- 相關推薦
高中感悟作文800字
在平日的學習、工作和生活里,大家一定都接觸過作文吧,根據寫作命題的特點,作文可以分為命題作文和非命題作文。那么你有了解過作文嗎?以下是小編為大家收集的高中感悟作文800字,歡迎大家借鑒與參考,希望對大家有所幫助。
高中感悟作文800字1
通過欣賞和設計圖案的活動,進一步認識正方形、長方形、三角形和圓。
小小運動會
1、應用100以內的進位加法與退位減法的計算方法進行正確的計算。
2、經歷與他人交流各自算法的'過程,體會算法多樣化。
3、體會長方形、正方形、三角形和圓在生活中的普遍存在。
4、能利用圖形設計美麗的圖案。
高中感悟作文800字2
一、學習目標:
1.知道生活中有比萬大的數;認識計數單位“萬、十萬、百萬、千萬和億”,類推每相鄰兩個計數單位之間的關系,知道數級、數位;
2使學生認識射線,直線,能識別射線、直線和線段三個概念之間的聯系和區(qū)別;認識角和角的表示方法,知道角的各部分名稱;
3,在理解的基礎上,掌握整數乘法的口算方法;培養(yǎng)類推遷移的能力和口算的能力;
4.結合生活情境,通過自主探究活動,初步認識平行線、垂線;獨立思考能力與合作精神得到和諧發(fā)展;
5.在理解的'基礎上,掌握用整十數除商是一位數的口算方法;培養(yǎng)類推遷移的能力和抽象概括的能力。
二、學習難點:
1.認識計數單位“萬、十萬、百萬、千萬和億”;掌握每相鄰兩個計數單位之間的關系;
2.角的意義;射線、直線和線段三者之間的關系;
3.掌握整數乘法的口算方法;培養(yǎng)學生養(yǎng)成認真思考的良好學習習慣;
4.初步認識平行線與垂線;理解永不相交的含義;
5.掌握用整十數除商是一位數的口算方法;培養(yǎng)學生養(yǎng)成認真計算的良好學習習慣。
三、知識點概括總結:
1.億以內的數的認識:
十萬:10個一萬;
一百萬:10個十萬;
一千萬:10個一百萬;
一億:10個一千萬。
2.數級:數級是為便于人們記讀阿拉伯數的一種識讀方法,在位值制(數位順序)的基礎上,以三位或四位分級的原則,把數讀,寫出來。
通常在阿拉伯數的書寫上,以小數點或者空格作為各個數級的標識,從右向左把數分開。
3.數級分類:
(1)四位分級法:即以四位數為一個數級的分級方法。
我國讀數的習慣,就是按這種方法讀的。如:萬(數字后面4個0)、億(數字后面8個0)、兆(數字后面12個0,這是中法計數)……。這些級分別叫做個級,萬級,億級……。
(2)三位分級法:即以三位數為一個數級的分級方法。
這西方的分級方法,這種分級方法也是國際通行的分級方法。如:千,數字后面3個0、百萬,數字后面6個0、十億,數字后面9個0……。
4.數位:數位是指寫數時,把數字并列排成橫列,一個數字占有一個位置,這些位置,都叫做數位。
從右端算起,第一位是“個位”,第二位是“十位”,第三位是“百位”,第四位是“千位”,第五位是“萬位”,等等。
這就說明計數單位和數位的概念是不同的。
5.數的產生:
阿拉伯數字的由來:古代印度人創(chuàng)造了阿拉伯數字后,大約到了公元7世紀的時候,這些數字傳到了阿拉伯地區(qū)。到13世紀時,意大利數學家斐波那契寫出了《算盤書》,在這本書里,他對阿拉伯數字做了詳細的介紹。后來,這些數字又從阿拉伯地區(qū)傳到了歐洲,歐洲人只知道這些數字是從阿拉伯地區(qū)傳入的,所以便把這些數字叫做阿拉伯數字。以后,這些數字又從歐洲傳到世界各國。
阿拉伯數字傳入我國,大約是13到14世紀。由于我國古代有一種數字叫“籌碼”,寫起來比較方便,所以阿拉伯數字當時在我國沒有得到及時的推廣運用。本世紀初,隨著我國對外國數學成就的吸收和引進,阿拉伯數字在我國才開始慢慢使用,阿拉伯數字在我國推廣使用才有100多年的歷史。阿拉伯數字現在已成為人們學習、生活和交往中最常用的數字了。
高中感悟作文800字3
(一)分數乘法意義:
1、分數乘整數的意義與整數乘法的意義相同,就是求幾個相同加數的和的簡便運算。
“分數乘整數”指的是第二個因數必須是整數,不能是分數。
2、一個數乘分數的意義就是求一個數的幾分之幾是多少。
