初二數(shù)學(xué)知識點(diǎn)總結(jié)
總結(jié)是在某一時期、某一項(xiàng)目或某些工作告一段落或者全部完成后進(jìn)行回顧檢查、分析評價,從而得出教訓(xùn)和一些規(guī)律性認(rèn)識的一種書面材料,它能使我們及時找出錯誤并改正,讓我們一起來學(xué)習(xí)寫總結(jié)吧?偨Y(jié)怎么寫才不會流于形式呢?下面是小編幫大家整理的初二數(shù)學(xué)知識點(diǎn)總結(jié),歡迎大家借鑒與參考,希望對大家有所幫助。
軸對稱
1.如果一個平面圖形沿著一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形,這條直線叫做對稱軸。
2.性質(zhì)
(1)成軸對稱的兩個圖形全等;
(2)如果兩個圖形成軸對稱,那么對稱軸是對稱點(diǎn)連線的垂直平分線。
一次函數(shù)
(一)一次函數(shù)是函數(shù)中的一種,一般形如y=kx+b(k,b是常數(shù),k≠0),其中x是自變量,y是因變量。特別地,當(dāng)b=0時,y=kx+b(k為常數(shù),k≠0),y叫做x的正比例函數(shù)。
(二)函數(shù)三要素
1.定義域:設(shè)x、y是兩個變量,變量x的變化范圍為D,如果對于每一個數(shù)x∈D,變量y遵照一定的法則總有確定的數(shù)值與之對應(yīng),則稱y是x的函數(shù),記作y=f(x),x∈D,x稱為自變量,y稱為因變量,數(shù)集D稱為這個函數(shù)的定義域。
2.在函數(shù)經(jīng)典定義中,因變量改變而改變的取值范圍叫做這個函數(shù)的值域,在函數(shù)現(xiàn)代定義中是指定義域中所有元素在某個對應(yīng)法則下對應(yīng)的所有的象所組成的集合。如:f(x)=x,那么f(x)的取值范圍就是函數(shù)f(x)的值域。
3.對應(yīng)法則:一般地說,在函數(shù)記號y=f(x)中,“f”即表示對應(yīng)法則,等式y(tǒng)=f(x)表明,對于定義域中的任意的x值,在對應(yīng)法則“f”的作用下,即可得到值域中唯一y值。
(三)一次函數(shù)的表示方法
1.解析式法:用含自變量x的式子表示函數(shù)的方法叫做解析式法。
2.列表法:把一系列x的值對應(yīng)的函數(shù)值y列成一個表來表示的函數(shù)關(guān)系的方法叫做列表法。
3.圖像法:用圖象來表示函數(shù)關(guān)系的方法叫做圖象法。
(四)一次函數(shù)的性質(zhì)
1.y的變化值與對應(yīng)的x的變化值成正比例,比值為k。即:y=kx+b(k≠0)(k不等于0,且k,b為常數(shù))。
2.當(dāng)x=0時,b為函數(shù)在y軸上的交點(diǎn),坐標(biāo)為(0,b)。當(dāng)y=0時,該函數(shù)圖象在x軸上的交點(diǎn)坐標(biāo)為(-b/k,0)。
3.k為一次函數(shù)y=kx+b的斜率,k=tanθ(角θ為一次函數(shù)圖象與x軸正方向夾角,θ≠90°)。
4.當(dāng)b=0時(即y=kx),一次函數(shù)圖象變?yōu)檎壤瘮?shù),正比例函數(shù)是特殊的一次函數(shù)。
5.函數(shù)圖象性質(zhì):當(dāng)k相同,且b不相等,圖像平行;當(dāng)k不同,且b相等,圖象相交于Y軸;當(dāng)k互為負(fù)倒數(shù)時,兩直線垂直。
6.平移時:上加下減在末尾,左加右減在中間。
直角三角形
1.勾股定理及其逆定理
定理:直角三角形的兩條直角邊的等于的平方。
逆定理:如果三角形兩邊的平方和等于第三邊的平方,那么這個三角形是直角三角形。
2.含30°的直角三角形的邊的性質(zhì)
定理:在直角三角形中,如果一個銳角等于30°,那么等于的一半。
3.直角三角形斜邊上的中線等于斜邊的一半。
要點(diǎn)詮釋:
、俟垂啥ɡ淼哪娑ɡ碓谡Z言敘述的時候一定要注意,不能說成“兩條邊的平方和等于斜邊的平方”,應(yīng)該說成“三角形兩邊的平方和等于第三邊的平方”。
、谥苯侨切蔚娜扰卸ǚ椒,HL還有SSS,SAS,ASA,AAS,一共有5種判定方法。
圖形的平移與旋轉(zhuǎn)
1.平移,是指在同一平面內(nèi),將一個圖形上的所有點(diǎn)都按照某個直線方向做相同距離的移動,這樣的圖形運(yùn)動叫做圖形的平移運(yùn)動,簡稱平移。
2.平移性質(zhì)
(1)圖形平移前后的形狀和大小沒有變化,只是位置發(fā)生變化。
