初一的數(shù)學(xué)知識點總結(jié)
總結(jié)就是對一個時期的學(xué)習(xí)、工作或其完成情況進行一次全面系統(tǒng)的回顧和分析的書面材料,它可以給我們下一階段的學(xué)習(xí)和工作生活做指導(dǎo),不如立即行動起來寫一份總結(jié)吧。那么你知道總結(jié)如何寫嗎?下面是小編精心整理的初一的數(shù)學(xué)知識點總結(jié),希望能夠幫助到大家。
初一的數(shù)學(xué)知識點總結(jié)1
一、知識梳理
知識點1:正、負(fù)數(shù)的概念:我們把像3、2、+0.5、0.03%這樣的數(shù)叫做正數(shù),它們都是比0大的數(shù);像-3、-2、-0.5、-0.03%這樣數(shù)叫做負(fù)數(shù)。它們都是比0小的數(shù)。0既不是正數(shù)也不是負(fù)數(shù)。我們可以用正數(shù)與負(fù)數(shù)表示具有相反意義的量。
知識點2:有理數(shù)的概念和分類:整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù)。有理數(shù)的分類主要有兩種:
注:有限小數(shù)和無限循環(huán)小數(shù)都可看作分?jǐn)?shù)。
知識點3:數(shù)軸的概念:像下面這樣規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸。
知識點4:絕對值的.概念:
。1)幾何意義:數(shù)軸上表示a的點與原點的距離叫做數(shù)a的絕對值,記作|a|;
。2)代數(shù)意義:一個正數(shù)的絕對值是它的本身;一個負(fù)數(shù)的絕對值是它的相反數(shù);零的絕對值是零。
注:任何一個數(shù)的絕對值均大于或等于0(即非負(fù)數(shù)).
知識點5:相反數(shù)的概念:
。1)幾何意義:在數(shù)軸上分別位于原點的兩旁,到原點的距離相等的兩個點所表示的數(shù),叫做互為相反數(shù);
(2)代數(shù)意義:符號不同但絕對值相等的兩個數(shù)叫做互為相反數(shù)。0的相反數(shù)是0。
知識點6:有理數(shù)大小的比較:
有理數(shù)大小比較的基本法則:正數(shù)都大于零,負(fù)數(shù)都小于零,正數(shù)大于負(fù)數(shù)。
數(shù)軸上有理數(shù)大小的比較:在數(shù)軸上表示的兩個數(shù),右邊的數(shù)總比左邊的大。
用絕對值進行有理數(shù)大小的比較:兩個正數(shù),絕對值大的正數(shù)大;兩個負(fù)數(shù),絕對值大的負(fù)數(shù)反而小。
知識點7:有理數(shù)加法法則:
(1)同號兩數(shù)相加,取相同的符號,并把絕對值相加;
(2)異號兩數(shù)相加,絕對值相等時,和為0;絕對值不等時,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;
(3)一個數(shù)與0相加,仍得這個數(shù).
知識點8:有理數(shù)加法運算律:
加法交換律:兩個數(shù)相加,交換加數(shù)的位置,和不變。
加法結(jié)合律:三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。
知識點9:有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。
知識點10:有理數(shù)加減混合運算:根據(jù)有理數(shù)減法的法則,一切加法和減法的運算,都可以統(tǒng)一成加法運算,然后省略括號和加號,并運用加法法則、加法運算律進行計算。
初一的數(shù)學(xué)知識點總結(jié)2
1、數(shù)軸的概念
規(guī)定了原點,正方向,單位長度的直線叫做數(shù)軸。
注意:⑴數(shù)軸是一條向兩端無限延伸的直線;⑵原點、正方向、單位長度是數(shù)軸的三要素,三者缺一不
可;⑶同一數(shù)軸上的單位長度要統(tǒng)一;⑷數(shù)軸的三要素都是根據(jù)實際需要規(guī)定的。
2、數(shù)軸上的點與有理數(shù)的關(guān)系
、潘械挠欣頂(shù)都可以用數(shù)軸上的點來表示,正有理數(shù)可用原點右邊的點表示,負(fù)有理數(shù)可用原點左邊的`點表示,0用原點表示。
⑵所有的有理數(shù)都可以用數(shù)軸上的點表示出來,但數(shù)軸上的點不都表示有理數(shù),也就是說,有理數(shù)與數(shù)軸上的點不是一一對應(yīng)關(guān)系。(如,數(shù)軸上的點π不是有理數(shù))
3、利用數(shù)軸表示兩數(shù)大小
、旁跀(shù)軸上數(shù)的大小比較,右邊的數(shù)總比左邊的數(shù)大;
⑵正數(shù)都大于0,負(fù)數(shù)都小于0,正數(shù)大于負(fù)數(shù);
、莾蓚負(fù)數(shù)比較,距離原點遠的數(shù)比距離原點近的數(shù)小。
4、數(shù)軸上特殊的(小)數(shù)
、抛钚〉淖匀粩(shù)是0,無的自然數(shù);
、谱钚〉恼麛(shù)是1,無的正整數(shù);
、堑呢(fù)整數(shù)是—1,無最小的負(fù)整數(shù)
5、a可以表示什么數(shù)
、臿>0表示a是正數(shù);反之,a是正數(shù),則a>0;
⑵a<0表示a是負(fù)數(shù);反之,a是負(fù)數(shù),則a<0
、莂=0表示a是0;反之,a是0,則a=0
初一的數(shù)學(xué)知識點總結(jié)3
第一章有理數(shù)
。ㄒ唬┱(fù)數(shù)
1.正數(shù):大于0的數(shù)。
2.負(fù)數(shù):小于0的數(shù)。
3.0即不是正數(shù)也不是負(fù)數(shù)。
4.正數(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù)。
。ǘ┯欣頂(shù)
1.有理數(shù):由整數(shù)和分?jǐn)?shù)組成的數(shù)。包括:正整數(shù)、0、負(fù)整數(shù),正分?jǐn)?shù)、負(fù)分?jǐn)?shù)?梢詫懗蓛蓚整數(shù)之比的形式。(無理數(shù)是不能寫成兩個整數(shù)之比的形式,它寫成小數(shù)形式,小數(shù)點后的數(shù)字是無限不循環(huán)的。如:π)
2.整數(shù):正整數(shù)、0、負(fù)整數(shù),統(tǒng)稱整數(shù)。
3.分?jǐn)?shù):正分?jǐn)?shù)、負(fù)分?jǐn)?shù)。
。ㄈ⿺(shù)軸
1.?dāng)?shù)軸:用直線上的點表示數(shù),這條直線叫做數(shù)軸。(畫一條直線,在直線上任取一點表示數(shù)0,這個零點叫做原點,規(guī)定直線上從原點向右或向上為正方向;選取適當(dāng)?shù)拈L度為單位長度,以便在數(shù)軸上取點。)
2.?dāng)?shù)軸的三要素:原點、正方向、單位長度。
3.相反數(shù):只有符號不同的兩個數(shù)叫做互為相反數(shù)。0的相反數(shù)還是0。
4.絕對值:正數(shù)的絕對值是它本身,負(fù)數(shù)的絕對值是它的相反數(shù);0的絕對值是0,兩個負(fù)數(shù)比較大小,絕對值大的反而小。
。ㄋ模┯欣頂(shù)的加減法
1.先定符號,再算絕對值。
2.加法運算法則:同號相加,取相同符號,并把絕對值相加。異號相加,取絕對值大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;橄喾磾(shù)的兩個數(shù)相加得0。一個數(shù)同0相加減,仍得這個數(shù)。
3.加法交換律:a+b= b+ a兩個數(shù)相加,交換加數(shù)的位置,和不變。
4.加法結(jié)合律:(a+b)+ c = a +(b+ c)三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。
5.a(chǎn)b = a +(b)減去一個數(shù),等于加這個數(shù)的相反數(shù)。
。ㄎ澹┯欣頂(shù)乘法(先定積的符號,再定積的大。
1.同號得正,異號得負(fù),并把絕對值相乘。任何數(shù)同0相乘,都得0。
2.乘積是1的兩個數(shù)互為倒數(shù)。
3.乘法交換律:ab= ba
4.乘法結(jié)合律:(ab)c = a(b c)
5.乘法分配律:a(b +c)= a b+ ac
。┯欣頂(shù)除法
1.先將除法化成乘法,然后定符號,最后求結(jié)果。
2.除以一個不等于0的數(shù),等于乘這個數(shù)的倒數(shù)。
3.兩數(shù)相除,同號得正,異號得負(fù),并把絕對值相除,0除以任何一個不等于0的數(shù),都得0。
(七)乘方
1.求n個相同因數(shù)的積的運算,叫做乘方。寫作an。(乘方的結(jié)果叫冪,a叫底數(shù),n叫指數(shù))
2.負(fù)數(shù)的奇數(shù)次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù);0的任何正整數(shù)次冪都是0。
。ò耍┯欣頂(shù)的加減乘除混合運算法則
1.先乘方,再乘除,最后加減。
2.同級運算,從左到右進行。
3.如有括號,先做括號內(nèi)的運算,按小括號、中括號、大括號依次進行。
。ň牛┛茖W(xué)記數(shù)法、近似數(shù)、有效數(shù)字。
第二章整式
。ㄒ唬┱
1.整式:單項式和多項式的統(tǒng)稱叫整式。
2.單項式:數(shù)與字母的乘積組成的式子叫單項式。單獨的一個數(shù)或一個字母也是單項式。
3.系數(shù):一個單項式中,數(shù)字因數(shù)叫做這個單項式的系數(shù)。
4.次數(shù):一個單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。
5.多項式:幾個單項式的和叫做多項式。
6.項:組成多項式的每個單項式叫做多項式的項。
7.常數(shù)項:不含字母的項叫做常數(shù)項。
8.多項式的次數(shù):多項式中,次數(shù)最高的`項的次數(shù)叫做這個多項式的次數(shù)。
9.同類項:多項式中,所含字母相同,并且相同字母的指數(shù)也相同的項叫做同類項。
10.合并同類項:把多項式中的同類項合并成一項,叫做合并同類項。
。ǘ┱郊訙p
整式加減運算時,如果遇到括號先去括號,再合并同類項。
1.去括號:一般地,幾個整式相加減,如果有括號就先去括號,然后再合并同類項。
如果括號外的因數(shù)是正數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相同。如果括號外的因數(shù)是負(fù)數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相反。
2.合并同類項:把多項式中的同類項合并成一項,叫做合并同類項。
合并同類項后,所得項的系數(shù)是合并前各同類項的系數(shù)的和,且字母部分不變
第三章一元一次方程
分析實際問題中的數(shù)量關(guān)系,利用其中的相等關(guān)系列出方程,是用數(shù)學(xué)解決實際問題的一種方法。
。ㄒ唬┓匠蹋合仍O(shè)字母表示未知數(shù),然后根據(jù)相等關(guān)系,寫出含有未知數(shù)的等式叫方程。
(二)一元一次方程:
1.一元一次方程:方程里只含有一個未知數(shù)(元),未知數(shù)的次數(shù)都是1,這樣的方程叫做一元一次方程。
2.解:求出的方程中未知數(shù)的值叫做方程的解。
。ǘ┑仁降男再|(zhì)
1.等式兩邊加(或減)同一個數(shù)(或式子),結(jié)果仍相等。
如果a= b,那么a± c= b± c
2.等式兩邊乘同一個數(shù),或除以同一個不為0的數(shù),結(jié)果仍相等。
如果a= b,那么a c= b c;
如果a= b,(c0),那么a ∕c = b ∕ c。
。ㄈ┙夥匠痰牟襟E
解一元一次方程的步驟:去分母、去括號、移項、合并同類項,未知數(shù)系數(shù)化為1。
1.去分母:把系數(shù)化成整數(shù)。
2.去括號
3.移項:把等式一邊的某項變號后移到另一邊。
4.合并同類項
5.系數(shù)化為1
第四章圖形認(rèn)識初步
一、圖形認(rèn)識初步
1.幾何圖形:把從實物中抽象出來的各種圖形的統(tǒng)稱。
2.平面圖形:有些幾何圖形的各部分都在同一平面內(nèi),這樣的圖形是平面圖形。
3.立體圖形:有些幾何圖形的各部分不都在同一平面內(nèi),這樣的圖形是立體圖形。
4.展開圖:有些立體圖形是由一些平面圖形圍成的,將它們的表面適當(dāng)剪開,可以展開成平面圖形,這樣的平面圖形稱為相應(yīng)立體圖形的展開圖。
5.點,線,面,體
、賵D形是由點,線,面構(gòu)成的。
、诰與線相交得點,面與面相交得線。
、埸c動成線,線動成面,面動成體。
二、直線、線段、射線
1.線段:線段有兩個端點。
2.射線:將線段向一個方向無限延長就形成了射線。射線只有一個端點。
3.直線:將線段的兩端無限延長就形成了直線。直線沒有端點。
4.兩點確定一條直線:經(jīng)過兩點有一條直線,并且只有一條直線。
5.相交:兩條直線有一個公共點時,稱這兩條直線相交。
6.兩條直線相交有一個公共點,這個公共點叫交點。
7.中點:M點把線段AB分成相等的兩條線段AM與MB,點M叫做線段AB的中點。
8.線段的性質(zhì):兩點的所有連線中,線段最短。(兩點之間,線段最短)
9.距離:連接兩點間的線段的長度,叫做這兩點的距離。
三、角
1.角:有公共端點的兩條射線組成的圖形叫做角。
2.角的度量單位:度、分、秒。
3.角的度量與表示:
、俳怯蓛蓷l具有公共端點的射線組成,兩條射線的公共端點是這個角的頂點。
②一度的1/60是一分,一分的1/60是一秒。角的度、分、秒是60進制。
4.角的比較:
、俳且部梢钥闯墒怯梢粭l射線繞著他的端點旋轉(zhuǎn)而成的。
、谄浇呛椭芙牵阂粭l射線繞著他的端點旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時,所成的角叫做平角。始邊繼續(xù)旋轉(zhuǎn),當(dāng)他又和始邊重合時,所成的角叫做周角。平角等于180度。周角等于360度。直角等于90度。
③平分線:從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。
、芄ぞ撸毫拷瞧、三角尺、經(jīng)緯儀。
5.余角和補角
、儆嘟牵簝蓚角的和等于90度,這兩個角互為余角。即其中每一個是另一個角的余角。
、谘a角:兩個角的和等于180度,這兩個角互為補角。即其中一個是另一個角的補角。
、垩a角的性質(zhì):等角的補角相等
、苡嘟堑男再|(zhì):等角的余角相等
初一的數(shù)學(xué)知識點總結(jié)4
(1)凡能寫成形式的數(shù),都是有理數(shù).正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù);正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù);整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù).注意:0即不是正數(shù),也不是負(fù)數(shù);-a不一定是負(fù)數(shù),+a也不一定是正數(shù);p不是有理數(shù);
(2)有理數(shù)的分類:①整數(shù)②分?jǐn)?shù)
(3)注意:有理數(shù)中,1、0、-1是三個特殊的數(shù),它們有自己的特性;這三個數(shù)把數(shù)軸上的.數(shù)分成四個區(qū)域,這四個區(qū)域的數(shù)也有自己的特性;
(4)自然數(shù)0和正整數(shù);a>0a是正數(shù);a<0a是負(fù)數(shù);
a≥0a是正數(shù)或0a是非負(fù)數(shù);a≤0?a是負(fù)數(shù)或0a是非正數(shù).