“一個數乘分數”指的是第二個因數必須是分數,不能是整數。(第一個因數是什么都可以)
(二)分數乘法計算法則:
1、分數乘整數的計算方法:用分子乘整數的積作分子,分母不變。能約分的可以先約分,再計算。
(1)為了計算簡便能約分的可先約分再計算。(整數和分母約分)
(2)約分是用整數和下面的分母約掉公因數。(整數千萬不能與分母相乘,計算結果必須是最簡分數)。
2、分數乘分數的計算方法是:用分子相乘的積做分子,用分母相乘的積作分母。(分子乘分子,分母乘分母)
(1)如果分數乘法算式中含有帶分數,要先把帶分數化成假分數再計算。
(2)分數化簡的方法是:分子、分母同時除以它們的公因數。
(3)在乘的`過程中約分,是把分子、分母中,兩個可以約分的數先劃去,再分別在它們的上、下方寫出約分后的數。(約分后分子和分母必須不再含有公因數,這樣計算后的結果才是最簡單分數)。
(4)分數的基本性質:分子、分母同時乘或者除以一個相同的數(0除外),分數的大小不變。
(三)積與因數的關系:
一個數(0除外)乘大于1的數,積大于這個數。a×b=c,當b>1時,c>a。
一個數(0除外)乘小于1的數,積小于這個數。a×b=c,當b<1時,c
一個數(0除外)乘等于1的數,積等于這個數。a×b=c,當b=1時,c=a。
在進行因數與積的大小比較時,要注意因數為0時的特殊情況。
(四)分數混合運算
1、分數混合運算的運算順序與整數混合運算的運算順序相同,先算乘法,后算加減法,有括號的先算括號里面的,再算括號外面的。
2、整數乘法運算定律對分數乘法同樣適用;運算定律可以使一些計算簡便。
乘法交換律:a×b=b×a乘法結合律:(a×b)×c=a×(b×c)
乘法分配律:a×(b±c)=a×b±a×c
(五)分數乘法應用題——用分數乘法解決問題
1、求一個數的幾分之幾是多少?(用乘法)
已知單位“1”的量,求單位“1”的量的幾分之幾是多少,用單位“1”的量與分數相乘。
2、巧找單位“1”的量:在含有分數(分率)的語句中,分率前面的量就是單位“1”對應的量,或者“占”“是”“比”字后面的量是單位“1”。
3、求比一個數多(或少)幾分之幾的數是多少的解題方法
(1)單位“1”的量+(-)單位“1”的量×這個數量比單位“1”的量多(或少)的幾分之幾=這個數量;
(2)單位“1”的量×[1+這個數量比單位“1”的量多(或少)的幾分之幾]=這個數量。
高中感悟作文800字4
角:
(1)角的靜態(tài)定義:具有公共端點的兩條不重合的射線組成的圖形叫做角。
這個公共端點叫做角的頂點,這兩條射線叫做角的兩條邊。
(2)角的動態(tài)定義:一條射線繞著它的端點從一個位置旋轉到另一個位置所形成的圖形叫做角。
所旋轉射線的端點叫做角的頂點,開始位置的射線叫做角的始邊,終止位置的射線叫做角的終邊
角的符號:∠
角的種類:角的大小與邊的長短沒有關系;角的大小決定于角的兩條邊張開的程度,張開的越大,角就越大,相反,張開的越小,角則越小。
在動態(tài)定義中,取決于旋轉的方向與角度。
角可以分為銳角、直角、鈍角、平角、周角、負角、正角、優(yōu)角、劣角、0角這10種。
以度、分、秒為單位的角的度量制稱為角度制。此外,還有密位制、弧度制等。
(1)銳角:大于0°,小于90°的角叫做銳角。
(2)直角:等于90°的角叫做直角。
。3)鈍角:大于90°而小于180°的角叫做鈍角。
乘法:
乘法是指一個數或量,增加了多少倍。例如4乘5,就是4增加了5倍率,也可以說成5個4連加。
乘法算式中各數的名稱:
“×”是乘號,乘號前面和后面的數叫做因數,“=”是等于號,等于號后面的數叫做積。
例:10(因數)×(乘號)200(因數)=(等于號)20xx(積)
平行:
在平面上兩條直線、空間的兩個平面或空間的一條直線與一平面之間沒有任何公共點時,稱它們平行。如圖直線AB平行于直線CD,記作AB∥CD。平行線永不相交。
垂直:
兩條直線、兩個平面相交,或一條直線與一個平面相交,如果交角成直角,叫做互相垂直。
平行四邊形:
在同一平面內有兩組對邊分別平行的四邊形叫做平行四邊形。
梯形:
