數(shù)學八年級上冊第四單元知識點總結(jié)
總結(jié)是對某一特定時間段內(nèi)的學習和工作生活等表現(xiàn)情況加以回顧和分析的一種書面材料,它可以給我們下一階段的學習和工作生活做指導,因此,讓我們寫一份總結(jié)吧。我們該怎么寫總結(jié)呢?下面是小編收集整理的數(shù)學八年級上冊第四單元知識點總結(jié),僅供參考,歡迎大家閱讀。
一次函數(shù)的定義
一般地,形如y=kx+b(k,b是常數(shù),且k≠0)的函數(shù),叫做一次函數(shù),其中x是自變量。當b=0時,一次函數(shù)y=kx,又叫做正比例函數(shù)。
1.一次函數(shù)的解析式的形式是y=kx+b,要判斷一個函數(shù)是否是一次函數(shù),就是判斷是否能化成以上形式。
2.當b=0,k≠0時,y=kx仍是一次函數(shù)。
3.當k=0,b≠0時,它不是一次函數(shù)。
4.正比例函數(shù)是一次函數(shù)的特例,一次函數(shù)包括正比例函數(shù)。
一次函數(shù)的圖像及性質(zhì)
1.在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b。
2.一次函數(shù)與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)。
3.正比例函數(shù)的圖像總是過原點。
4.k,b與函數(shù)圖像所在象限的關系:
當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減小。
當k>0,b>0時,直線通過一、二、三象限;
當k>0,b<0時,直線通過一、三、四象限;
當k<0,b>0時,直線通過一、二、四象限;
當k<0,b<0時,直線通過二、三、四象限;
當b=0時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。
這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。
一次函數(shù)的圖象與性質(zhì)的口訣
一次函數(shù)是直線,圖象經(jīng)過三象限;
正比例函數(shù)更簡單,經(jīng)過原點一直線;
兩個系數(shù)k與b,作用之大莫小看,
k是斜率定夾角,b與y軸來相見,
k為正來右上斜,x增減y增減;
k為負來左下展,變化規(guī)律正相反;
k的絕對值越大,線離橫軸就越遠。
一次函數(shù)應用常用公式
1.求函數(shù)圖像的k值:(y1-y2)/(x1-x2)
2.求與x軸平行線段的中點:(x1+x2)/2
3.求與y軸平行線段的中點:(y1+y2)/2
4.求任意線段的長:√[(x1-x2)2+(y1-y2)2]
5.求兩個一次函數(shù)式圖像交點坐標:解兩函數(shù)式
6.求任意2點所連線段的中點坐標:[(x1+x2)/2,(y1+y2)/2]
7.求任意2點的連線的.一次函數(shù)解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2)
8.若兩條直線y1=k1x+b1//y2=k2x+b2,則k1=k2,b1≠b2
9.如兩條直線y1=k1x+b1⊥y2=k2x+b2,則k1×k2=-1
10.y=k(x-n)+b就是直線向右平移n個單位
y=k(x+n)+b就是直線向左平移n個單位
y=kx+b+n就是向上平移n個單位
y=kx+b-n就是向下平移n個單位
口決:左加右減相對于x,上加下減相對于b。
11.直線y=kx+b與x軸的交點:(-b/k,0)與y軸的交點:(0,b)。
數(shù)學整式知識點
(一)整式的乘法:
①單項式與單項式相乘,把他們的系數(shù),相同字母的冪分別相乘,其余字母連同他的指數(shù)不變,作為積的因式。
、趩雾検脚c多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。
、鄱囗検脚c多項式相乘,先用一個多項式的每一項乘另外一個多項式的每一項,再把所得的積相加。
(二)整式的除法:
、賳雾検较喑,把系數(shù),同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同他的指數(shù)一起作為商的一個因式。
、诙囗検匠詥雾検,先把這個多項式的每一項分別除以單項式,再把所得的商相加。
數(shù)學正數(shù)和負數(shù)知識點
、闭龜(shù)和負數(shù)的概念
負數(shù):比0小的數(shù)正數(shù):比0大的數(shù)0既不是正數(shù),也不是負數(shù)
注意:①字母a可以表示任意數(shù),當a表示正數(shù)時,-a是負數(shù);當a表示負數(shù)時,-a是正數(shù);當a表示0時,-a仍是0。(如果出判斷題為:帶正號的數(shù)是正數(shù),帶負號的數(shù)是負數(shù),這種說法是錯誤的,例如+a,-a就不能做出簡單判斷)
、谡龜(shù)有時也可以在前面加“+”,有時“+”省略不寫。所以省略“+”的正數(shù)的符號是正號。
2.具有相反意義的量
若正數(shù)表示某種意義的量,則負數(shù)可以表示具有與該正數(shù)相反意義的量,比如:
零上8℃表示為:+8℃;零下8℃表示為:-8℃
支出與收入;增加與減少;盈利與虧損;北與南;東與西;漲與跌;增長與降低等等是相對相反量,它們計數(shù):比原先多了的數(shù),增加增長了的數(shù)一般記為正數(shù);相反,比原先少了的數(shù),減少降低了的數(shù)一般記為負數(shù)。 3.0表示的意義
、0表示“沒有”,如教室里有0個人,就是說教室里沒有人;
、0是正數(shù)和負數(shù)的分界線,0既不是正數(shù),也不是負數(shù)。
【數(shù)學八年級上冊第四單元知識點總結(jié)】相關文章:
八年級語文上冊第四單元測試題09-10
初一上冊語文第四單元作文:月球之旅作文-初一上冊第四單元作文12-22
初三九年級上冊語文第四單元作文11-16
新人教版八年級語文上冊第四單元測試題09-10
八年級上冊數(shù)學第三單元復習要點07-03
八年級數(shù)學第二單元知識點復習09-11
數(shù)學上冊各單元復習要點08-27
六年級上冊第四單元作文12-23