有理數(shù)比大。
(1)正數(shù)的絕對值越大,這個數(shù)越大;
(2)正數(shù)永遠比0大,負(fù)數(shù)永遠比0小;
(3)正數(shù)大于一切負(fù)數(shù);
(4)兩個負(fù)數(shù)比大小,絕對值大的反而小;
(5)數(shù)軸上的兩個數(shù),右邊的數(shù)總比左邊的數(shù)大;
(6)大數(shù)-小數(shù)>0,小數(shù)-大數(shù)<0.
初一的數(shù)學(xué)知識點總結(jié)5
有理數(shù)
1.1 正數(shù)與負(fù)數(shù)
在以前學(xué)過的0以外的數(shù)前面加上負(fù)號“—”的數(shù)叫負(fù)數(shù)(negative number)。
與負(fù)數(shù)具有相反意義,即以前學(xué)過的0以外的數(shù)叫做正數(shù)(positive number)(根據(jù)需要,有時在正數(shù)前面也加上“+”)。
1.2 有理數(shù)
正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱整數(shù)(integer),正分?jǐn)?shù)和負(fù)分?jǐn)?shù)統(tǒng)稱分?jǐn)?shù)(fraction)。
整數(shù)和分?jǐn)?shù)統(tǒng)稱有理數(shù)(rational number)。
通常用一條直線上的點表示數(shù),這條直線叫數(shù)軸(number axis)。
數(shù)軸三要素:原點、正方向、單位長度。
在直線上任取一個點表示數(shù)0,這個點叫做原點(origin)。
只有符號不同的兩個數(shù)叫做互為相反數(shù)(opposite number)。(例:2的相反數(shù)是-2;0的相反數(shù)是0)
數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值(absolute value),記作|a|。
一個正數(shù)的絕對值是它本身;一個負(fù)數(shù)的絕對值是它的相反數(shù);0的絕對值是0。兩個負(fù)數(shù),絕對值大的反而小。
初中數(shù)學(xué)知識點總結(jié):平面直角坐標(biāo)系
下面是對平面直角坐標(biāo)系的內(nèi)容學(xué)習(xí),希望同學(xué)們很好的掌握下面的內(nèi)容。
平面直角坐標(biāo)系
平面直角坐標(biāo)系:在平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標(biāo)系。
水平的數(shù)軸稱為x軸或橫軸,豎直的數(shù)軸稱為y軸或縱軸,兩坐標(biāo)軸的交點為平面直角坐標(biāo)系的原點。
平面直角坐標(biāo)系的要素:①在同一平面②兩條數(shù)軸③互相垂直④原點重合
三個規(guī)定:
、僬较虻囊(guī)定橫軸取向右為正方向,縱軸取向上為正方向
、趩挝婚L度的規(guī)定;一般情況,橫軸、縱軸單位長度相同;實際有時也可不同,但同一數(shù)軸上必須相同。
③象限的`規(guī)定:右上為第一象限、左上為第二象限、左下為第三象限、右下為第四象限。
相信上面對平面直角坐標(biāo)系知識的講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們都能考試成功。
初中數(shù)學(xué)知識點:平面直角坐標(biāo)系的構(gòu)成
平面直角坐標(biāo)系的構(gòu)成
在同一個平面上互相垂直且有公共原點的兩條數(shù)軸構(gòu)成平面直角坐標(biāo)系,簡稱為直角坐標(biāo)系。通常,兩條數(shù)軸分別置于水平位置與鉛直位置,取向右與向上的方向分別為兩條數(shù)軸的正方向。水平的數(shù)軸叫做X軸或橫軸,鉛直的數(shù)軸叫做Y軸或縱軸,X軸或Y軸統(tǒng)稱為坐標(biāo)軸,它們的公共原點O稱為直角坐標(biāo)系的原點。
通過上面對平面直角坐標(biāo)系的構(gòu)成知識的講解學(xué)習(xí),希望同學(xué)們對上面的內(nèi)容都能很好的掌握,同學(xué)們認(rèn)真學(xué)習(xí)吧。
初中數(shù)學(xué)知識點:點的坐標(biāo)的性質(zhì)
點的坐標(biāo)的性質(zhì)
建立了平面直角坐標(biāo)系后,對于坐標(biāo)系平面內(nèi)的任何一點,我們可以確定它的坐標(biāo)。反過來,對于任何一個坐標(biāo),我們可以在坐標(biāo)平面內(nèi)確定它所表示的一個點。
對于平面內(nèi)任意一點C,過點C分別向X軸、Y軸作垂線,垂足在X軸、Y軸上的對應(yīng)點a,b分別叫做點C的橫坐標(biāo)、縱坐標(biāo),有序?qū)崝?shù)對(a,b)叫做點C的坐標(biāo)。
一個點在不同的象限或坐標(biāo)軸上,點的坐標(biāo)不一樣。
希望上面對點的坐標(biāo)的性質(zhì)知識講解學(xué)習(xí),同學(xué)們都能很好的掌握,相信同學(xué)們會在考試中取得優(yōu)異成績的。
初中數(shù)學(xué)知識點:因式分解的一般步驟
因式分解的一般步驟
如果多項式有公因式就先提公因式,沒有公因式的多項式就考慮運用公式法;若是四項或四項以上的多項式,
通常采用分組分解法,最后運用十字相乘法分解因式。因此,可以概括為:“一提”、“二套”、“三分組”、“四十字”。
注意:因式分解一定要分解到每一個因式都不能再分解為止,否則就是不完全的因式分解,若題目沒有明確指出在哪個范圍內(nèi)因式分解,應(yīng)該是指在有理數(shù)范圍內(nèi)因式分解,因此分解因式的結(jié)果,必須是幾個整式的積的形式。
相信上面對因式分解的一般步驟知識的內(nèi)容講解學(xué)習(xí),同學(xué)們已經(jīng)能很好的掌握了吧,希望同學(xué)們會考出好成績。
初中數(shù)學(xué)知識點:因式分解
因式分解
因式分解定義:把一個多項式化成幾個整式的積的形式的變形叫把這個多項式因式分解。
因式分解要素:①結(jié)果必須是整式②結(jié)果必須是積的形式③結(jié)果是等式④
因式分解與整式乘法的關(guān)系:m(a+b+c)
公因式:一個多項式每項都含有的公共的因式,叫做這個多項式各項的公因式。
公因式確定方法:①系數(shù)是整數(shù)時取各項最大公約數(shù)。②相同字母取最低次冪③系數(shù)最大公約數(shù)與相同字母取最低次冪的積就是這個多項式各項的公因式。
提取公因式步驟:
①確定公因式。②確定商式③公因式與商式寫成積的形式。
分解因式注意;
①不準(zhǔn)丟字母
、诓粶(zhǔn)丟常數(shù)項注意查項數(shù)
、垭p重括號化成單括號
④結(jié)果按數(shù)單字母單項式多項式順序排列
、菹嗤蚴綄懗蓛绲男问
⑥首項負(fù)號放括號外
、呃ㄌ杻(nèi)同類項合并。
初一的數(shù)學(xué)知識點總結(jié)6
第一章:有理數(shù)
★0既不是正數(shù),也不是負(fù)數(shù)。0是正數(shù)和負(fù)數(shù)的分界!镎麛(shù)的概念:正整數(shù)、0、負(fù)整數(shù)統(tǒng)稱為整數(shù)!锓?jǐn)?shù)的概念:正負(fù)數(shù)和負(fù)分?jǐn)?shù)統(tǒng)稱為分?jǐn)?shù)!镉欣頂(shù)的概念:整數(shù)和分?jǐn)?shù)統(tǒng)稱為有理數(shù)。
★數(shù)軸的概念:規(guī)定了原點、正方向、單位長度的一條直線叫數(shù)軸。
。1)在直線上任意取一點表示數(shù)0,這個點叫做原點;
。2)通常規(guī)定直線上從原點向右(上)為正方向,從原點向左(或下)為負(fù)方向;(3)選取適當(dāng)?shù)拈L度為單位長度,直線上從原點向右,每隔一個單位長度取一個點,
依次表示1,2,3,---;從原點向左,用類似的方法依次表示-1,-2,-3。
★相反數(shù)的概念:只有符號不同的兩個數(shù)叫做互為相反數(shù)。0的相反數(shù)是0;橄喾磾(shù)的兩個點關(guān)于原點對稱。
★絕對值的概念:一般地,數(shù)軸上表示數(shù)的a的點與原點的距離叫做數(shù)a的絕對值。記作a。
由絕對值的定義可知:一個正數(shù)的絕對值是它本身;一個負(fù)數(shù)的絕對值是它的相反數(shù);0的絕對值是0。
★有理數(shù)比較大。涸跀(shù)軸上表示有理數(shù),它們從左到右的順序就是從小到大的順序,即左邊的數(shù)小于右邊的數(shù)。所以由這個規(guī)定可知:(1)正數(shù)大于0,0大于負(fù)數(shù);正數(shù)大于負(fù)數(shù);(2)兩個負(fù)數(shù),絕對值大的反而小。
備注:異號兩數(shù)比較大小,要考慮它們的正負(fù);同號兩數(shù)比較大小,要考慮它們的絕對值。
★有理數(shù)加法法則:
1、同號兩數(shù)相加,取相同的符號,并把絕對值相加。
2、絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。互為相反數(shù)的兩個數(shù)相加得0。
3、一個數(shù)同0相加,仍是這個數(shù)。
★有理數(shù)的加法中,兩個數(shù)相加,交換加數(shù)的位置,和不變。加法交換律:a+b=b+a.★有理數(shù)的加法中,三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。加法結(jié)合律:(a+b)+c=a+(b+c)!窘Y(jié)合原則:同號結(jié)合;同分母結(jié)合;互為相反數(shù)結(jié)合;湊整結(jié)合。】
★有理數(shù)減法法則:減去一個數(shù),就等于加上這個數(shù)的相反數(shù)。即:a-b=a+(-b).