梯形是指一組對邊平行而另一組對邊不平行的`四邊形。
平行的兩邊叫做梯形的底邊,其中長邊叫下底,短邊叫上底;也可以單純的認為上面的一條叫上底,下面一條叫下底。不平行的兩邊叫腰;夾在兩底之間的垂線段叫梯形的高。
除法:
除法法則:除數是幾位,先看被除數的前幾位,前幾位不夠除,多看一位,除到哪位,商就寫在哪位上面,不夠商一,0占位。余數要比除數小,如果商是小數,商的小數點要和被除數的小數點對齊;如果除數是小數,要化成除數是整數的除法再計算。
高中感悟作文800字5
棱錐:棱錐是小學數學的基礎內容,小學畢業(yè)試題中分值約為4分,多以選擇題,填空題,判斷題的形式出現,難易度屬于簡單。近幾年主要考察:①棱錐的體積問題。②棱錐的側面積問題。突破方法:牢固掌握有關棱錐的概念,邊角之間的關系。這個要通過一定量的練習來掌握。
認識位置與方向:認識位置與方向是小學數學的基礎內容,小學畢業(yè)試題中分值約為3-6分,多以選擇題,填空題,簡答題的形式出現,難易度屬于簡單。近幾年主要考察一下幾個方面:①給出三視圖,說出組成物體最少或最多立方體的個數。②給出物體,畫出三視圖。突破方法:①平時注意積累。②熟練掌握三視圖的畫法。
圖形的直觀認識:圖形的直觀認識是小學數學的基礎內容,小學畢業(yè)試題中分值約為6-12分,多以選擇題,填空題,證明題的形式出現,難易度屬于中等。主要考察一下幾個方面:①圓的問題,多數是計算題。②三角形的計算問題。突破方法:①對圓的各個性質熟記,能簡單畫圖。②熟練掌與三角形有關的性質等等。
直線和線段:直線和線段是小學數學的基礎內容,小學畢業(yè)試題中分值約為4-8分,多以選擇題,填空題的形式出現,難易度屬于簡單。近幾年主要考察一下幾個方面:①線段長度的計算。②數軸上點的距離問題。突破方法:①掌握有關線段的比,線段的中點的概念。②熟練掌握數軸概念。
角的初步認識:角的初步認識是小學數學的基礎內容,小學數學試題中分值約為3-6分,多以選擇題,填空題的形式出現,難易度屬于簡單。近幾年主要考察一下幾個方面:①角的分類。②角的計算。突破方法:①牢固掌握有關角的概念。②熟練掌握角的計算問題,特別是是多個角的問題。
長方形與正方形:長方形與正方形是小學數學的基礎內容,小學畢業(yè)試題中分值約為5-10分,多以選擇題,填空題,解答題的形式出現,難易度屬于中等。近幾年主要考察一下幾個方面:①面積和周長問題。②體積,邊長問題。突破方法:①牢固掌握有關長方形與正方形的概念:如邊,對邊,角等,特別是對角線的概念。②熟練掌握長方形與正方形的各種性質。
平行四邊形:平行四邊形是小學數學的基礎內容,小學畢業(yè)試題中分值約為4-8分,多以選擇題,填空題,解答題的形式出現,難易度屬于中等。近幾年主要考察一下兩個個方面:①平行四邊形的周長與面積。②等腰梯形的周長和面積。突破方法:①牢固掌握有關平行四邊形的性質。②等腰梯形的性質等等。三角形:三角形是小學幾何的基礎內容,也是最重要的部分之一。小學試題中分值約為7-13分,證明題的形式出現,難易度屬于中等。近幾年主要考察一下幾個方面:①三角形的內角和,三角形的外角和,三角形的外角等等。②多邊形的內角和及組合圖形等等。突破方法:①牢固掌握有三角形的概念:如內角和,外角和,外角等,特別是三角形的各邊之間的關系。②熟練掌握多邊形的內角和,正多邊形有關角的運算。在證明過程中特別注意步驟的合理性。
圓:圓是小學數學的基礎內容,小學畢業(yè)試題中分值約為4-8分,多以選擇題,填空題,解答題的.形式出現,難易度屬于中等。近幾年主要考察一下幾個方面:①圓的面積。②圓的周長,有時用會降低題目的難度。突破方法:①牢固掌握有關圓的性質。②熟練掌握扇形,環(huán)形的面積公式。
軸對稱圖形:軸對稱圖形是小學數學基礎內容,小學畢業(yè)試題中分值約為4分,多以選擇題,判斷題的形式出現,難易度屬于簡單。近幾年主要考察一下幾個方面:①圖形有幾條對稱軸。②軸對稱和中心對稱的綜合應用。突破方法:①牢固掌握有關軸對稱圖形的概念。②平時注意積累,會區(qū)分軸對稱圖形和中心對稱圖形。
