)圓的知識點(diǎn)總結(jié)12-06
初三數(shù)學(xué)知識點(diǎn)總結(jié)06-08
初三數(shù)學(xué)圓的知識點(diǎn)總結(jié)07-31
初三數(shù)學(xué)知識點(diǎn)整式總結(jié)04-11
關(guān)于初三數(shù)學(xué)知識點(diǎn)總結(jié)04-11
初三數(shù)學(xué)上知識點(diǎn)總結(jié)02-18