★有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘;任何數(shù)同0相乘都得0。
備注:幾個不是0的數(shù)相乘,負(fù)因數(shù)的個數(shù)是偶數(shù)時,積是正數(shù);負(fù)因數(shù)的個數(shù)是奇數(shù)時,積是負(fù)數(shù)。
★有理數(shù)中仍然有:乘積是1的兩個數(shù)互為倒數(shù)。
★一般地,有理數(shù)乘法中,兩個數(shù)相乘,交換因數(shù)的位置,積不變。乘法交換率:abba;三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積不變。乘法結(jié)合律:(ab)ca(bc)。
★一般地,一個數(shù)同兩個數(shù)的和相乘,等于把這個數(shù)分別同中兩個數(shù)相乘,再把積相加。分配律:a(bc)abac
★有理數(shù)除法法則:除以一個不等于0的數(shù),等于乘上這個數(shù)的倒數(shù)。
備注:從有理數(shù)除法法則容易得出:兩數(shù)相除,同號得正,異號得負(fù),并把絕對值相除。0除以任何一個不等于0的數(shù),都得0。
★有理數(shù)的乘方:求n個相同因數(shù)的積的運算,叫做乘方,乘方的結(jié)果叫做冪。a的n次方也可以讀作a的n次冪。
備注:負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù)。
正數(shù)的任何次冪都是正數(shù)。0的任何正整數(shù)次冪都是0。
★有理數(shù)的混合運算,應(yīng)注意以下運算順序:先乘方,再乘除,最后加減。2。同級運算,從左到右依次計算。3。如有括號,先做括號內(nèi)的運算,按小括號、中括號、大括號依次計算。
★科學(xué)計數(shù)法:把一個大于10的數(shù)表示成ax10(其中a是整數(shù)數(shù)位只有一位的數(shù),n是正整數(shù))
★近似數(shù)與準(zhǔn)確數(shù)的接近程度,可以用精確度表示。
★有效數(shù)字:從一個數(shù)的左邊第一個非0數(shù)字起,到末位數(shù)字止,所有的數(shù)字都是這個數(shù)的有效數(shù)字。
第二章:整式的加減(為一元一次方程的學(xué)習(xí)打下基礎(chǔ))
◆單項式概念:比如100t、a的平方、2.5x、vt,-n,它們都是數(shù)或者字母的積,像這樣的'式子叫做單項式。單獨的一個數(shù)或一個字母也是單項式。單項式中數(shù)字因數(shù)叫做這個單項式的系數(shù)。
◆一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù)。
◆多項式的概念:幾個單項式的和叫做多項式。其中每個單項式叫做多項式的項,不存在字母的項叫做常數(shù)項。
◆多項式里次數(shù)最高項的次數(shù),叫做這個多項式的次數(shù)。◆整式的概念:單項式與多項式統(tǒng)稱整式。
◆同類項概念:所含字母相同,并且相同字母的指數(shù)也相同的項叫做同類項。幾個常數(shù)項也是同類項。
◆把多項式中的同類項合并成一項,叫做合并同類項。
◆合并同類項后,所得項的系數(shù)是合并前各同類項的系數(shù)之和,且字母部分不變。◆去括號法則:
如果括號外的因數(shù)是正數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相同;如果括號外的因數(shù)是負(fù)數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相反。
第三章:一元一次方程
▲含有未知數(shù)的等式叫方程(equation)。
▲使方程左右兩邊相等的未知數(shù)的值,叫做方程的解(solution)。▲只含有一個未知數(shù)(元),未知數(shù)的次數(shù)都是1,這樣的方程叫做一元一次方程!仁降男再|(zhì):1、等式兩邊加(或減)同一個數(shù)(或式子),結(jié)果仍相等。
2、等式;兩邊乘同一個數(shù),或除以同一個不為0的數(shù),結(jié)果仍相等。▲用一元一次方程分析和解決實際問題的基本過程如下:
。▽嶋H問題)設(shè)未知數(shù),列方程數(shù)學(xué)問題(一元一次方程)解方程(數(shù)學(xué)問題的解)檢驗(實際問題的答案)。
▲解方程的具體步驟:1、去分母(方程兩邊同乘各分母的最小公倍數(shù));2、去括號(去括號法則);3、移項(定義);4、合并同類項(法則,同類項的定義);5、系數(shù)化為1。
▲實際問題與一元一次方程:一元一次方程是最簡單的方程。運用方程解決問題的關(guān)鍵是分析問題中的數(shù)量關(guān)系,找出其中的相等關(guān)系,并由此列出方程。
第四章:圖形認(rèn)識的初步
※我們把從實物中抽象出的各種圖形統(tǒng)稱為幾何圖形。幾何圖形是數(shù)學(xué)研究的主要對象
之一。幾何圖形又分為立體圖形和平面圖形。
※長方體、正方體、圓柱、圓錐、球、棱錐等都是幾何體。幾何體也簡稱體(solid)。包圍著體的是面(surface)。面有平面和曲面。
※幾何圖形都是由點、線、面、體組成的,點是構(gòu)成圖形的基本元素!(jīng)過兩點有一條直線,并且只有一條直線。簡述:兩點確定一條直線。※直線一般用1個小寫字母表示或者用直線上的兩個大寫字母表示!渚和線段都是直線的一部分。類似于直線的表示。
※兩點的所有連線中,線段最短。簡述:兩點之間,線段最短!B接兩點間的線段的長度,叫做中兩點的距離(distance)。
※在國際單位制中,長度的基本單位是米(m)。常用的單位還有千米、分米、厘米、毫米、微米等。
1納米等于十億分之一米。
※在天文學(xué)上,常用天文單位和光年計算星體間的距離。1天文單位是地球到太陽的平812
均距離,約1.5x10千米,1光年就是光1年走過的距離,約等于9.46x10千米。
※航海上經(jīng)常用到的長度單位海里(1海里=1852米);※有公共端點的兩條射線組成的圖形叫做角(angle)。這個公共點叫做角的頂點,這兩條射線是角的兩條邊。
※我們常用量角器量角,度(degree)、分、秒是常用的角的度量單位。
※角的度、分、秒是60進制的。以度、分、秒為單位的角的度量制,叫做角度制。※常用的量角工具有,量角器,工程常用的經(jīng)緯儀。
※從一個角的頂點出發(fā),把這個角分成相等的兩個角的射線,叫做這個角的平分線。
※余角(complementaryangle):如果兩個角的和等于90度(直角),就說中這兩個角互為余角,即其中每一個角是另一個角的余角。余角的性質(zhì):等角的余角相等。
※補角(supplementaryangle):如果兩個角的和等于180度(平角),就說這兩個角互為補角,其中一個角是另一個角的補角。補角的性質(zhì):等角的補角相等。
※上北下南;左西右東。西北,即是北偏西45度。
第五章平行線與相交線
一.臺球桌面上的角
※1.互為余角和互為補角的有關(guān)概念與性質(zhì)
如果兩個角的和為90°(或直角),那么這兩個角互為余角;如果兩個角的和為180°(或平角),那么這兩個角互為補角;
注意:這兩個概念都是對于兩個角而言的,而且兩個概念強調(diào)的是兩個角的數(shù)量關(guān)系,與兩個角的相互位置沒有關(guān)系。
它們的主要性質(zhì):同角或等角的余角相等;同角或等角的補角相等。
二.探索直線平行的條件
※兩條直線互相平行的條件即兩條直線互相平行的判定定理,共有三條:①同位角相等,兩直線平行;②內(nèi)錯角相等,兩直線平行;③同旁內(nèi)角互補,兩直線平行。
三.平行線的特征
※平行線的特征即平行線的性質(zhì)定理,共有三條:①兩直線平行,同位角相等;②兩直線平行,內(nèi)錯角相等;③兩直線平行,同旁內(nèi)角互補。
四.用尺規(guī)作線段和角※
1.關(guān)于尺規(guī)作圖
尺規(guī)作圖是指只用圓規(guī)和沒有刻度的直尺來作圖。
※2.關(guān)于尺規(guī)的功能
直尺的功能是:在兩點間連接一條線段;將線段向兩方向延長。
圓規(guī)的功能是:以任意一點為圓心,任意長度為半徑作一個圓;以任意一點為圓心,任意長度為半徑畫一段弧。
初一的數(shù)學(xué)知識點總結(jié)7
平方根:
、偃绻粋正數(shù)X的平方等于A,那么這個正數(shù)X就叫做A的算術(shù)平方根。
、谌绻粋數(shù)X的平方等于A,那么這個數(shù)X就叫做A的平方根。
、垡粋正數(shù)有2個平方根/0的平方根為0/負(fù)數(shù)沒有平方根。
、芮笠粋數(shù)A的平方根運算,叫做開平方,其中A叫做被開方數(shù)。
立方根:
①如果一個數(shù)X的立方等于A,那么這個數(shù)X就叫做A的立方根。
、谡龜(shù)的立方根是正數(shù)、0的立方根是0、負(fù)數(shù)的'立方根是負(fù)數(shù)。
、矍笠粋數(shù)A的立方根的運算叫開立方,其中A叫做被開方數(shù)。
實數(shù):
、賹崝(shù)分有理數(shù)和無理數(shù)。
②在實數(shù)范圍內(nèi),相反數(shù),倒數(shù),絕對值的意義和有理數(shù)范圍內(nèi)的相反數(shù),倒數(shù),絕對值的意義完全一樣。
、勖恳粋實數(shù)都可以在數(shù)軸上的一個點來表示。
初一的數(shù)學(xué)知識點總結(jié)8
一、有理數(shù)
概念、定義:
1、大于0的數(shù)叫做正數(shù)(positive number)。
2、在正數(shù)前面加上負(fù)號“—”的數(shù)叫做負(fù)數(shù)(negative number)。
3、整數(shù)和分?jǐn)?shù)統(tǒng)稱為有理數(shù)(rational number)。
4、人們通常用一條直線上的點表示數(shù),這條直線叫做數(shù)軸(number axis)。
5、在直線上任取一個點表示數(shù)0,這個點叫做原點(origin)。
6、一般的,數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值(absolute value)。
7、由絕對值的定義可知:一個正數(shù)的絕對值是它本身;一個負(fù)數(shù)的絕對值是它的相反數(shù);0的絕對值是0。
8、正數(shù)大于0,0大于負(fù)數(shù),正數(shù)大于負(fù)數(shù)。
9、兩個負(fù)數(shù),絕對值大的反而小。
10、有理數(shù)加法法則
。1)同號兩數(shù)相加,取相同的符號,并把絕對值相加。
(2)絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的負(fù)號,并用較大的絕對值減去較小的絕對值,互為相反數(shù)的兩個數(shù)相加得0。
。3)一個數(shù)同0相加,仍得這個數(shù)。
11、有理數(shù)的加法中,兩個數(shù)相加,交換交換加數(shù)的位置,和不變。
12、有理數(shù)的加法中,三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。
13、有理數(shù)減法法則
減去一個數(shù),等于加上這個數(shù)的相反數(shù)。
14、有理數(shù)乘法法則
兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值向乘。
任何數(shù)同0相乘,都得0。
15、有理數(shù)中仍然有:乘積是1的兩個數(shù)互為倒數(shù)。
16、一般的`,有理數(shù)乘法中,兩個數(shù)相乘,交換因數(shù)的位置,積相等。
17、三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等。
18、一般地,一個數(shù)同兩個數(shù)的和相乘,等于把這個數(shù)分別同這兩個數(shù)相乘,再把積相加。
19、有理數(shù)除法法則
除以一個不等于0的數(shù),等于乘這個數(shù)的倒數(shù)。
20、兩數(shù)相除,同號得正,異號得負(fù),并把絕對值相除。0除以任何一個不等于0的數(shù),都得0。
21、求n個相同因數(shù)的積的運算,叫做乘方,乘方的結(jié)果叫做冪(power)。在an中,a叫做底數(shù)(basenumber),n叫做指數(shù)(exponeht)
22、根據(jù)有理數(shù)的乘法法則可以得出
負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù)。
顯然,正數(shù)的任何次冪都是正數(shù),0的任何次冪都是0。
23、做有理數(shù)混合運算時,應(yīng)注意以下運算順序:
(1)先乘方,再乘除,最后加減;