作圖題(操作題):作圖題(操作題)是小學數學的基礎內容,小學畢業(yè)試題中分值約為6分,多以選擇題,填空題,簡答題的形式出現,難易度屬于難,近幾年分值由增大的趨勢。近幾年主要考察一下幾個方面:①圖形的旋轉問題。②影長問題。③平移圖像的問題。突破方法:作圖題試題開放,聯系實際,要求學生進行多方位,多角度,多層次的探究,考查了學生思維的靈活性,發(fā)散性,創(chuàng)新性,平時注意動手總結。
擴展閱讀:
高中感悟作文800字6
一生活中的數
(一)本單元知識網絡:
(二)各課知識點:
可愛的校園(數數)
知識點:
1、按一定順序手口一致地數出每種物體的個數。
2、能用1-10各數正確地表述物體的數量。
快樂的家園(10以內數的認識)
知識點:
1、能形象理解數“1”既可以表示單個物體,也可以表示一個集合。
2、在數數過程中認識1-10數的符號表示方法。
3、理解1~10各數除了表示幾個,還可以表示第幾個,從而認識基數與序數的.聯系與區(qū)別:基數表示數量的多少,序數表示數量的順序。
玩具(1~5的認識與書寫)
知識點:
1、能正確數出5以內物體的個數。
2、會正確書寫1-5的數字。
小貓釣魚(0的認識)
知識點:
1、認識“0”的產生,理解“0”的含義,0即可以表示一個物體也沒有,也可以表示起點和分界點。
2、學會讀、寫“0”。
文具(6~10的認識與書寫)
知識點:
1、能正確數出數量是6-10的物體的個數。
2、會讀寫6—10的數字。
高中感悟作文800字7
1.認識人民幣的單位元、角、分和它們的十進關系,認識各種面值的人民幣,能看懂物品的單價,會進行簡單的計算。
2.結合自己的生活經驗和已經掌握的100以內數的知識,學習、認識人民幣,一方面初步知道人民幣的基本知識和懂得如何使用人民幣,提高社會實踐能力;另一方面加深對100以內數的`概念的理解。
3.體會數概念與現實生活的密切聯系。
4.認識各種面值的人民幣,并會進行簡單的計算。
5.使學生認識人民幣的單位元、角、分,知道1元=10角,1角=10分。
6.通過購物活動,使學生初步體會人民幣在社會生活、商品交換中的功能和作用并知道愛護人民幣。
高中感悟作文800字8
準備課
1、數一數
數數:數數時,按一定的順序數,從1開始,數到最后一個物體所對應的那個數,即最后數到幾,就是這種物體的總個數。
2、比多少
同樣多:當兩種物體一一對應后,都沒有剩余時,就說這兩種物體的數量同樣多。
比多少:當兩種物體一一對應后,其中一種物體有剩余,有剩余的那種物體多,沒有剩余的那種物體少。
比較兩種物體的多或少時,可以用一一對應的方法。
位置
1、認識上、下
體會上、下的含義:從兩個物體的位置理解:上是指在高處的物體,下是指在低處的物體。
2、認識前、后
體會前、后的含義:一般指面對的方向就是前,背對的方向就是后。
同一物體,相對于不同的參照物,前后位置關系也會發(fā)生變化。
從而得出:確定兩個以上物體的前后位置關系時,要找準參照物,選擇的參照物不同,相對的前后位置關系也會發(fā)生變化。
3、認識左、右
以自己的左手、右手所在的位置為標準,確定左邊和右邊。右手所在的一邊為右邊,左手所在的一邊為左邊。
要點提示:在確定左右時,除特殊要求,一般以觀察者的左右為準。
學好數學的`方法和技巧總結
主動預習
預習的目的是主動獲取新知識的過程,有助于調動學習積極主動性,新知識在未講解之前,認真閱讀教材,養(yǎng)成主動預習的習慣,是獲得數學知識的重要手段。
因此,要注意培養(yǎng)自學能力,學會看書。如自學例題時,要弄清例題講的什么內容,告訴了哪些條件,求什么,書上怎么解答的,為什么要這樣解答,還有沒有新的解法,解題步驟是怎樣的。抓住這些重要問題,動腦思考,步步深入,學會運用已有的知識去獨立探究新的知識。
讓數學課學與練結合
在數學課上,光聽是沒用的。自己也要在草稿紙上練。當遇到不懂的難題時,一定要提出來,不能不懂裝懂,否則考試遇到類似的題目就可能不會做。聽老師講課時一定要全神貫注,要注意細節(jié)問題。應抓住聽課中的主要矛盾和問題,在聽講時盡可能與老師的講解同步思考,必要時做好筆記。每堂課結束以后應深思一下進行歸納,做到一課一得。