(2)圖形平移后,對應(yīng)點(diǎn)連成的線段平行(或在同一直線上)且相等。
初中數(shù)學(xué)提高解題速度的方法
認(rèn)真仔細(xì)審題
對于一道具體的習(xí)題,解題時最重要的環(huán)節(jié)是審題。審題的第一步是讀題,這是獲取信息量和思考的過程。讀題要慢,一邊讀,一邊想,應(yīng)特別注意每一句話的內(nèi)在涵義,并從中找出隱含條件。
有些學(xué)生沒有養(yǎng)成讀題、思考的習(xí)慣,心里著急,匆匆一看,就開始解題,結(jié)果常常是漏掉了一些信息,花了很長時間解不出來,還找不到原因,想快卻慢了。所以,在實(shí)際解題時,應(yīng)特別注意,審題要認(rèn)真、仔細(xì)。
做好歸納總結(jié)
在解過一定數(shù)量的習(xí)題之后,對所涉及到的知識、解題方法進(jìn)行歸納總結(jié),以便使解題思路更為清晰,就能達(dá)到舉一反三的效果,對于類似的習(xí)題一目了然,可以節(jié)約大量的解題時間。
熟悉習(xí)題內(nèi)容
解題、做練習(xí)只是學(xué)習(xí)過程中的一個環(huán)節(jié),而不是學(xué)習(xí)的全部,你不能為解題而解題。解題時,我們的概念越清晰,對公式、定理和規(guī)則越熟悉,解題速度就越快。
因此,我們在解題之前,應(yīng)通過閱讀教科書和做簡單的練習(xí),先熟悉、記憶和辨別這些基本內(nèi)容,正確理解其涵義的本質(zhì),接著馬上就做后面所配的練習(xí),一刻也不要停留。
學(xué)會主動畫圖
畫圖是一個翻譯的過程,把解題時的抽象思維,變成了形象思維,從而降低了解題難度。有些題目,只要分析圖一畫出來,其中的關(guān)系就變得一目了然。尤其是對于幾何題,包括解析幾何題,若不會畫圖,有時簡直是無從下手。
因此,牢記各種題型的基本作圖方法,牢記各種函數(shù)的圖像和意義及演變過程和條件,對于提高解題速度非常重要。
逐步增加難度
人們認(rèn)識事物的過程都是從簡單到復(fù)雜。簡單的問題解多了,從而使概念清晰了,對公式、定理以及解題步驟熟悉了,解題時就會形成跳躍性思維,解題的速度就會大大提高。
我們在學(xué)習(xí)時,應(yīng)根據(jù)自己的能力,先去解那些看似簡單,卻很重要的習(xí)題,以不斷提高解題速度和解題能力。隨著速度和能力的提高,再逐漸增加難度,就會達(dá)到事半功倍的效果。
初中數(shù)學(xué)提升方法
1、課前預(yù)習(xí),認(rèn)真聽講
為什么要預(yù)習(xí),你要知道這一講哪些內(nèi)容你一開始看不懂,那上課的時候?qū)τ谶@個問題就要認(rèn)真聽,這樣聽講更有針對性,比坐在教室里純被動的聽講效率高太多,自然,最終的效果也要好太多。
2、課后刷題,總結(jié)歸納
提高數(shù)學(xué)成績必須要刷題,在刷題量沒有達(dá)到一定程度之前,是沒有談方法和技巧的必要的。怎么刷題?其實(shí)每天的家庭作業(yè)就是刷題,一定要認(rèn)真完成,如果還有多的時間,那么可以刷往年的真題試卷,注意!一定是刷真題,刷真題不是說整套整套刷,你就刷平時經(jīng)?鄯值哪菐最}。等你把刷過的題都?xì)w納清楚,你的水平肯定會得到大幅度提升。
3、不懂就問,消除盲區(qū)
不少同學(xué)會發(fā)現(xiàn)一個問題,就是聽講也聽懂了,做題也不少,但是遇到新題還是不會。遇到新題不會的根本原因還是因?yàn)閷υ兄R點(diǎn)的理解不夠深入,不能舉一反三,那怎么辦,遇到不懂的問題要第一時間解決,可以問老師、問同學(xué)、問搜題軟件等等,核心宗旨就是不能留下知識盲區(qū),一點(diǎn)疑惑都不能留,并且要第一時間解決,不能拖,一拖就忘了。
【初二數(shù)學(xué)知識點(diǎn)總結(jié)】相關(guān)文章:
初二數(shù)學(xué)的知識點(diǎn)總結(jié)12-12
初二數(shù)學(xué)的知識點(diǎn)總結(jié)08-26
初二數(shù)學(xué)的知識點(diǎn)總結(jié)06-26
初二數(shù)學(xué)全套知識點(diǎn)總結(jié)01-30
初二數(shù)學(xué)重要知識點(diǎn)總結(jié)08-15
初二數(shù)學(xué)知識點(diǎn)總結(jié)06-21
初二數(shù)學(xué)上冊知識點(diǎn)總結(jié)(經(jīng)典)10-21
初二數(shù)學(xué)上冊知識點(diǎn)總結(jié)01-05