(2)同級運算,從左到右進行;
。3)如有括號,先做括號內(nèi)的運算,按小括號、中括號、大括號依次進行。
24、把一個大于10數(shù)表示成a×10n的形式(其中a是整數(shù)數(shù)位只有一位的數(shù),n是正整數(shù)),使用的是科學(xué)計數(shù)法。
25、接近實際數(shù)字,但是與實際數(shù)字還是有差別,這個數(shù)是一個近似數(shù)(approximate number)。
26、從一個數(shù)的左邊的第一個非0數(shù)字起,到末尾數(shù)字止,所有的數(shù)字都是這個數(shù)的有效數(shù)字(significant digit)
注:黑體字為重要部分
二、整式的加減
概念、定義:
1、都是數(shù)或字母的積的式子叫做單項式(monomial),單獨的一個數(shù)或一個字母也是單項式。
2、單項式中的數(shù)字因數(shù)叫做這個單項式的系數(shù)(coefficient)。
3、一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù)(degree of a monomial)。
4、幾個單項的和叫做多項式(polynomial),其中,每個單項式叫做多項式的項(term),不含字母的項叫做常數(shù)項(constantlyterm)。
5、多項式里次數(shù)最高項的次數(shù),叫做這個多項式的次數(shù)(degree of a polynomial)。
6、把多項式中的同類項合并成一項,叫做合并同類項。
合并同類項后,所得項的系數(shù)是合并前各同類項的系數(shù)的和,且字母部分不變。
7、如果括號外的因數(shù)是正數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相同;
8、如果括號外的因數(shù)是負(fù)數(shù),去括號后原括號內(nèi)各項的符號與原來的符號相反。
9、一般地,幾個整式相加減,如果有括號就先去括號,然后再合并同類項。
三、一元一次方程
概念、定義:
1、列方程時,要先設(shè)字母表示未知數(shù),然后根據(jù)問題中的相等關(guān)系,寫出還有未知數(shù)的等式——方程(equation)。
2、含有一個未知數(shù)(元),未知數(shù)的次數(shù)都是1,這樣的方程叫做一元一次方程(linear equation withone unknown)。
3、分析實際問題中的數(shù)量關(guān)系,利用其中的等量關(guān)系列出方程,是用數(shù)學(xué)解決實際問題的一種方法。
4、等式的性質(zhì)1:等式兩邊加(或減)同一個數(shù)(或式子),結(jié)果仍相等。
5、等式的性質(zhì)2:等式兩邊乘同一個數(shù),或除以一個不為0的數(shù),結(jié)果仍相等。
6、把等式一邊的某項變號后移到另一邊,叫做移項。
7、應(yīng)用:行程問題:s=v×t工程問題:工作總量=工作效率×?xí)r間
盈虧問題:利潤=售價—成本利率=利潤÷成本×100%
售價=標(biāo)價×折扣數(shù)×10%儲蓄利潤問題:利息=本金×利率×?xí)r間
本息和=本金+利息
四、圖形初步認(rèn)識
概念、定義:
1、我們把實物中抽象的各種圖形統(tǒng)稱為幾何圖形(geometric figure)。
2、有些幾何圖形(如長方體、正方體、圓柱、圓錐、球等)的各部分不都在同一平面內(nèi),它們是立體圖形(solidfigure)。
3、有些幾何圖形(如線段、角、三角形、長方形、圓等)的各部分都在同一平面內(nèi),它們是平面圖形(planefigure)。
4、將由平面圖形圍成的立體圖形表面適當(dāng)剪開,可以展開成平面圖形,這樣的平面圖形稱為相應(yīng)立體圖形的展開圖(net)。
5、幾何體簡稱為體(solid)。
6、包圍著體的是面(surface),面有平的面和曲的面兩種。
7、面與面相交的地方形成線(line),線和線相交的地方是點(point)。
8、點動成面,面動成線,線動成體。
9、經(jīng)過探究可以得到一個基本事實:經(jīng)過兩點有一條直線,并且只有一條直線。
簡述為:兩點確定一條直線(公理)。
10、當(dāng)兩條不同的直線有一個公共點時,我們就稱這兩條直線相交(intersection),這個公共點叫做它們的交點(pointof intersection)。
11、點M把線段AB分成相等的兩條線段AM和MB,點M叫做線段AB的中點(center)。
12、經(jīng)過比較,我們可以得到一個關(guān)于線段的基本事實:兩點的所有連線中,線段最短。簡單說成:兩點之間,線段最短。(公理)
13、連接兩點間的線段的長度,叫做這兩點的距離(distance)。
14、角∠(angle)也是一種基本的幾何圖形。
15、把一個周角360等分,每一份就是1度(degree)的角,記作1°;把一度的角60等分,每一份叫做1分的角,記作1′;把1分的角60等分,每一份叫做1秒的角,記作1″。
16、從一個角的頂點出發(fā),把這個角分成相等的兩個角的射線,叫做這個角的平分線(angular bisector)。
17、如果兩個角的和等于90°(直角),就是說這兩個叫互為余角(complementary
angle),即其中的每一個角是另一個角的余角。
18、如果兩個角的和等于180°(平角),就說這兩個角互為補角(supplementary
angle),即其中一個角是另一個角的補角
19、等角的補角相等,等角的余角相等。
初一的數(shù)學(xué)知識點總結(jié)9
第五章《相交線與平行線》
一、知識點
5.1相交線5.1.1相交線
有一個公共的頂點,有一條公共的邊,另外一邊互為反向延長線,這樣的兩個角叫做鄰補角。
兩條直線相交有4對鄰補角。
有公共的頂點,角的兩邊互為反向延長線,這樣的兩個角叫做對頂角。兩條直線相交,有2對對頂角。對頂角相等。
5.1.2兩條直線相交,所成的四個角中有一個角是直角,那么這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。
注意:⑴垂線是一條直線。
、凭哂写怪标P(guān)系的兩條直線所成的4個角都是90。
、谴怪笔窍嘟坏奶厥馇闆r。
、却怪钡挠浄ǎ篴⊥b,AB⊥CD。
畫已知直線的垂線有無數(shù)條。
過一點有且只有一條直線與已知直線垂直。
連接直線外一點與直線上各點的所有線段中,垂線段最短。簡單說成:垂線段最短。直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。
5.2平行線5.2.1平行線
在同一平面內(nèi),兩條直線沒有交點,則這兩條直線互相平行,記作:a∥b。在同一平面內(nèi)兩條直線的關(guān)系只有兩種:相交或平行。
平行公理:經(jīng)過直線外一點,有且只有一條直線與這條直線平行。
如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。5.2.2直線平行的條件
兩條直線被第三條直線所截,在兩條被截線的同一方,截線的同一旁,這樣的兩個角叫做同位角。兩條直線被第三條直線所截,在兩條被截線之間,截線的兩側(cè),這樣的兩個角叫做內(nèi)錯角。
兩條直線被第三條直線所截,在兩條被截線之間,截線的同一旁,這樣的兩個角叫做同旁內(nèi)角。判定兩條直線平行的方法:
方法1兩條直線被第三條直線所截,如果同位角相等,那么這兩條直線平行。簡單說成:同位角相等,兩直線平行。
方法2兩條直線被第三條直線所截,如果內(nèi)錯角相等,那么這兩條直線平行。簡單說成:內(nèi)錯角相等,兩直線平行。
方法3兩條直線被第三條直線所截,如果同旁內(nèi)角互補,那么這兩條直線平行。簡單說成:同旁內(nèi)角互補,兩直線平行。
5.3平行線的性質(zhì)
平行線具有性質(zhì):
性質(zhì)1兩條平行線被第三條直線所截,同位角相等。簡單說成:兩直線平行,同位角相等。性質(zhì)2兩條平行線被第三條直線所截,內(nèi)錯角相等。簡單說成:兩直線平行,內(nèi)錯角相等。
性質(zhì)3兩條平行線被第三條直線所截,同旁內(nèi)角互補。簡單說成:兩直線平行,同旁內(nèi)角互補。同時垂直于兩條平行線,并且夾在這兩條平行線間的線段的長度,叫做著兩條平行線的距離。判斷一件事情的語句叫做命題。5.4平移
、虐岩粋圖形整體沿某一方向移動,會得到一個新的圖形,新圖形與原圖形的形狀和大小完全相同。
、菩聢D形中的每一點,都是由原圖形中的某一點移動后得到的,這兩個點是對應(yīng)點,連接各組對應(yīng)點的線段平行且相等。
圖形的這種移動,叫做平移變換,簡稱平移。
第六章《平面直角坐標(biāo)系》
一、知識點
6.1平面直角坐標(biāo)系
6.1.1有序數(shù)對
有順序的兩個數(shù)a與b組成的數(shù)對,叫做有序數(shù)對。
6.1.2平面直角坐標(biāo)系
平面內(nèi)畫兩條互相垂直、原點重合的數(shù)軸,組成平面直角坐標(biāo)系。水平的數(shù)軸稱為x軸或橫軸,習(xí)慣上取向右為正方向;豎直的數(shù)軸稱為y軸或縱軸取2向上方向為正方向;兩坐標(biāo)軸的交點為平面直角坐標(biāo)系的原點。
平面上的任意一點都可以用一個有序數(shù)對來表示。
建立了平面直角坐標(biāo)系以后,坐標(biāo)平面就被兩條坐標(biāo)軸分為了Ⅰ、Ⅱ、Ⅲ、Ⅳ四個部分,分別叫做第一象限、第二象限、第三象限和第四象限。坐標(biāo)軸上的點不屬于任何象限。
6.2坐標(biāo)方法的簡單應(yīng)用
6.2.1用坐標(biāo)表示地理位置
利用平面直角坐標(biāo)系繪制區(qū)域內(nèi)一些地點分布情況平面圖的過程如下:
⑴建立坐標(biāo)系,選擇一個適當(dāng)?shù)膮⒄拯c為原點,確定x軸、y軸的正方向;
⑵根據(jù)具體問題確定適當(dāng)?shù)谋壤,在坐?biāo)軸上標(biāo)出單位長度;
、窃谧鴺(biāo)平面內(nèi)畫出這些點,寫出各點的坐標(biāo)和各個地點的名稱。6.2.2用坐標(biāo)表示平移
在平面直角坐標(biāo)系中,將點(x,y)向右(或左)平移a個單位長度,可以得到對應(yīng)點(x+a,y)(或(x-a,y));將點(x,y)向上(或下)平移b個單位長度,可以得到對應(yīng)點(x,y+b)(或(x,y-b))。
在平面直角坐標(biāo)系內(nèi),如果把一個圖形各個點的橫坐標(biāo)都加(或減去)一個正數(shù)a,相應(yīng)的新圖形就是把原圖形向右(或向左)平移a個單位長度;如果把它各個點的縱坐標(biāo)都加(或減去)一個正數(shù)a,相應(yīng)的新圖形就是把原圖形向上(或向下)平移a個單位長度。
第七章《三角形》
一、知識點
7.1與三角形有關(guān)的線段
7.1.1三角形的邊
由不在同一條直線上的三條線段首尾順次相接所組成的圖形叫做三角形。相鄰兩邊組成的角,叫做三角形的內(nèi)角,簡稱三角形的角。
頂點是A、B、C的三角形,記作“△ABC”,讀作“三角形ABC”。三角形兩邊的和大于第三邊。7.1.2三角形的高、中線和角平分線7.1.3三角形的穩(wěn)定性
三角形具有穩(wěn)定性。7.2與三角形有關(guān)的角7.2.1三角形的內(nèi)角
三角形的`內(nèi)角和等于180。
7.2.2三角形的外角
三角形的一邊與另一邊的延長線組成的角,叫做三角形的外角。三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和。三角形的一個外角大于與它不相鄰的任何一個內(nèi)角。
7.3多邊形及其內(nèi)角和7.3.1多邊形
在平面內(nèi),由一些線段首尾順次相接組成的圖形叫做多邊形。連接多邊形不相鄰的兩個頂點的線段,叫做多邊形的對角線。n邊形的對角線公式:
n(n-3)2各個角都相等,各條邊都相等的多邊形叫做正多邊形。
7.3.2多邊形的內(nèi)角和
n邊形的內(nèi)角和公式:180(n-2)多邊形的外角和等于360。
7.4課題學(xué)習(xí)鑲嵌
1三角形→由不在同一直線上的三條線段首尾順次相接所組成的圖形!2判斷三條線段能否組成三角形。
、賏+b>c(ab為最短的兩條線段)②a-b