單項式書寫格式
1、數字寫在字母的前面,應省略乘。[5a]、[16xy]等。
2、π是常數,因此也可以作為系數。它不是未知數。
3、若系數是帶分數,要化成假分數。
4、當一個單項式的系數是1或—1時,“1”通常省略不寫,如[(—1)ab]寫成[—ab]等。
5、在單項式中字母不可以做分母,分子可以。
6、單獨的數“0”的系數是零,次數也是零。
7、常數的系數是它本身,次數為零。
8、如果是分數的多項式,那么他的系數就是他的分數常數,次數為最高次冪。
高中感悟作文800字9
一、百分數的意義:
表示一個數是另一個數的百分之幾的數叫做百分數。百分數又叫百分比或百分率,百分數不能帶單位。
注意:百分數是專門用來表示一種特殊的倍比關系的,表示兩個數的比。
1、百分數和分數的區(qū)別和聯系:
(1)聯系:都可以用來表示兩個量的倍比關系。
(2)區(qū)別:意義不同:百分數只表示倍比關系,不表示具體數量,所以不能帶單位。分數不僅表示倍比關系,還能帶單位表示具體數量。百分數的分子可以是小數,分數的分子只可以是整數。
注意:百分數在生活中應用廣泛,所涉及問題基本和分數問題相同,分母是100的分數并不是百分數,必須把分母寫成“%”才是百分數,所以“分母是100的`分數就是百分數”這句話是錯誤的!%”的兩個0要小寫,不要與百分數前面的數混淆。一般來講,出勤率、成活率、合格率、正確率能達到100%,出米率、出油率達不到100%,完成率、增長了百分之幾等可以超過100%。一般出粉率在70%、80%,出油率在30%、40%。
2、小數、分數、百分數之間的互化
(1)百分數化小數:小數點向左移動兩位,去掉“%”。
(2)小數化百分數:小數點向右移動兩位,添上“%”。
(3)百分數化分數:先把百分數寫成分母是100的分數,然后再化簡成最簡分數。
(4)分數化百分數:分子除以分母得到小數,(除不盡的保留三位小數)然后化成百分數。
(5)小數化分數:把小數成分母是10、100、1000等的分數再化簡。
(6)分數化小數:分子除以分母。
二、百分數應用題
1、求常見的百分率,如:達標率、及格率、成活率、發(fā)芽率、出勤率等求百分率就是求一個數是另一個數的百分之幾。
2、求一個數比另一個數多(或少)百分之幾,實際生活中,人們常用增加了百分之幾、減少了百分之幾、節(jié)約了百分之幾等來表示增加、或減少的幅度。
求甲比乙多百分之幾:(甲-乙)÷乙
求乙比甲少百分之幾:(甲-乙)÷甲
3、求一個數的百分之幾是多少。一個數(單位“1”)×百分率
4、已知一個數的百分之幾是多少,求這個數。
部分量÷百分率=一個數(單位“1”)
5、折扣、打折的意義:幾折就是十分之幾也就是百分之幾十
折扣、成數=幾分之幾、百分之幾、小數
八折=八成=十分之八=百分之八十=0.8
八五折=八成五=十分之八點五=百分之八十五=0.85
五折=五成=十分之五=百分之五十=0.5=半價
6、利率
(1)存入銀行的錢叫做本金。
(2)取款時銀行多支付的錢叫做利息。
(3)利息與本金的比值叫做利率。
利息=本金×利率×時間
稅后利息=利息-利息的應納稅額=利息-利息×5%
注:國債和教育儲蓄的利息不納稅
7、百分數應用題型分類
(1)求甲是乙的百分之幾——(甲÷乙)×100%=百分之幾
(2)求甲比乙多百分之幾——(甲-乙)÷乙×100%
(3)求甲比乙少百分之幾——(乙-甲)÷乙×100%
高中感悟作文800字10
測量
1、在生活中,量比較短的物品,可以用(毫米、厘米、分米)做單位;量比較長的物體,常用(米)做單位;測量比較長的路程一般用(千米)做單位,千米也叫(公里)。
2、1厘米的長度里有(10)小格,每小格的長度(相等),都是(1)毫米。
3、1枚1分的硬幣、尺子、磁卡、小紐扣、鑰匙的厚度大約是1毫米。
4、在計算長度時,只有相同的長度單位才能相加減。
小技巧:換算長度單位時,把大單位換成小單位就在數字的末尾添加0(關系式中有幾個0,就添幾個0);把小單位換成大單位就在數字的末尾去掉0(關系式中有幾個0,就去掉幾個0)。
