- 高一數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié) 推薦度:
- 相關(guān)推薦
高一必修二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
總結(jié)就是把一個(gè)時(shí)段的學(xué)習(xí)、工作或其完成情況進(jìn)行一次全面系統(tǒng)的總結(jié),通過它可以全面地、系統(tǒng)地了解以往的學(xué)習(xí)和工作情況,讓我們好好寫一份總結(jié)吧?偨Y(jié)怎么寫才能發(fā)揮它的作用呢?下面是小編收集整理的高一必修二數(shù)學(xué)知識(shí)點(diǎn)總結(jié),僅供參考,希望能夠幫助到大家。
高一必修二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1
空間中的垂直問題
。1)線線、面面、線面垂直的定義
①兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。
、诰面垂直:如果一條直線和一個(gè)平面內(nèi)的任何一條直線垂直,就說這條直線和這個(gè)平面垂直。
、燮矫婧推矫娲怪保喝绻麅蓚(gè)平面相交,所成的'二面角(從一條直線出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個(gè)平面垂直。
。2)垂直關(guān)系的判定和性質(zhì)定理
、倬面垂直判定定理和性質(zhì)定理
判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個(gè)平面。
性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。
②面面垂直的判定定理和性質(zhì)定理
判定定理:如果一個(gè)平面經(jīng)過另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直。
性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于他們的交線的直線垂直于另一個(gè)平面。
高一必修二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2
集合的運(yùn)算
1、交集的.定義:一般地,由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集。記作A∩B(讀作”A交B”),即A∩B={x|x∈A,且x∈B}。
2、并集的定義:一般地,由所有屬于集合A或?qū)儆诩螧的元素所組成的集合,叫做A,B的并集。記作:A∪B(讀作”A并B”),即A∪B={x|x∈A,或x∈B}。
3、交集與并集的性質(zhì):A∩A=A,A∩φ=φ,A∩B=B∩A,A∪A=A,A∪φ=A,A∪B=B∪A。
高一必修二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3
集合與元素
一個(gè)東西是集合還是元素并不是絕對(duì)的,很多情況下是相對(duì)的,集合是由元素組成的集合,元素是組成集合的元素。
例如:你所在的班級(jí)是一個(gè)集合,是由幾十個(gè)和你同齡的同學(xué)組成的集合,你相對(duì)于這個(gè)班級(jí)集合來說,是它的'一個(gè)元素;而整個(gè)學(xué)校又是由許許多多個(gè)班級(jí)組成的集合,你所在的班級(jí)只是其中的一分子,是一個(gè)元素。
班級(jí)相對(duì)于你是集合,相對(duì)于學(xué)校是元素,參照物不同,得到的結(jié)論也不同,可見,是集合還是元素,并不是絕對(duì)的。
解集合問題的關(guān)鍵:弄清集合是由哪些元素所構(gòu)成的,也就是將抽象問題具體化、形象化,將特征性質(zhì)描述法表示的集合用列舉法來表示,或用韋恩圖來表示抽象的集合,或用圖形來表示集合;比如用數(shù)軸來表示集合,或是集合的元素為有序?qū)崝?shù)對(duì)時(shí),可用平面直角坐標(biāo)系中的圖形表示相關(guān)的集合等。
高一必修二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4
空間中的平行問題
。1)直線與平面平行的判定及其性質(zhì)
線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行。
線面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行。
。2)平面與平面平行的判定及其性質(zhì)
兩個(gè)平面平行的判定定理:
。1)如果一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面,那么這兩個(gè)平面平行。(線面平行→面面平行)
(2)如果在兩個(gè)平面內(nèi),各有兩組相交直線對(duì)應(yīng)平行,那么這兩個(gè)平面平行。(線線平行→面面平行)
(3)垂直于同一條直線的兩個(gè)平面平行。
兩個(gè)平面平行的'性質(zhì)定理:
(1)如果兩個(gè)平面平行,那么某一個(gè)平面內(nèi)的直線與另一個(gè)平面平行。(面面平行→線面平行)
。2)如果兩個(gè)平行平面都和第三個(gè)平面相交,那么它們的交線平行。(面面平行→線線平行)
高一必修二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5
數(shù)列
(1)數(shù)列的概念和簡單表示法
、倭私鈹(shù)列的'概念和幾種簡單的表示方法(列表、圖象、通項(xiàng)公式)。
、诹私鈹(shù)列是自變量為正整數(shù)的一類函數(shù)。
。2)等差數(shù)列、等比數(shù)列
、倮斫獾炔顢(shù)列、等比數(shù)列的概念。
②掌握等差數(shù)列、等比數(shù)列的通項(xiàng)公式與前項(xiàng)和公式。
③能在具體的問題情境中,識(shí)別數(shù)列的等差關(guān)系或等比關(guān)系,并能用有關(guān)知識(shí)解決相應(yīng)的問題。
、芰私獾炔顢(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關(guān)系。
高一必修二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6
空間角問題
。1)直線與直線所成的角
①兩平行直線所成的角:規(guī)定為0。
②兩條相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角。
、蹆蓷l異面直線所成的角:過空間任意一點(diǎn)O,分別作與兩條異面直線a,b平行的直線a,b,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角。
。2)直線和平面所成的角
、倨矫娴钠叫芯與平面所成的角:規(guī)定為0。
、谄矫娴拇咕與平面所成的角:規(guī)定為90。
、燮矫娴.斜線與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個(gè)平面所成的角。
求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計(jì)算”。
【高一必修二數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:
高一數(shù)學(xué)必修二知識(shí)點(diǎn)總結(jié)11-08
高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)12-15
高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)08-30
高一數(shù)學(xué)必修知識(shí)點(diǎn)總結(jié)08-01
高一歷史必修二知識(shí)點(diǎn)總結(jié)01-17
【經(jīng)典】高一歷史必修二知識(shí)點(diǎn)總結(jié)11-06
高一歷史必修二知識(shí)點(diǎn)總結(jié)04-30
高一數(shù)學(xué)必修二知識(shí)點(diǎn)筆記梳理04-19