a-b 進而求得這個二元一次方程組的解。這種方法叫做代入消元法,簡稱代入法。 兩個二元一次方程中同一未知數(shù)的系數(shù)相反或相等時,將兩個方程的兩邊分別相加或相減,就能消去這個未知數(shù),得到一個一元一次方程。這種方法叫做加減消元法,簡稱加減法。 第九章《不等式與不等式組》 一、知識點 9.1不等式 9.1.1不等式及其解集 用“<”或“>”號表示大小關(guān)系的式子叫做不等式。使不等式成立的未知數(shù)的值叫做不等式的解。 能使不等式成立的未知數(shù)的取值范圍,叫做不等式解的集合,簡稱解集。含有一個未知數(shù),未知數(shù)的次數(shù)是1的不等式,叫做一元一次不等式。 9.1.2不等式的性質(zhì) 不等式有以下性質(zhì): 不等式的性質(zhì)1不等式兩邊加(或減)同一個數(shù)(或式子),不等號的方向不變。不等式的性質(zhì)2不等式兩邊乘(或除以)同一個正數(shù),不等號的方向不變。不等式的性質(zhì)3不等式兩邊乘(或除以)同一個負(fù)數(shù),不等號的方向改變。9.2實際問題與一元一次不等式 解一元一次方程,要根據(jù)等式的性質(zhì),將方程逐步化為x=a的形式;而解一元一次不等式,則要根據(jù)不等式的性質(zhì),將不等式逐步化為x<a(或x>a)的形式。 9.3一元一次不等式組 把兩個不等式合起來,就組成了一個一元一次不等式組。 幾個不等式的解集的公共部分,叫做由它們所組成的不等式的解集。解不等式就是求它的解集。 對于具有多種不等關(guān)系的問題,可通過不等式組解決。解一元一次不等式組時。一般先求出其中各不等式的解集,再求出這些解集的公共部分,利用數(shù)軸可以直觀地表示不等式組的解集。9.4課題學(xué)習(xí)利用不等關(guān)系分析比賽 第一章豐富的圖形世界 1、幾何圖形 從實物中抽象出來的各種圖形,包括立體圖形和平面圖形。 2、點、線、面、體 。1)幾何圖形的組成 點:線和線相交的地方是點,它是幾何圖形中最基本的圖形。 線:面和面相交的地方是線,分為直線和曲線。 面:包圍著體的是面,分為平面和曲面。 體:幾何體也簡稱體。 。2)點動成線,線動成面,面動成體。 3、生活中的立體圖形 生活中的立體圖形 柱:棱柱:三棱柱、四棱柱(長方體、正方體)、五棱柱、…… 第二章數(shù)值 1、理數(shù) 正有理數(shù)整數(shù) 有理數(shù)零有理數(shù) 負(fù)有理數(shù)分?jǐn)?shù) 2、相反數(shù):只有符號不同的兩個數(shù)叫做互為相反數(shù),零的相反數(shù)是零。 3、數(shù)軸:規(guī)定了原點、正方向和單位長度的直線叫做數(shù)軸(畫數(shù)軸時,三要素缺一不可)。任何一個有理數(shù)都可以用數(shù)軸上的一個點來表示。 4、倒數(shù):如果a與b互為倒數(shù),則有ab=1,反之亦成立。倒數(shù)等于本身的數(shù)是1和—1。零沒有倒數(shù)。 5、絕對值:在數(shù)軸上,一個數(shù)所對應(yīng)的點與原點的距離,叫做該數(shù)的絕對值,(|a|≥0)。若|a|=a,則a≥0;若|a|=—a,則a≤0。 正數(shù)的絕對值是它本身;負(fù)數(shù)的絕對值是它的相反數(shù);0的絕對值是0;橄喾磾(shù)的兩個數(shù)的絕對值相等。 6、有理數(shù)比較大。赫龜(shù)大于0,負(fù)數(shù)小于0,正數(shù)大于負(fù)數(shù);數(shù)軸上的兩個點所表示的數(shù),右邊的總比左邊的大;兩個負(fù)數(shù),絕對值大的反而小。 7、有理數(shù)的運算: 。1)五種運算:加、減、乘、除、乘方 多個數(shù)相乘,積的符號由負(fù)因數(shù)的個數(shù)決定,當(dāng)負(fù)因數(shù)有奇數(shù)個時,積的符號為負(fù);當(dāng)負(fù)因數(shù)有偶數(shù)個時,積的符號為正。只要有一個數(shù)為零,積就為零。 有理數(shù)加法法則: 同號兩數(shù)相加,取相同的符號,并把絕對值相加。 異號兩數(shù)相加,絕對值值相等時和為0;絕對值不相等時,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。 一個數(shù)同0相加,仍得這個數(shù)。 互為相反數(shù)的兩個數(shù)相加和為0。 有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù)! 有理數(shù)乘法法則: 兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘。 任何數(shù)與0相乘,積仍為0。 有理數(shù)除法法則: 兩個有理數(shù)相除,同號得正,異號得負(fù),并把絕對值相除。 0除以任何非0的數(shù)都得0。 注意:0不能作除數(shù)。 有理數(shù)的乘方:求n個相同因數(shù)a的積的運算叫做乘方。 正數(shù)的任何次冪都是正數(shù),負(fù)數(shù)的偶次冪是正數(shù),負(fù)數(shù)的奇次冪是負(fù)數(shù)。 。2)有理數(shù)的運算順序 先算乘方,再算乘除,最后算加減,如果有括號,先算括號里面的。 。3)運算律 加法交換律加法結(jié)合律 乘法交換律乘法結(jié)合律 乘法對加法的分配律 8、科學(xué)記數(shù)法 一般地,一個大于10的數(shù)可以表示成的形式,其中,n是正整數(shù),這種記數(shù)方法叫做科學(xué)記數(shù)法。(n=整數(shù)位數(shù)—1) 第三章整式及其加減 1、代數(shù)式 用運算符號(加、減、乘、除、乘方、開方等)把數(shù)或表示數(shù)的字母連接而成的式子叫做代數(shù)式。單獨的一個數(shù)或一個字母也是代數(shù)式。 注意:①代數(shù)式中除了含有數(shù)、字母和運算符號外,還可以有括號; ②代數(shù)式中不含有“=、>、<、≠”等符號。等式和不等式都不是代數(shù)式,但等號和不等號兩邊的式子一般都是代數(shù)式; 、鄞鷶(shù)式中的字母所表示的數(shù)必須要使這個代數(shù)式有意義,是實際問題的要符合實際問題的意義。 代數(shù)式的書寫格式: 、俅鷶(shù)式中出現(xiàn)乘號,通常省略不寫,如vt; 、跀(shù)字與字母相乘時,數(shù)字應(yīng)寫在字母前面,如4a; ③帶分?jǐn)?shù)與字母相乘時,應(yīng)先把帶分?jǐn)?shù)化成假分?jǐn)?shù),如應(yīng)寫作; 、軘(shù)字與數(shù)字相乘,一般仍用“×”號,即“×”號不省略; 、菰诖鷶(shù)式中出現(xiàn)除法運算時,一般寫成分?jǐn)?shù)的形式,如4÷(a—4)應(yīng)寫作;注意:分?jǐn)?shù)線具有“÷”號和括號的雙重作用。 ⑥在表示和(或)差的代數(shù)式后有單位名稱的,則必須把代數(shù)式括起來,再將單位名稱寫在式子的后面,如平方米。 2、整式:單項式和多項式統(tǒng)稱為整式。 、賳雾検剑憾际菙(shù)字和字母乘積的形式的代數(shù)式叫做單項式。單項式中,所有字母的指數(shù)之和叫做這個單項式的次數(shù);數(shù)字因數(shù)叫做這個單項式的系數(shù)。 注意:1。單獨的一個數(shù)或一個字母也是單項式;2。單獨一個非零數(shù)的次數(shù)是0;3。當(dāng)單項式的系數(shù)為1或—1時,這個“1”應(yīng)省略不寫,如—ab的系數(shù)是—1,a3b的系數(shù)是1。 ②多項式:幾個單項式的和叫做多項式。多項式中,每個單項式叫做多項式的項;次數(shù)最高的項的次數(shù)叫做多項式的次數(shù)。 3、同類項:所含字母相同,并且相同字母的指數(shù)也相同的項叫做同類項。 注意:①同類項有兩個條件:a。所含字母相同;b。相同字母的指數(shù)也相同。 、谕愴椗c系數(shù)無關(guān),與字母的排列順序無關(guān); 、蹘讉常數(shù)項也是同類項。 4、合并同類項法則:把同類項的系數(shù)相加,字母和字母的指數(shù)不變。 5、去括號法則 、俑鶕(jù)去括號法則去括號: 括號前面是“+”號,把括號和它前面的“+”號去掉,括號里各項都不改變符號;括號前面是“—”號,把括號和它前面的“—”號去掉,括號里各項都改變符號。 、诟鶕(jù)分配律去括號: 括號前面是“+”號看成+1,括號前面是“—”號看成—1,根據(jù)乘法的分配律用+1或—1去乘括號里的每一項以達到去括號的目的。 6、添括號法則 添“+”號和括號,添到括號里的各項符號都不改變;添“—”號和括號,添到括號里的各項符號都要改變。 7、整式的運算: 整式的加減法:(1)去括號;(2)合并同類項。 第四章基本平面圖形 2、直線的性質(zhì) (1)直線公理:經(jīng)過兩個點有且只有一條直線。(兩點確定一條直線。) 。2)過一點的直線有無數(shù)條。 (3)直線是是向兩方面無限延伸的,無端點,不可度量,不能比較大小。 3、線段的性質(zhì) (1)線段公理:兩點之間的所有連線中,線段最短。(兩點之間線段最短。) 。2)兩點之間的距離:兩點之間線段的長度,叫做這兩點之間的距離。 。3)線段的大小關(guān)系和它們的長度的大小關(guān)系是一致的。 4、線段的中點: 點M把線段AB分成相等的兩條相等的線段AM與BM,點M叫做線段AB的中點。AM = BM =1/2AB(或AB=2AM=2BM)。 5、角: 有公共端點的兩條射線組成的圖形叫做角,兩條射線的公共端點叫做這個角的頂點,這兩條射線叫做這個角的邊;颍航且部梢钥闯墒且粭l射線繞著它的端點旋轉(zhuǎn)而成的。 6、角的表示 角的表示方法有以下四種: 、儆脭(shù)字表示單獨的角,如∠1,∠2,∠3等。 、谟眯懙南ED字母表示單獨的一個角,如∠α,∠β,∠γ,∠θ等。 、塾靡粋大寫英文字母表示一個獨立(在一個頂點處只有一個角)的角,如∠B,∠C等。 ④用三個大寫英文字母表示任一個角,如∠BAD,∠BAE,∠CAE等。 注意:用三個大寫字母表示角時,一定要把頂點字母寫在中間,邊上的字母寫在兩側(cè)。 7、角的度量 角的度量有如下規(guī)定:把一個平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”。 把1°的角60等分,每一份叫做1分的角,1分記作“1’”。 把1’的.角60等分,每一份叫做1秒的角,1秒記作“1””。 1°=60’,1’=60” 8、角的平分線 從一個角的頂點引出的一條射線,把這個角分成兩個相等的角,這條射線叫做這個角的平分線。 9、角的性質(zhì) 。1)角的大小與邊的長短無關(guān),只與構(gòu)成角的兩條射線的幅度大小有關(guān)。 (2)角的大小可以度量,可以比較,角可以參與運算。 10、平角和周角:一條射線繞著它的端點旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時,所形成的角叫做平角。終邊繼續(xù)旋轉(zhuǎn),當(dāng)它又和始邊重合時,所形成的角叫做周角。 11、多邊形:由若干條不在同一條直線上的線段首尾順次相連組成的封閉平面圖形叫做多邊形。連接不相鄰兩個頂點的線段叫做多邊形的對角線。 從一個n邊形的同一個頂點出發(fā),分別連接這個頂點與其余各頂點,可以畫(n—3)條對角線,把這個n邊形分割成(n—2)個三角形。 12、圓:平面上,一條線段繞著一個端點旋轉(zhuǎn)一周,另一個端點形成的圖形叫做圓。固定的端點O稱為圓心,線段OA的長稱為半徑的長(通常簡稱為半徑)。 圓上任意兩點A、B間的部分叫做圓弧,簡稱弧,讀作“圓弧AB”或“弧AB”;由一條弧AB和經(jīng)過這條弧的端點的兩條半徑OA、OB所組成的圖形叫做扇形。頂點在圓心的角叫做圓心角。 第五章一元一次方程 1、方程 含有未知數(shù)的等式叫做方程。 2、方程的解 能使方程左右兩邊相等的未知數(shù)的值叫做方程的解。 3、等式的性質(zhì) (1)等式的兩邊同時加上(或減去)同一個代數(shù)式,所得結(jié)果仍是等式。 (2)等式的兩邊同時乘以同一個數(shù)((或除以同一個不為0的數(shù)),所得結(jié)果仍是等式。 4、一元一次方程 只含有一個未知數(shù),并且未知數(shù)的最高次數(shù)是1的整式方程叫做一元一次方程。 5、移項:把方程中的某一項,改變符號后,從方程的一邊移到另一邊,這種變形叫做移項。 6、解一元一次方程的一般步驟: 。1)去分母(2)去括號(3)移項(把方程中的某一項改變符號后,從方程的一邊移到另一邊,這種變形叫移項。)(4)合并同類項(5)將未知數(shù)的系數(shù)化為1 第六章數(shù)據(jù)的收集與整理 1、普查與抽樣調(diào)查 為了特定目的對全部考察對象進行的全面調(diào)查,叫做普查。其中被考察對象的全體叫做總體,組成總體的每一個被考察對象稱為個體。 從總體中抽取部分個體進行調(diào)查,這種調(diào)查稱為抽樣調(diào)查,其中從總體抽取的一部分個體叫做總體的一個樣本。 2、扇形統(tǒng)計圖 扇形統(tǒng)計圖:利用圓與扇形來表示總體與部分的關(guān)系,扇形的大小反映部分占總體的百分比的大小,這樣的統(tǒng)計圖叫做扇形統(tǒng)計圖。(各個扇形所占的百分比之和為1) 圓心角度數(shù)=360°×該項所占的百分比。(各個部分的圓心角度數(shù)之和為360°) 3、頻數(shù)直方圖 頻數(shù)直方圖是一種特殊的條形統(tǒng)計圖,它將統(tǒng)計對象的數(shù)據(jù)進行了分組畫在橫軸上,縱軸表示各組數(shù)據(jù)的頻數(shù)。 