5、長度單位的關系式有:(每兩個相鄰的長度單位之間的進率是10)
、龠M率是10:1米=10分米,1分米=10厘米,1厘米=10毫米,
10分米=1米,10厘米=1分米,10毫米=1厘米,
、谶M率是100:1米=100厘米,1分米=100毫米,100厘米=1米,100毫米=1分米
、圻M率是1000:1千米=1000米,1公里==1000米,1000米=1千米,1000米=1公里
6、當我們表示物體有多重時,通常要用到(質量單位)。在生活中,稱比較輕的物品的質量,可以用(克)做單位;稱一般物品的質量,常用(千克)做單位;計量較重的或大宗物品的質量,通常用(噸)做單位。
小技巧:在“噸”與“千克”的'換算中,把噸換算成千克,是在數字的末尾加上3個0;
把千克換算成噸,是在數字的末尾去掉3個0。
7、相鄰兩個質量單位進率是1000。
1噸=1000千克1千克=1000克1000千克=1噸1000克=1千克
萬以內的加法和減法
1、認識整千數(記憶:10個一千是一萬)
2、讀數和寫數(讀數時寫漢字寫數時寫阿拉伯數字)
、僖粋數的末尾不管有一個0或幾個0,這個0都不讀。
、谝粋數的中間有一個0或連續(xù)的兩個0,都只讀一個0。
3、數的大小比較:
、傥粩挡煌臄当容^大小,位數多的數大。
②位數相同的數比較大小,先比較這兩個數的位上的數,如果位上的數相同,就比較下一位,以此類推。
4、求一個數的近似數:
記憶:看最位的后面一位,如果是0—4則用四舍法,如果是5—9就用五入法。
的三位數是位999,最小的三位數是100,的四位數是9999,最小的四位數是1000。
的三位數比最小的四位數小1。
5、被減數是三位數的連續(xù)退位減法的運算步驟:
、倭胸Q式時相同數位一定要對齊;
、跍p法時,哪一位上的數不夠減,從前一位退1;如果前一位是0,則再從前一位退1。
6、在做題時,我們要注意中間的0,因為是連續(xù)退位的,所以從百位退1到十位當10后,還要從十位退1當10,借給個位,那么十位只剩下9,而不是10。(兩個三位數相加的和:可能是三位數,也有可能是四位數。)
7、公式被減數=減數+差
和=加數+另一個加數
減數=被減數—差
加數=和—另一個加數
差=被減數—減數
符號/是什么意思數學
/在數學中是“除”的意思。例如:4/5我們可以說4除以5或者四分之五。數學符號的發(fā)明及使用比數字要晚,但其數量卻超過了數字,F代數學常用的數學符號已超過了200個,其中,每一個符號都有一段有趣的經歷。
實數知識點
平方根:①如果一個正數X的平方等于A,那么這個正數X就叫做A的算術平方根。②如果一個數X的平方等于A,那么這個數X就叫做A的平方根。③一個正數有2個平方根/0的平方根為0/負數沒有平方根。④求一個數A的平方根運算,叫做開平方,其中A叫做被開方數。
立方根:①如果一個數X的立方等于A,那么這個數X就叫做A的立方根。②正數的立方根是正數、0的立方根是0、負數的立方根是負數。③求一個數A的立方根的運算叫開立方,其中A叫做被開方數。
實數:①實數分有理數和無理數。②在實數范圍內,相反數,倒數,絕對值的意義和有理數范圍內的相反數,倒數,絕對值的意義完全一樣。③每一個實數都可以在數軸上的一個點來表示。
高中感悟作文800字11
一、圓的特征
1、圓是平面內封閉曲線圍成的平面圖形。
2、圓的特征:外形美觀,易滾動。
3、圓心O:圓中心的點叫做圓心.圓心一般用字母O表示。
圓多次對折之后,折痕的相交于圓的中心即圓心。圓心確定圓的位置。
半徑r:連接圓心到圓上任意一點的線段叫做半徑。在同一個圓里,有無數條半徑,且所有的半徑都相等。半徑確定圓的大小。
直徑d:通過圓心且兩端都在圓上的線段叫做直徑。在同一個圓里,有無數條直徑,且所有的直徑都相等。直徑是圓內最長的線段。
同圓或等圓內直徑是半徑的2倍:d=2r或r=d÷2
4、等圓:半徑相等的圓叫做同心圓,等圓通過平移可以完全重合。同心圓:圓心重合、半徑不等的兩個圓叫做同心圓。
5、圓是軸對稱圖形:如果一個圖形沿著一條直線對折,兩側的圖形能夠完全重合,這個圖形是軸對稱圖形。折痕所在的直線叫做對稱軸。
