【熱】數(shù)學(xué)知識(shí)點(diǎn)總結(jié)
總結(jié)是對(duì)過(guò)去一定時(shí)期的工作、學(xué)習(xí)或思想情況進(jìn)行回顧、分析,并做出客觀評(píng)價(jià)的書面材料,它可使零星的、膚淺的、表面的感性認(rèn)知上升到全面的、系統(tǒng)的、本質(zhì)的理性認(rèn)識(shí)上來(lái),不妨坐下來(lái)好好寫寫總結(jié)吧。那么總結(jié)應(yīng)該包括什么內(nèi)容呢?以下是小編為大家收集的數(shù)學(xué)知識(shí)點(diǎn)總結(jié),希望能夠幫助到大家。
等式的性質(zhì):
、俨坏仁降男再|(zhì)可分為不等式基本性質(zhì)和不等式運(yùn)算性質(zhì)兩部分。
不等式基本性質(zhì)有:
。1)a>bb
。2)a>b,b>ca>c(傳遞性)
。3)a>ba+c>b+c(c∈R)
(4)c>0時(shí),a>bac>bc
cbac
運(yùn)算性質(zhì)有:
。1)a>b,c>da+c>b+d。
。2)a>b>0,c>d>0ac>bd。
。3)a>b>0an>bn(n∈N,n>1)。
(4)a>b>0>(n∈N,n>1)。
應(yīng)注意,上述性質(zhì)中,條件與結(jié)論的邏輯關(guān)系有兩種:和即推出關(guān)系和等價(jià)關(guān)系。一般地,證明不等式就是從條件出發(fā)施行一系列的推出變換。解不等式就是施行一系列的等價(jià)變換。因此,要正確理解和應(yīng)用不等式性質(zhì)。
、陉P(guān)于不等式的性質(zhì)的考察,主要有以下三類問(wèn)題:
(1)根據(jù)給定的不等式條件,利用不等式的性質(zhì),判斷不等式能否成立。
。2)利用不等式的性質(zhì)及實(shí)數(shù)的性質(zhì),函數(shù)性質(zhì),判斷實(shí)數(shù)值的大小。
。3)利用不等式的性質(zhì),判斷不等式變換中條件與結(jié)論間的充分或必要關(guān)系。
高中數(shù)學(xué)集合復(fù)習(xí)知識(shí)點(diǎn)
任一A,B,記做AB
AB,BA,A=B
AB={|A|,且|B|}
AB={|A|,或|B|}
Card(AB)=card(A)+card(B)—card(AB)
。1)命題
原命題若p則q
逆命題若q則p
否命題若p則q
逆否命題若q,則p
(2)AB,A是B成立的充分條件
BA,A是B成立的必要條件
AB,A是B成立的充要條件
1.集合元素具有①確定性;②互異性;③無(wú)序性
2.集合表示方法①列舉法;②描述法;③韋恩圖;④數(shù)軸法
。3)集合的運(yùn)算
①A∩(B∪C)=(A∩B)∪(A∩C)
、贑u(A∩B)=CuA∪CuB
Cu(A∪B)=CuA∩CuB
。4)集合的性質(zhì)
n元集合的字集數(shù):2n
真子集數(shù):2n—1;
非空真子集數(shù):2n—2
高中數(shù)學(xué)集合知識(shí)點(diǎn)歸納
1、集合的概念
集合是數(shù)學(xué)中最原始的不定義的概念,只能給出,描述性說(shuō)明:某些制定的且不同的對(duì)象集合在一起就稱為一個(gè)集合。組成集合的對(duì)象叫元素,集合通常用大寫字母A、B、C、…來(lái)表示。元素常用小寫字母a、b、c、…來(lái)表示。
集合是一個(gè)確定的整體,因此對(duì)集合也可以這樣描述:具有某種屬性的對(duì)象的全體組成的一個(gè)集合。
2、元素與集合的關(guān)系元素與集合的關(guān)系有屬于和不屬于兩種:
元素a屬于集合A,記做a∈A;元素a不屬于集合A,記做a?A。
3、集合中元素的特性
。1)確定性:設(shè)A是一個(gè)給定的集合,_是某一具體對(duì)象,則_或者是A的元素,或者不是A的元素,兩種情況必有一種且只有一種成立。例如A={0,1,3,4},可知0∈A,6?A。
(2)互異性:“集合張的元素必須是互異的”,就是說(shuō)“對(duì)于一個(gè)給定的集合,它的任何兩個(gè)元素都是不同的”。
。3)無(wú)序性:集合與其中元素的排列次序無(wú)關(guān),如集合{a,b,c}與集合{c,b,a}是同一個(gè)集合。
4、集合的分類
集合科根據(jù)他含有的元素個(gè)數(shù)的多少分為兩類:
有限集:含有有限個(gè)元素的集合。如“方程3_+1=0”的解組成的集合”,由“2,4,6,8,組成的集合”,它們的元素個(gè)數(shù)是可數(shù)的,因此兩個(gè)集合是有限集。
無(wú)限集:含有無(wú)限個(gè)元素的集合,如“到平面上兩個(gè)定點(diǎn)的距離相等于所有點(diǎn)”“所有的三角形”,組成上述集合的元素不可數(shù)的,因此他們是無(wú)限集。
特別的,我們把不含有任何元素的集合叫做空集,記錯(cuò)F,如{|R|+1=0}。
5、特定的集合的表示
為了書寫方便,我們規(guī)定常見(jiàn)的數(shù)集用特定的字母表示,下面是幾種常見(jiàn)的數(shù)集表示方法,請(qǐng)牢記。
。1)全體非負(fù)整數(shù)的集合通常簡(jiǎn)稱非負(fù)整數(shù)集(或自然數(shù)集),記做N。
。2)非負(fù)整數(shù)集內(nèi)排出0的集合,也稱正整數(shù)集,記做N_或N+。
。3)全體整數(shù)的集合通常簡(jiǎn)稱為整數(shù)集Z。
。4)全體有理數(shù)的集合通常簡(jiǎn)稱為有理數(shù)集,記做Q。
。5)全體實(shí)數(shù)的集合通常簡(jiǎn)稱為實(shí)數(shù)集,記做R。
【數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:
數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)10-12
數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11-07
中考數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)05-22
初中數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)03-11
關(guān)于數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)06-28
初中數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)09-19
初中數(shù)學(xué)的知識(shí)點(diǎn)總結(jié)06-21
數(shù)學(xué)知識(shí)點(diǎn)總結(jié)09-09