4、各種統(tǒng)計圖的特點 條形統(tǒng)計圖:能清楚地表示出每個項目的具體數(shù)目。 折線統(tǒng)計圖:能清楚地反映事物的變化情況。 扇形統(tǒng)計圖:能清楚地表示出各部分在總體中所占的百分比。 第一章整式的運算 一、單項式、單項式的次數(shù): 只含有數(shù)字與字母的積的代數(shù)式叫做單項式。單獨的一個數(shù)或一個字母也是單項式。一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù)。 二、多項式 1、多項式、多項式的次數(shù)、項 幾個單項式的和叫做多項式。其中每個單項式叫做這個多項式的項。多項式中不含字母的項叫做常數(shù)項。多項式中次數(shù)最高的項的次數(shù),叫做這個多項式的次數(shù)。 三、整式:單項式和多項式統(tǒng)稱為整式。 四、整式的加減法: 整式加減法的一般步驟:(1)去括號;(2)合并同類項。五、冪的運算性質(zhì):1、同底數(shù)冪的乘法:a 2、冪的乘方:3、積的乘方: 4、同底數(shù)冪的除法: 六、零指數(shù)冪和負(fù)整數(shù)指數(shù)冪:1、零指數(shù)冪:2、負(fù)整數(shù)指數(shù)冪: 七、整式的乘除法: 1、單項式乘以單項式: 法則:單項式與單項式相乘,把它們的系數(shù)、相同字母的冪分別相乘,其余的字母連同它的指數(shù)不變,作為積的因式。 2、單項式乘以多項式: 法則:單項式與多項式相乘,就是根據(jù)分配律用單項式去乘多項式的每一項,再把所得的積相加。 3、多項式乘以多項式: 多項式與多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加。 4、單項式除以單項式: 單項式相除,把系數(shù)、同底數(shù)冪分別相除后,作為商的因式;對于只在被除式里含有的字母,則連同它的指數(shù)一起作為商的一個因式。 5、多項式除以單項式: 多項式除以單項式,先把這個多項式的每一項分別除以單項式,再把所得的商相加。 八、整式乘法公式: 1、平方差公式:2、完全平方公式: 第二章平行線與相交線 一、余角和補角: 1、余角: 定義:如果兩個角的和是直角,那么稱這兩個角互為余角。性質(zhì):同角或等角的余角相等。2、補角: 定義:如果兩個角的和是平角,那么稱這兩個角互為補角。 性質(zhì):同角或等角的補角相等。 二、對頂角: 我們把兩條直線相交所構(gòu)成的四個角中,有公共頂點且角的兩邊互為反向延長線的兩個角叫做對頂角。 對頂角的性質(zhì):對頂角相等。 三、同位角、內(nèi)錯角、同旁內(nèi)角: 直線AB,CD與EF相交(或者說兩條直線AB,CD被第三條直線EF所截),構(gòu)成八個角。其中∠1與∠5這兩個角分別在AB,CD的上方,并且在EF的同側(cè),像這樣位置相同的一對角叫做同位角;∠3與∠5這兩個角都在AB,CD之間,并且在EF的異側(cè),像這樣位置的兩個角叫做內(nèi)錯角;∠3與∠6在直線AB,CD之間,并側(cè)在EF的同側(cè),像這樣位置的兩個角叫做同旁內(nèi)角。 四、平行線的判定: 1、兩條直線被第三條直線所截,如果同位角相等,那么兩直線平行。簡稱:同位角相等,兩直線平行。 2、兩條直線被第三條直線所截,如果內(nèi)錯角相等,那么兩直線平行。簡稱:內(nèi)錯角相等,兩直線平行。 3、兩條直線被第三條直線所截,如果同旁內(nèi)角互補,那么兩直線平行。簡稱:同旁內(nèi)角互補,兩直線平行。 補充平行線的判定方法: 。1)平行于同一條直線的兩直線平行。 。2)在同一平面內(nèi),垂直于同一條直線的兩直線平行。(3)平行線的定義。 五、平行線的性質(zhì): 。1)兩直線平行,同位角相等。(2)兩直線平行,內(nèi)錯角相等。(3)兩直線平行,同旁內(nèi)角互補。 六、尺規(guī)作圖: 1、作一條線段等于已知線段。2、作一個角等于已知角。 第三章生活中的數(shù)據(jù) 一、科學(xué)記數(shù)法: 一般地,一個絕對值較小的數(shù)可以表示成a10的形式,其中1a10,n是負(fù)整數(shù)。 二、近似數(shù)和有效數(shù)字: 1、近似數(shù): 利用四舍五入法取一個數(shù)的近似數(shù)時,四舍五入到哪一位,就說這個近似數(shù)精確到哪一位。 2、有效數(shù)字:對于一個近似數(shù),從左邊第一個不是0的數(shù)字起,到精確到的數(shù)位止,所有的數(shù)字都叫做這個近似數(shù)的有效數(shù)字。 三、形象統(tǒng)計圖: 第四章概率 一、事件發(fā)生的可能性; 人們通常用1(或100)來表示必然事件發(fā)生的可能性,用0來表示不可能事件發(fā)生的可能性。 二、游戲是否公平: 游戲?qū)﹄p方公平是指雙方獲勝的'可能性相同。三、摸到紅球的概率:1、概率的意義 P(摸到紅球= 摸到紅球可能出現(xiàn)的結(jié)果數(shù) 摸出一球可能出現(xiàn)的結(jié)果數(shù)2、確定事件和不確定事件的概率: 。1)必然事件發(fā)生的概率為1記作P(必然事件)=1(2)不可能事件發(fā)生的概率為0,P(不可能事件)=0(3)如果A為不確定事件,那么0 (2)三角形按角分類: 直角三角形(有一個角為直角的三角形) 三角形銳角三角形(三個角都是銳角的三角形)斜三角形 鈍角三角形(有一個角為鈍角的三角形) 把邊和角聯(lián)系在一起,我們又有一種特殊的三角形:等腰直角三角形。它是兩條直角邊相等的直角三角形。 7、三角形的三種重要線段:(1)三角形的角平分線: 定義:在三角形中,一個內(nèi)角的平分線與它的對邊相交,這個角的頂點與交點之間的線段叫做三角形的角平分線。 性質(zhì):三角形的三條角平分線交于一點。交點在三角形的內(nèi)部。(2)三角形的中線: 定義:在三角形中,連接一個頂點和它對邊的中點的線段叫做三角形的中線。性質(zhì):三角形的三條中線交于一點,交點在三角形的內(nèi)部。(3)三角形的高線: 定義:從三角形一個頂點向它的對邊所在直線作垂線,頂點和垂足之間的線段叫做三角形的高線(簡稱三角形的高)。 性質(zhì):三角形的三條高所在的直線交于一點。銳角三角形的三條高線的交點在它的內(nèi)部;直角三角形的三條高線的交點是它的斜邊的中點;鈍角三角形的三條高所在的直線的交點在它的外部; 8、三角形的面積: 三角形的面積= 1×底×高2二、全等圖形: 定義:能夠完全重合的兩個圖形叫做全等圖形。性質(zhì):全等圖形的形狀和大小都相同。三、全等三角形 1、全等三角形及有關(guān)概念: 能夠完全重合的兩個三角形叫做全等三角形。兩個三角形全等時,互相重合的頂點叫做對應(yīng)頂點,互相重合的邊叫做對應(yīng)邊,互相重合的角叫做對應(yīng)角。 2、全等三角形的表示: 全等用符號“≌”表示,讀作“全等于”。如△ABC≌△DEF,讀作“三角形ABC全等于三角形DEF”。注:記兩個全等三角形時,通常把表示對應(yīng)頂點的字母寫在對應(yīng)的位置上。3、全等三角形的性質(zhì):全等三角形的對應(yīng)邊相等,對應(yīng)角相等。4、三角形全等的判定: 。1)邊邊邊:有三邊對應(yīng)相等的兩個三角形全等(可簡寫成“邊邊邊”或“SSS”)。 (2)角邊角:兩角和它們的夾邊對應(yīng)相等的兩個三角形全等(可簡寫成“角邊角”或“ASA”)(3)角角邊:兩角和其中一角的對邊對應(yīng)相等的兩個三角形全等(可簡寫成“角角邊”或“AAS”)(4)邊角邊:兩邊和它們的夾角對應(yīng)相等的兩個三角形全等(可簡寫成“邊角邊”或“SAS”)直角三角形全等的判定: 對于特殊的直角三角形,判定它們?nèi)葧r,還有HL定理(斜邊、直角邊定理):斜邊和一條直角邊對應(yīng)相等的兩個直角三角形全等(可簡寫成“斜邊、直角邊”或“HL”) 第六章變量之間的關(guān)系 1、變量、自變量、因變量:2、函數(shù)的三種表示法: (1)關(guān)系式法(2)列表法 。3)圖像法 第五章生活中的軸對稱 一、軸對稱 1、軸對稱圖形: 如果一個圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個圖形叫做軸對稱圖形,這條直線叫做對稱軸。 2、軸對稱: 對于兩個圖形,如果沿一條直線對折后,它們能夠完全重合,那么稱這兩個圖形成軸對稱,這條直線就是對稱軸。 3、性質(zhì): 。1)對應(yīng)點所連的線段被對稱軸垂直平分 。2)對應(yīng)線段相等,對應(yīng)角相等。 二、角平分線的性質(zhì): 角平分線上的點到這個角的兩邊的距離相等。 三、線段的垂直平分線(簡稱中垂線): 定義:垂直于一條線段并且平分這條線段的直線是這條線段的垂直平分線。性質(zhì):線段垂直平分線上的點到這條線段兩個端點的距離相等。四、等腰三角形 1、等腰三角形:有兩條邊相等的三角形叫做等腰三角形。 2、等腰三角形的性質(zhì): 。1)等腰三角形的兩個底角相等 。2)等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(也稱“三線合一”), 。3)等腰三角形是軸對稱圖形,等腰三角形頂角的平分線、底邊上的中線、底邊上的高它們所在的直線都是等腰三角形的對稱軸。 3、等腰三角形的判定: 。1)有兩條邊相等的三角形是等腰三角形。 (2)如果一個三角形有兩個角相等,那么它們所對的邊也相等五、等邊三角形: 1、等邊三角形:三邊都相等的三角形叫做等邊三角形。2、等邊三角形的性質(zhì): (1)具有等腰三角形的所有性質(zhì)。 。2)等邊三角形的各個角都相等,并且每個角都等于60°。 3、等邊三角形的判定 (1)三邊都相等的三角形是等邊三角形。 (2):三個角都相等的三角形是等邊三角形 。3):有一個角是60°的等腰三角形是等邊三角形。 1、相反數(shù) 只有符號不同的兩個數(shù)叫做互為相反數(shù),其中一個是另一個的相反數(shù),0的相反數(shù)是0。 注意:⑴相反數(shù)是成對出現(xiàn)的;⑵相反數(shù)只有符號不同,若一個為正,則另一個為負(fù); 、0的相反數(shù)是它本身;相反數(shù)為本身的數(shù)是0。 2、相反數(shù)的性質(zhì)與判定 ⑴任何數(shù)都有相反數(shù),且只有一個; 、0的相反數(shù)是0; 、腔橄喾磾(shù)的兩數(shù)和為0,和為0的兩數(shù)互為相反數(shù),即a,b互為相反數(shù),則a+b=0 3、相反數(shù)的幾何意義 在數(shù)軸上與原點距離相等的兩點表示的兩個數(shù),是互為相反數(shù);互為相反數(shù)的兩個數(shù),在數(shù)軸上的對應(yīng)點(0除外)在原點兩旁,并且與原點的距離相等。0的相反數(shù)對應(yīng)原點;原點表示0的相反數(shù)。說明:在數(shù)軸上,表示互為相反數(shù)的兩個點關(guān)于原點對稱。 4、相反數(shù)的求法 、徘笠粋數(shù)的相反數(shù),只要在它的前面添上負(fù)號“—”即可求得(如:5的相反數(shù)是—5); ⑵求多個數(shù)的和或差的相反數(shù)時,要用括號括起來再添“—”,然后化簡(如;5a+b的'相反數(shù)是—(5a+b);喌谩5a—b); 、乔笄懊鎺А啊钡膯蝹數(shù),也應(yīng)先用括號括起來再添“—”,然后化簡(如:—5的相反數(shù)是—(—5),化簡得5) 5、相反數(shù)的表示方法 、乓话愕,數(shù)a的相反數(shù)是—a,其中a是任意有理數(shù),可以是正數(shù)、負(fù)數(shù)或0。 當(dāng)a>0時,—a<0(正數(shù)的相反數(shù)是負(fù)數(shù)) 當(dāng)a<0時,—a>0(負(fù)數(shù)的相反數(shù)是正數(shù)) 當(dāng)a=0時,—a=0,(0的相反數(shù)是0) 代數(shù)式中的一種有理式:不含除法運算或分?jǐn)?shù),以及雖有除法運算及分?jǐn)?shù),但除式或分母中不含變數(shù)者,則稱為整式。(分母中含有字母有除法運算的,那么式子叫做分式) 1、單項式:數(shù)或字母的積(如5n),單個的數(shù)或字母也是單項式。 (1)單項式的系數(shù):單項式中的數(shù)字因數(shù)及性質(zhì)符號叫做單項式的系數(shù)。(如果一個單項式,只含有數(shù)字因數(shù),系數(shù)是它本身,次數(shù)是0)。 (2)單項式的次數(shù):一個單項式中,所有字母的指數(shù)的和叫做這個單項式的次數(shù)(非零常數(shù)的次數(shù)為0)。 2、多項式 。1)概念:幾個單項式的和叫做多項式。在多項式中,每個單項式叫做多項式的項,其中不含字母的項叫做常數(shù)項。一個多項式有幾項就叫做幾項式。 。2)多項式的次數(shù):多項式中,次數(shù)最高的項的次數(shù),就是這個多項式的次數(shù)。 。