有一條對稱軸的圖形:半圓、扇形、等腰梯形、等腰三角形、角。
有二條對稱軸的圖形:長方形
有三條對稱軸的圖形:等邊三角形
有四條對稱軸的圖形:正方形
有無條對稱軸的圖形:圓,圓環(huán)
6、畫圓
(1)圓規(guī)兩腳間的距離是圓的半徑。(2)畫圓步驟:定半徑、定圓心、旋轉一周。
二、圓的周長:
圍成圓的曲線的長度叫做圓的周長,周長用字母C表示。
1、圓的周長總是直徑的三倍多一些。
2、圓周率:圓的周長與直徑的比值是一個固定值,叫做圓周率,用字母π表示。
即:圓周率π=周長÷直徑≈3.14
所以,圓的周長(c)=直徑(d)×圓周率(π)—周長公式:c=πd,c=2πr
圓周率π是一個無限不循環(huán)小數,3.14是近似值。
3、周長的變化的規(guī)律:半徑擴大多少倍直徑也擴大多少倍,周長擴大的倍數與半徑、直徑擴大的倍數相同。
4、半圓周長=圓周長一半+直徑=πr+d
三、圓的面積s
1、圓面積公式的推導
如圖把一個圓沿直徑等分成若干份,剪開拼成長方形,份數越多拼成的圖像越接近長方形。
圓的半徑=長方形的寬
圓的周長的一半=長方形的長
長方形面積=長×寬
所以:圓的面積=圓的.周長的一半(πr)×圓的半徑(r)
S圓=πr×r=πr2
2、幾種圖形,在面積相等的情況下,圓的周長最短,而長方形的周長最長;反之,在周長相等的情況下,圓的面積則,而長方形的面積則最小。
周長相同時,圓面積,利用這一特點,籃子、盤子做成圓形。
3、圓面積的變化的規(guī)律:半徑擴大多少倍,直徑、周長也同時擴大多少倍,圓面積擴大的倍數是半徑、直徑擴大的倍數的平方倍。
4、環(huán)形面積=大圓–小圓=πR2-πr2
扇形面積=πr2×n÷360(n表示扇形圓心角的度數)
5、跑道:每條跑道的周長等于兩半圓跑道合成的圓的周長加上兩條直跑道的和。因為兩條直跑道長度相等,所以,起跑線不同,相鄰兩條跑道起跑線也不同,間隔的距離是:2×π×跑道寬度。
一個圓的半徑增加a厘米,周長就增加2πa厘米。
一個圓的直徑增加b厘米,周長就增加πb厘米。
6、任意一個正方形的內切圓即圓的直徑是正方形的邊長,它們的面積比是4∶π。
7、常用數據
π=3.14 2π=6.28 3π=9.42 4π=12.56 5π=15.7
高中感悟作文800字12
第一單元 數據整理與收集
1.學會用“正”字記錄數據。
2.會數“正”,知道一個“正”字代表數量5。
3.根據統(tǒng)計表,會解決問題。
4.數據收集---整理---分析表格。
第二單元 表內除法(一)
1.平均分的含義:把一些物品分成幾份,每份分得同樣的多,叫做平均分。
除法就是用來解決平均分問題的。
2.平均分里有兩種情況:
(1)把一些東西平均分成幾份,求每份是多少;用除法計算,
總數÷份數=每份數
例:24本練習本,平均分給6人,每人分多少本?
列式:24÷6=4
(2)包含除(求一個數里面有幾個幾)把一個數量按每份是多少分成一份,求能平均分成幾份;用除法計算,總數÷每份數=份數
例:24本練習本,每人4本,能分給多少人?
列式:24÷4=6
3、除法算式的含義:只要是平均分的過程,就可以用除法算式表示。
除法算式的讀法:從左到右的順序讀,“÷”讀作除以,“=”讀作等于,其他數字不變。
例如:12÷4=3讀作(12除以4等于3)
例:42÷7=6 42是(被除數),7是(除數),6是(商;這個算式讀作(42除以7等于6 )。
4、除法算式各部分名稱:在除法算式中,除號前面的數就被除數,除號后面的數叫除數,所得的數叫商。
被除數÷除數=商。變式:被除數÷商=除數(如何求被除數,想:除數×商=被除數。)
5.用2~6的乘法口訣求商
1、求商的方法:
(1)用平均分的方法求商。
(2)用乘法算式求商。
(3)用乘法口訣求商。
2、用乘法口訣求商時,想除數和幾相乘的被除數。
一句口訣可以寫四個算式。(乘數相同的除外)。
例:用“三八二十四”這句口訣
A、24÷3=8 B、3×8=24
C、24÷3=8 D、24÷8=3
計算方法:12÷4=( )時,想:( )四十二,所以商是( ).
