高一必修一數(shù)學集合知識點總結
鑒于大家對高中數(shù)學集合知識點十分關注,小編在此為大家搜集整理了此文“高一數(shù)學必修一集合知識點總結”,供大家參考!
高一必修一數(shù)學集合知識點總結 篇1
一、集合有關概念
1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。
2、集合的中元素的三個特性:
1.元素的確定性;
2.元素的互異性;
3.元素的無序性
說明:
(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。
(2)任何一個給定的集合中,任何兩個元素都是不同的對象,相同的對象歸入一個集合時,僅算一個元素。
(3)集合中的元素是平等的,沒有先后順序,因此判定兩個集合是否一樣,僅需比較它們的元素是否一樣,不需考查排列順序是否一樣。
(4)集合元素的三個特性使集合本身具有了確定性和整體性。
3、集合的表示:{…}如{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
1.用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
2.集合的表示方法:列舉法與描述法。
注意。撼S脭(shù)集及其記法:
非負整數(shù)集(即自然數(shù)集)記作:N
正整數(shù)集N*或N+整數(shù)集Z有理數(shù)集Q實數(shù)集R
關于“屬于”的概念
集合的元素通常用小寫的拉丁字母表示,如:a是集合A的元素,就說a屬于集合A記作a∈A,相反,a不屬于集合A記作a?A
列舉法:把集合中的元素一一列舉出來,然后用一個大括號括上。
描述法:將集合中的元素的公共屬性描述出來,寫在大括號內(nèi)表示集合的方法。用確定的.條件表示某些對象是否屬于這個集合的方法。
、僬Z言描述法:例:{不是直角三角形的三角形}
②數(shù)學式子描述法:例:不等式x-3>2的解集是{x?Rx-3>2}或{xx-3>2}
4、集合的分類:
1.有限集含有有限個元素的集合
2.無限集含有無限個元素的集合
3.空集不含任何元素的集合例:{xx2=-5}
二、集合間的基本關系
1.“包含”關系—子集
注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
2.“相等”關系(5≥5,且5≤5,則5=5)
實例:設A={xx2-1=0}B={-1,1}“元素相同”
結論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B
、偃魏我粋集合是它本身的子集。AíA
、谡孀蛹:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)
、廴绻鸄íB,BíC,那么AíC
、苋绻鸄íB同時BíA那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集
高一必修一數(shù)學集合知識點總結 篇2
1.集合的概念
一般地,把一些能夠確定的不同的對象看成一個整體,就說這個整體是由這些對象的全體構成的集合(或集);構成集合的每個對象叫做這個集合的元素(或成員)。集合的元素可以是我們看到的、聽到的、聞到的、觸摸到的、想到的各種各樣的事物或者一些抽象符號。
2.集合元素的特征
由集合概念中的兩個關鍵詞“確定的”、“不同的”可以知道集合元素有兩大特征性質:
、糯_定性特征:集合中的元素必須是明確的,不允許出現(xiàn)模棱兩可、無法斷定的陳述。
設集合 給定,若有一具體對象 ,則 要么是 的元素,要么不是 的元素,二者必居
其一,且只居其一。
⑵互異性特征:集合中的元素必須是互不相同的。設集合 給定, 的元素是指含于其中的互不相同的元素,相同的對象歸于同一集合時只能算集合的一個元素。
3.集合與元素之間的關系
集合與元素之間只有“屬于 ”或“不屬于 ”。例如: 是集合 的元素,記作 ,讀作“ 屬于 ”; 不是集合 的元素,記作 ,讀作“ 不屬于 ”。
4.集合的分類
集合按照元素個數(shù)可以分為有限集和無限集。特殊地,不含任何元素的集合叫做空集,記作 。
5.集合的表示方法
、帕信e法是把元素不重復、不計順序的一一列舉出來的方法,非常直觀,一目了然。
、铺卣餍再|描述法是用確定的條件描述集合內(nèi)元素特點的集合表示方法。
【高一必修一數(shù)學集合知識點總結】相關文章:
9.高一必修一作文