3)多項式的排列: 把一個多項式按某一個字母的指數(shù)從大到小的順序排列起來,叫做把多項式按這個字母降冪排列;把一個多項式按某一個字母的指數(shù)從小到大的順序排列起來,叫做把多項式按這個字母升冪排列。 在做多項式的排列的題時注意: 。1)由于單項式的'項包括它前面的性質(zhì)符號,因此在排列時,仍需把每一項的性質(zhì)符 看作是這一項的一部分,一起移動。 。2)有兩個或兩個以上字母的多項式,排列時,要注意: a、先確認(rèn)按照哪個字母的指數(shù)來排列。 b、確定按這個字母降冪排列,還是升冪排列。 3、整式:單項式和多項式統(tǒng)稱為整式。 4、列代數(shù)式的幾個注意事項 (1)數(shù)與字母相乘,或字母與字母相乘通常使用“· ”乘,或省略不寫; (2)數(shù)與數(shù)相乘,仍應(yīng)使用“×”乘,不用“· ”乘,也不能省略乘號; (3)數(shù)與字母相乘時,一般在結(jié)果中把數(shù)寫在字母前面,如a×5應(yīng)寫成5a; 。4)帶分?jǐn)?shù)與字母相乘時,要把帶分?jǐn)?shù)改成假分?jǐn)?shù)形式; 。5)在代數(shù)式中出現(xiàn)除法運算時,一般用分?jǐn)?shù)線將被除式和除式聯(lián)系,如3÷a寫成3/a的形式; 。6)a與b的差寫作a—b,要注意字母順序;若只說兩數(shù)的差,當(dāng)分別設(shè)兩數(shù)為a、b時,則應(yīng)分類,寫做a—b和b—a 。 第一章有理數(shù) 1、大于0的數(shù)是正數(shù)。 2、有理數(shù)分類:正有理數(shù)、0、負(fù)有理數(shù)。 3、有理數(shù)分類:整數(shù)(正整數(shù)、0、負(fù)整數(shù))、分?jǐn)?shù)(正分?jǐn)?shù)、負(fù)分?jǐn)?shù)) 4、規(guī)定了原點,單位長度,正方向的直線稱為數(shù)軸。 5、數(shù)的大小比較: ①正數(shù)大于0,0大于負(fù)數(shù),正數(shù)大于負(fù)數(shù)。 、趦蓚負(fù)數(shù)比較,絕對值大的反而小。 6、只有符號不同的兩個數(shù)稱互為相反數(shù)。 7、若a+b=0,則a,b互為相反數(shù) 8、表示數(shù)a的點到原點的距離稱為數(shù)a的絕對值 9、絕對值的三句:正數(shù)的絕對值是它本身, 負(fù)數(shù)的絕對值是它的相反數(shù),0的絕對值是0。 10、有理數(shù)的計算:先算符號、再算數(shù)值。 11、加減: ①正+正 ②大-小 ③小-大=-(大-小) ④-☆-О=-(☆+О) 12、乘除:同號得正,異號的負(fù) 13、乘方:表示n個相同因數(shù)的乘積。 14、負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù)。 15、混合運算:先乘方,再乘除,后加減,同級運算從左到右,有括號的先算括號。 16、科學(xué)計數(shù)法:用ax10n 表示一個數(shù)。(其中a是整數(shù)數(shù)位只有一位的數(shù)) 17、左邊第一個非零的數(shù)字起,所有的數(shù)字都是有效數(shù)字。 【知識梳理】 1.數(shù)軸:數(shù)軸三要素:原點,正方向和單位長度;數(shù)軸上的點與實數(shù)是一一對應(yīng)的。 2.相反數(shù)實數(shù)a的相反數(shù)是-a;若a與b互為相反數(shù),則有a+b=0,反之亦然;幾何意義:在數(shù)軸上,表示相反數(shù)的兩個點位于原點的兩側(cè),并且到原點的距離相等。 3.倒數(shù):若兩個數(shù)的積等于1,則這兩個數(shù)互為倒數(shù)。 4.絕對值:代數(shù)意義:正數(shù)的絕對值是它本身,負(fù)數(shù)的絕對值是它的相反數(shù),0的絕對值是0; 幾何意義:一個數(shù)的'絕對值,就是在數(shù)軸上表示這個數(shù)的點到原點的距離. 5.科學(xué)記數(shù)法:,其中。 6.實數(shù)大小的比較:利用法則比較大小;利用數(shù)軸比較大小。 7.在實數(shù)范圍內(nèi),加、減、乘、除、乘方運算都可以進行,但開方運算不一定能行,如負(fù)數(shù)不能開偶次方。實數(shù)的運算基礎(chǔ)是有理數(shù)運算,有理數(shù)的一切運算性質(zhì)和運算律都適用于實數(shù)運算。正確的確定運算結(jié)果的符號和靈活的使用運算律是掌握好實數(shù)運算的關(guān)鍵。 一元一次方程知識點 知識點1:等式的概念:用等號表示相等關(guān)系的式子叫做等式. 知識點2:方程的概念:含有未知數(shù)的等式叫方程,方程中一定含有未知數(shù),而且必須是等式,二者缺一不可. 說明:代數(shù)式不含等號,方程是用等號把代數(shù)式連接而成的式子,且其中一定要含有未知數(shù). 知識點3:一元一次方程的概念:只含有一個未知數(shù),并且未知數(shù)的次數(shù)是1的方程叫一元一次方程.任何形式的一元一次方程,經(jīng)變形后,總能變成形為ax=b(a≠0,a、b為已知數(shù))的形式,這種形式的方程叫一元一次方程的一般式.注意a≠0這個重要條件,它也是判斷方程是否是一元一次方程的重要依據(jù). 例2:如果(a+1) +45=0是一元一次方程,則a________,b________. 分析:一元一次方程需要滿足的條件:未知數(shù)系數(shù)不等于0,次數(shù)為1. ∴a+1≠0,2b-1=1.∴a≠-1,b=1. 知識點4:等式的基本性質(zhì)(1)等式兩邊加上(或減去)同一個數(shù)或同一個代數(shù)式,所得的結(jié)果仍是等式.即若a=b,則a±m(xù)=b±m(xù). (2) 等式兩邊乘以(或除以)同一個不為0的數(shù)或代數(shù)式, 所得的結(jié)果仍是等式. 即若a=b,則am=bm.或. 此外等式還有其它性質(zhì): 若a=b,則b=a.若a=b,b=c,則a=c. 說明:等式的性質(zhì)是解方程的重要依據(jù). 例3:下列變形正確的是( ) A.如果ax=bx,那么a=b B.如果(a+1)x=a+1, 那么x=1 C.如果x=y,則x-5=5-y D.如果則 分析:利用等式的性質(zhì)解題.應(yīng)選D. 說明:等式兩邊不可能同時除以為零的數(shù)或式,這一點務(wù)必要引起同學(xué)們的高度重視. 知識點5:方程的解與解方程:使方程兩邊相等的未知數(shù)的值叫做方程的解,求方程解的過程叫解方程. 知識點6:關(guān)于移項:⑴移項實質(zhì)是等式的基本性質(zhì)1的運用. 、埔祈棔r,一定記住要改變所移項的符號. 知識點7:解一元一次方程的一般步驟:去分母、去括號、移項、合并同類項、將未知數(shù)的系數(shù)化為1.具體解題時,有些步驟可能用不上,有些步驟可以顛倒順序,有些步驟可以合寫,以簡化運算,要根據(jù)方程的特點靈活運用. 例4:解方程 . 分析:靈活運用一元一次方程的步驟解答本題. 解答:去分母,得9x-6=2x,移項,得9x-2x=6,合并同類項,得7x=6,系數(shù)化為1,得x=. 說明:去分母時,易漏乘方程左、右兩邊代數(shù)式中的某些項,如本題易錯解為:去分母得9x-1=2x,漏乘了常數(shù)項. 知識點8:方程的檢驗 檢驗?zāi)硵?shù)是否為原方程的解,應(yīng)將該數(shù)分別代入原方程左邊和右邊,看兩邊的值是否相等. 注意:應(yīng)代入原方程的左、右兩邊分別計算,不能代入變形后的方程的左邊和右邊. 三、一元一次方程的應(yīng)用 一元一次方程在實際生活中的應(yīng)用,是很多同學(xué)在學(xué)習(xí)一元一次方程過程中遇到的一個棘手問題.下面是對一元一次方程在實際生活中的應(yīng)用的一個專題介紹,希望能為同學(xué)們的學(xué)習(xí)提供幫助. 一、行程問題 行程問題的基本關(guān)系:路程=速度×?xí)r間, 速度=,時間=. 1.相遇問題:速度和×相遇時間=路程和 例1甲、乙二人分別從A、B兩地相向而行,甲的速度是200米/分鐘,乙的速度是300米/分鐘,已知A、B兩地相距1000米,問甲、乙二人經(jīng)過多長時間能相遇? 解:設(shè)甲、乙二人t分鐘后能相遇,則 (200+300)× t =1000, t=2. 答:甲、乙二人2鐘后能相遇. 2.追趕問題:速度差×追趕時間=追趕距離 例2甲、乙二人分別從A、B兩地同向而行,甲的速度是200米/分鐘,乙的速度是300米/分鐘,已知A、B兩地相距1000米,問幾分鐘后乙能追上甲? 解:設(shè)t分鐘后,乙能追上甲,則 (300-200)t=1000, t=10. 答:10分鐘后乙能追上甲. 3. 航行問題:順?biāo)俣?靜水速度+水流速度,逆水速度=靜水速度-水流速度. 例3甲乘小船從A地順流到B地用了3小時,已知A、B兩地相距90千米.水流速度是20千米/小時,求小船在靜水中的速度. 解:設(shè)小船在靜水中的速度為v,則有 (v+20)×3=90, v=10(千米/小時). 答:小船在靜水中的速度是10千米/小時. 二、工程問題 工程問題的基本關(guān)系:①工作量=工作效率×工作時間,工作效率=,工作時間=;②常把工作量看作單位1. 例4已知甲、乙二人合作一項工程,甲25天獨立完成,乙20天獨立完成,甲、乙二人合作5天后,甲另有事,乙再單獨做幾天才能完成? 解:設(shè)甲再單獨做x天才能完成,有 (+)×5+=1, x=11. 答:乙再單獨做11天才能完成. 三、環(huán)行問題 環(huán)行問題的基本關(guān)系:同時同地同向而行,第一次相遇:快者路程-慢者路程=環(huán)行周長.同時同地背向而行,第一次相遇:甲路程+乙路程=環(huán)形周長. 例5王叢和張?zhí)m繞環(huán)行跑道行走,跑道長400米,王叢的速度是200米/分鐘,張?zhí)m的速度是300米/分鐘,二人如從同地同時同向而行,經(jīng)過幾分鐘二人相遇? 解:設(shè)經(jīng)過t分鐘二人相遇,則 (300-200)t=400, t=4. 答:經(jīng)過4分鐘二人相遇. 四、數(shù)字問題 數(shù)字問題的基本關(guān)系:數(shù)字和數(shù)是不同的,同一個數(shù)字在不同數(shù)位上,表示的數(shù)值不同. 例6一個兩位數(shù),個位數(shù)字比十位數(shù)字小1,這個兩位數(shù)的個位十位互換后,它們的和是33,求這個兩位數(shù). 解:設(shè)原兩位數(shù)的個位數(shù)字是x,則十位數(shù)字為x+1,根據(jù)題意,得 [10(x-1)+x]+[10x+(x+1)]=33, x=1,則x+1=2. ∴這個數(shù)是21. 答:這個兩位數(shù)是21. 五、利潤問題 利潤問題的基本關(guān)系:①獲利=售價-進價②打幾折就是原價的十分之幾 例7某商場按定價銷售某種電器時,每臺獲利48元,按定價的9折銷售該電器6臺與將定價降低30元銷售該電器9臺所獲得的利潤相等,該電器每臺進價、定價各是多少元? 解:設(shè)該電器每臺的進價為x元,則定價為(48+x)元,根據(jù)題意,得 6[0.9(48+x)-x]=9[(48+x)-30-x] , x=162. 48+x=48+162=210. 答:該電器每臺進價、定價各分別是162元、210元. 六、濃度問題 濃度問題的基本關(guān)系:溶液濃度=,溶液質(zhì)量=溶質(zhì)質(zhì)量+溶劑質(zhì)量,溶質(zhì)質(zhì)量=溶液質(zhì)量×溶液濃度 例8用“84”消毒液配制藥液對白色衣物進行消毒,要求按1∶200的比例進行稀釋.現(xiàn)要配制此種藥液4020克,則需要“84”消毒液多少克? 解:設(shè)需要“84”消毒液x克,根據(jù)題意得 =, x=20. 答:需要“84”消毒液20克. 七、等積變形問題 例1用直徑為90mm的圓柱形玻璃杯(已裝滿水,且水足夠多)向一個內(nèi)底面積為131×131mm2,內(nèi)高為81mm的長方體鐵盒倒水,當(dāng)鐵盒裝滿水時,玻璃杯中水的高度下降了多少?(結(jié)果保留π) 第9 / 11頁 分析:玻璃杯里倒掉的水的體積和長方體鐵盒里所裝的水的體積相等,所以等量關(guān)系為: 玻璃杯里倒掉的水的體積=長方體鐵盒的容積. 解:設(shè)玻璃杯中水的高度下降了xmm,根據(jù)題意,得 經(jīng)檢驗,它符合題意. 八、利息問題 例2儲戶到銀行存款,一段時間后,銀行要向儲戶支付存款利息,同時銀行還將代扣由儲戶向國家繳納的利息稅,稅率為利息的20%. (1)將8500元錢以一年期的定期儲蓄存入銀行,年利率為2.2%,到期支取時可得到利息________元.扣除利息稅后實得________元. (2)小明的父親將一筆資金按一年期的定期儲蓄存入銀行,年利率為2.2%,到期支取時,扣除所得稅后得本金和利息共計71232元,問這筆資金是多少元? (3)王紅的爸爸把一筆錢按三年期的定期儲蓄存入銀行,假設(shè)年利率為3%,到期支取時扣除所得稅后實得利息為432元,問王紅的爸爸存入銀行的本金是多少? 分析:利息=本金×利率×期數(shù),存幾年,期數(shù)就是幾,另外,還要注意,實得利息=利息-利息稅. 解:(1)利息=本金×利率×期數(shù)=8500×2.2%×1=187元. 實得利息 =利息×(1-20%)=187×0.8=149.6元. (2)設(shè)這筆資金為x元,依題意,有x(1+2.2%×0.8)=71232. 解方程,得x=70000. 經(jīng)檢驗,符合題意. 答:這筆資金為70000元. (3)設(shè)這筆資金為x元,依題意,得x×3×3%×(1-20%)=432. 解方程,得x=6000. 經(jīng)檢驗,符合題意. 答:這筆資金為6000元. 整式的加減 1.單項式:在代數(shù)式中,若只含有乘法(包括乘方)運算;螂m含有除法運算,但除式中不含字母的一類代數(shù)式叫單項式. 2.單項式的系數(shù)與次數(shù):單項式中不為零的數(shù)字因數(shù),叫單項式的數(shù)字系數(shù),簡稱單項式的系數(shù);系數(shù)不為零時,單項式中所有字母指數(shù)的和,叫單項式的次數(shù). 3.多項式:幾個單項式的和叫多項式. 4.多項式的項數(shù)與次數(shù):多項式中所含單項式的個數(shù)就是多項式的項數(shù),每個單項式叫多項式的項;多項式里,次數(shù)項的次數(shù)叫多項式的次數(shù);注意:(若a、b、c、p、q是常數(shù))ax2+bx+c和x2+px+q是常見的兩個二次三項式. 5.整式:凡不含有除法運算,或雖含有除法運算但除式中不含字母的代數(shù)式叫整式. 整式 1.整式:單項式和多項式的統(tǒng)稱叫整式。 2.單項式:數(shù)與字母的乘積組成的式子叫單項式。單獨的一個數(shù)或一個字母也是單項式。 3.系數(shù);一個單項式中,數(shù)字因數(shù)叫做這個單項式的系數(shù)。 4、次數(shù):一個單項式中,所有字母的指數(shù)和叫做這個單項式的次數(shù)。 5.多項式:幾個單項式的和叫做多項式。 6.項:組成多項式的每個單項式叫做多項式的項。 7.常數(shù)項:不含字母的項叫做常數(shù)項。 8.多項式的次數(shù):多項式中,次數(shù)的項的次數(shù)叫做這個多項式的次數(shù)。 9.同類項:多項式中,所含字母相同,并且相同字母的指數(shù)也相同的項叫做同類項。 10.合并同類項:把多項式中的同類項合并成一項,叫做合并同類項。 相交線 1、定義:兩條直線相交,所成的四個角中有一個角是直角,那么這兩條直線互相垂直。其中一條直線叫做另一條直線的垂線,它們的交點叫做垂足。 2、注意: 、糯咕是一條直線。 、凭哂写怪标P(guān)系的兩條直線所成的4個角都是90。 、谴怪笔窍嘟坏奶厥馇闆r。 、却怪钡挠浄ǎ篴⊥b,AB⊥CD。 3、畫已知直線的垂線有無數(shù)條。 4、過一點有且只有一條直線與已知直線垂直。 5、連接直線外一點與直線上各點的所有線段中,垂線段最短。簡單說成:垂線段最短。 6、直線外一點到這條直線的垂線段的長度,叫做點到直線的距離。 7、有一個公共的頂點,有一條公共的邊,另外一邊互為反向延長線,這樣的兩個角叫做鄰補角。 兩條直線相交有4對鄰補角。 8、有公共的頂點,角的兩邊互為反向延長線,這樣的兩個角叫做對頂角。兩條直線相交,有2對對頂角。對頂角相等。 單項式 1、都是數(shù)字與字母的乘積的代數(shù)式叫做單項式。 2、單項式的數(shù)字因數(shù)叫做單項式的系數(shù)。 3、單項式中所有字母的指數(shù)和叫做單項式的次數(shù)。 4、單獨一個數(shù)或一個字母也是單項式。 5、只含有字母因式的單項式的系數(shù)是1或―1。 6、單獨的一個數(shù)字是單項式,它的系數(shù)是它本身。 7、單獨的一個非零常數(shù)的次數(shù)是0。 8、單項式中只能含有乘法或乘方運算,而不能含有加、減等其他運算。 9、單項式的系數(shù)包括它前面的符號。 10、單項式的系數(shù)是帶分?jǐn)?shù)時,應(yīng)化成假分?jǐn)?shù)。 11、單項式的系數(shù)是1或―1時,通常省略數(shù)字“1”。 12、單項式的次數(shù)僅與字母有關(guān),與單項式的系數(shù)無關(guān)。 數(shù)學(xué)最常用且非常實用的學(xué)習(xí)方法 1、預(yù)習(xí)很重要: 往往被忽略,理由:沒時間,看不懂,不必要等。預(yù)習(xí)是學(xué)習(xí)的必要過程,還是提高自學(xué)能力的好方法。 2、聽講有學(xué)問: 聽分析、聽思路、聽?wèi)?yīng)用,關(guān)鍵內(nèi)容一字不漏,注意記錄。 3、做好錯題本: 每個會學(xué)習(xí)的學(xué)生都會有。最好再加個“好題本”。發(fā)現(xiàn)許多同學(xué)沒有錯題本,或者是只做不用。這樣學(xué)習(xí)效果都不好。 4、用好課外書: 正確認(rèn)識網(wǎng)絡(luò)課程和課外書籍,是副食,是幫助吸收的良藥,絕對不是課堂學(xué)習(xí)的替代品。 5、注意總結(jié)和反思: 知識點、解題方法和技巧、經(jīng)驗和教訓(xùn)。 6、接受數(shù)學(xué)思想方法的指導(dǎo): 要注意數(shù)學(xué)思想和方法的指導(dǎo),站得高,才能看得遠。 關(guān)于數(shù)學(xué)常見誤區(qū)有哪些 1、被動學(xué)習(xí) 許多同學(xué)進入高中后,還像初中那樣,有很強的依賴心理,跟隨老師慣性運轉(zhuǎn),沒有掌握學(xué)習(xí)主動權(quán).表現(xiàn)在不定計劃,坐等上課,課前沒有預(yù)習(xí),對老師要上課的內(nèi)容不了解,上課忙于記筆記,沒聽到“門道”,沒有真正理解所學(xué)內(nèi)容。 2、學(xué)不得法 老師上課一般都要講清知識的來龍去脈,剖析概念的內(nèi)涵,分析重點難點,突出思想方法。而一部分同學(xué)上課沒能專心聽課,對要點沒聽到或聽不全,筆記記了一大本,問題也有一大堆,課后又不能及時鞏固、總結(jié)、尋找知識間的聯(lián)系,只是趕做作業(yè),亂套題型,對概念、法則、公式、定理一知半解,機械模仿,死記硬背。也有的晚上加班加點,白天無精打采,或是上課根本不聽,自己另搞一套,結(jié)果是事倍功半,收效甚微。 3、不重視基礎(chǔ) 一些“自我感覺良好”的同學(xué),常輕視基本知識、基本技能和基本方法的學(xué)習(xí)與訓(xùn)練,經(jīng)常是知道怎么做就算了,而不去認(rèn)真演算書寫,但對難題很感興趣,以顯示自己的“水平”,好高鶩遠,重“量”輕“質(zhì)”,陷入題海。到正規(guī)作業(yè)或考試中不是演算出錯就是中途“卡殼”。 4、進一步學(xué)習(xí)條件不具備 高中數(shù)學(xué)與初中數(shù)學(xué)相比,知識的深度、廣度,能力要求都是一次飛躍.這就要求必須掌握基礎(chǔ)知識與技能為進一步學(xué)習(xí)作好準(zhǔn)備。高中數(shù)學(xué)很多地方難度大、方法新、分析能力要求高。 如二次函數(shù)在閉區(qū)間上的最值問題,函數(shù)值域的求法,實根分布與參變量方程,三角公式的變形與靈活運用,空間概念的形成,排列組合應(yīng)用題及實際應(yīng)用問題等?陀^上這些觀點就是分化點,有的內(nèi)容還是高初中教材都不講的脫節(jié)內(nèi)容,如不采取補救措施,查缺補漏,分化是不可避免的。 如何整理數(shù)學(xué)學(xué)科課堂筆記 一、內(nèi)容提綱。老師講課大多有提綱,并且講課時老師會將一堂課的線索脈絡(luò)、重點難點等,簡明清晰地呈現(xiàn)在黑板上。同時,教師會使之富有條理性和直觀性。記下這些內(nèi)容提綱,便于課后復(fù)習(xí)回顧,整體把握知識框架,對所學(xué)知識做到胸有成竹、清晰完整。 二、疑難問題。將課堂上未聽懂的問題及時記下來,便于課后請教同學(xué)或老師,把問題弄懂弄通。教師在組織課堂教學(xué)時,受到時空的限制,不可能做到顧及每一位同學(xué)。相應(yīng)的,一些問題對部分學(xué)生來說,是屬于疑難問題,由于課堂上來不及思考成熟,記下疑難問題,可在課后繼續(xù)加以思考和探究,加以理解和掌握,不致出現(xiàn)知識的斷層、方法的缺陷。 三、思路方法。對老師在課堂上介紹的解題方法和分析思路也應(yīng)及時記下,課后加以消化,若有疑惑,先作獨立分析,因為有可能是自己理解錯誤造成的,也有可能是老師講課疏忽造成的,記下來后,便于課后及時與老師商榷和探討。勤記老師講的解題技巧、思路及方法,這對于啟迪思維,開闊視野,開發(fā)智力,培養(yǎng)能力,并對提高解題水平大有益處。在這基礎(chǔ)上,若能主動鉆研,另辟蹊徑,則更難能可貴。 四、歸納總結(jié)。注意記下老師的課后總結(jié),這對于濃縮一堂課的內(nèi)容,找出重點及各部分之間的聯(lián)系,掌握基本概念、公式、定理,尋找規(guī)律,融會貫通課堂內(nèi)容都很有作用。同時,很多有經(jīng)驗的老師在課后小結(jié)時,一方面是承上歸納所學(xué)內(nèi)容,另一方面又是啟下布置預(yù)習(xí)任務(wù)或點明后面所要學(xué)的內(nèi)容,做好筆記可以把握學(xué)習(xí)的'主動權(quán),提前作準(zhǔn)備,做到目標(biāo)任務(wù)明確。 五、錯誤反思。學(xué)習(xí)過程中不可避免地會犯這樣或那樣的錯誤,記下自己所犯的錯誤,并用紅筆醒目地加以標(biāo)注,以警示自己,同時也應(yīng)注明錯誤成因,正確思路及方法,在反思中成熟,在反思中提高。 數(shù)學(xué)常用解題技巧有哪些 第一,應(yīng)堅持由易到難的做題順序。近年來高考數(shù)學(xué)試題的設(shè)置是8道選擇題、6道填空題、6到大題,通常稱為866結(jié)構(gòu)。在實體設(shè)置的結(jié)構(gòu)中有三個小高峰,選擇題是由易到難,最難的題是第8題。填空題同樣是這樣設(shè)置的。也是第9題容易到第14題最難,大題從第15題到第20題,它們的設(shè)置也是這樣的。根據(jù)這樣的試題結(jié)構(gòu),應(yīng)先做前面容易的,基礎(chǔ)好一點的考生就先做前7個選擇,前5個填空、前5個大題,稱為是755結(jié)構(gòu)。基礎(chǔ)差的就是644,先把自己能做的、會做的拿到手。這是第一點。 第二,審題是關(guān)鍵。把題給看清楚了再動筆答題,看清楚題以后問什么、已知什么、讓你做什么,把這些問題搞清楚了,自己制訂了一個完整的解題策略,在開始寫的時候,這個時候是很快就可以完成的。 第三,屬于非智力因素導(dǎo)致想不起來。本來是很簡單的題比如說是做到第三題、第四題的時候不是難題,但想不起來了,卡住了,這時候怎么辦?雖然是簡單題卻不會做怎么辦?應(yīng)先跳過去,不是這道題不會做嗎?后面還有很多的簡單題呢,把后面的題做一做,不要在考場上愣神,先跳過去做其他的題,等穩(wěn)定下來以后再回過頭來看會頓悟,豁然開朗。 第四,做選擇題的時候應(yīng)運用最好的解題方法。因為選擇題和填空題都是看結(jié)果不看過程,因此在這個過程中都應(yīng)不擇手段,只要是能把正確的結(jié)論找到就行?忌S玫姆椒ㄊ侵苯臃ǎ瑥囊阎拈_始也不看它的四個選項,從頭到尾寫完了之后一看答案就寫上去了。另外就是特質(zhì)法(音),一些出現(xiàn)字母、特別是不等式,這時候給它賦一個值,代進去這時候速度會比較快,正確地找出結(jié)果來。再就是數(shù)形結(jié)合法。最后實在不行了,就將四個選項代入驗證,看看哪個符合就是哪個了。填空題用上述的直接法、特質(zhì)法、數(shù)形結(jié)合法三種方法都適合。做大題的時候要特別注意解題步驟,規(guī)范答題可以減少失分。簡單地說,規(guī)范答題就是從上一步的原因到下一步的結(jié)論,這是一個必然的過程,讓誰寫、誰看都是這樣的。因為什么所以什么是一個必然的過程,這是規(guī)范答題。 【初一的數(shù)學(xué)知識點總結(jié)】相關(guān)文章: 人教版數(shù)學(xué)初一知識點總結(jié)04-24 初一的數(shù)學(xué)知識點總結(jié)04-24 初一數(shù)學(xué)下冊的知識點總結(jié)07-25 初一數(shù)學(xué)下冊知識點總結(jié)11-22 初一數(shù)學(xué)下知識點總結(jié)12-06初一的數(shù)學(xué)知識點總結(jié)10
初一的數(shù)學(xué)知識點總結(jié)11
初一的數(shù)學(xué)知識點總結(jié)12
初一的數(shù)學(xué)知識點總結(jié)13
初一的數(shù)學(xué)知識點總結(jié)14
初一的數(shù)學(xué)知識點總結(jié)15