6.解決問題
1、解決有關平均分問題的方法:
總數÷每份數=份數、總數÷份數=每份數、
因數×因數=積、一個因數=積÷另一個因數
2、用乘法和除法兩步計算解決實際問題的方法:
(1)所求問題要求求出總數,用乘法計算;
(2)所求問題要求求出份數或每份數,用除法計算。
(3)8個果凍,每2個一份,能分成幾份?求8里有幾個2,用除法計算。
(4)24里面有( )個4,,20里面有( )個5。(用除法計算。)
(5)最小公倍數問題:一堆水果,3個人正好分完,4個人也正好分完,問這堆水果最少有幾個?
第三單元 圖形的運動
1、軸對稱圖形:沿一條直線對折,兩邊完全重合。對折后能夠完全重合的圖形是軸對稱圖形,折痕所在的直線叫對稱軸。
成軸對稱圖形的漢字:
一,二,三,四,六,八,十,大,干,豐,土,士,中,田,由,甲,申,口,日,曰,木,目,森,谷,林,畫,傘,王,人,非,菲,天,典,奠,旱,春,畝,目,山,單,殺,美,春,品,工,天,網,回,喜,莫,罪,夫,黑,里,亞。
2、平移:當物體水平方向或豎直方向運動,并且物體的方向不發(fā)生改變,這種運動是平移。只有形狀、大小、方向完全相同的圖形通過平移才能互相重合。
(記。浩揭浦荒苌舷乱苿踊蜃笥乙苿)
3、旋轉:體繞著某一點或軸進行圓周運動的現象就是旋轉。(例如:旋轉木馬、轉動的風扇、轉動的車輪等)
(一)填空
1、汽車在筆直的公路上行駛,車身的運動是( )現象
2、教室門的打開和關閉,門的運動是( )現象。
A.平移 B旋轉 C平移和旋轉
3、下面( )的運動是平移。
A、旋轉的呼啦圈 B、電風扇扇葉 C、撥算珠
第四單元 表內除法(二)
這單元主要是考口算題。有以下幾種形式:
1、用7、8、9的乘法口訣求商
求商方法:想“除數×( )=被除數”,再根據乘法口訣計算得商。
例.直接口算:28÷4 8÷8
2、解決問題
求一個數里有幾個幾,和把一個數平均分成幾份,求每份是多少,都用除法計算。
例.填空:45÷9=5表示把( )平均分成( )份,每份是( );還表示( )里有( )個( );
第五單元 混合運算
一、混合計算
混合運算,先乘除,后加減,有括號的要先算括號里面的。
只有加、減法或只有乘、除法,都要從左到右按順序計算。
二、解決兩步計算的實際問題
1、想好先解決什么問題,再解決什么問題。
2、可以畫圖幫助分析。
3、可以分布計算,也可以列綜合算式。
請畫出先算哪一步,再算哪一步(并標上1和2)
1、同級運算的類型:
例: 23+6+18 32+11-8 53-24+38 2× 8÷4 72÷ 8×4
2、不同級運算的類型:
例:5× 6 +14 3× 7-16 3 + 5 ×9 45- 9×3 45÷9+14 64÷ 8-8
3、帶小括號運算的類型:方法:算式里有括號的,要先算括號里面的。
例: 6×(7 + 2) (24-18)×9 ( 14+35 )÷7 (82-18 )÷8
4.把兩個算式合并成一個綜合算式。(重點)。
弄清楚哪個數是前一步算式的結果,就用前一步算式替換掉那個數,其他的照寫。當需要替換的是第二個數,必要時還需要加上小括號。
例:15+9=24 24÷3=8 (強調括號不能忘)_____________________________
5.解決需要兩步計算解決的問題。(要想好先算出什么,在解答什么)
例:媽媽買回3捆鉛筆,每捆8支,送給妹妹12支后,還剩多少支?
先算____________________再算____________________
例:學校買來80本科技書,分給六年級35本,剩下的分給其它5個年級,平均每個年級分到多少本?
6.練習十三 第4題 (重點)
1.我們一共要烤90個面包,每次能烤9個,已經烤了36個,剩下的`還要烤幾次?
2.我們家原來有25只兔子,又買了15只,一共有8個籠子,平均每個籠子放幾只?
3.小明有4套明信卡,每套8張,他把其中的5張送給了好朋友,還剩下幾張?
4.工人叔叔要挖總長60米的水溝,已經挖好了15米,剩下的要用5天挖完,平均每天挖多少米?
第六單元 有余數的除法
有余數的除法
1、有余數的除法的意義:在平均分一些物體時,有時會有剩余。
2、余數與除數的關系:在有余數的除法中,余數必須比除數小。
最大的余數小于除數1,最小的余數是1。
3、筆算除法的計算方法:
(1)先寫除號“廠”
(2)被除數寫在除號里,除數寫在除號的左側。
(3)試商,商寫在被除數上面,并要對著被除數的個位。
(4)把商與除數的乘積寫在被除數的下面,相同數位要對齊。
(5)用被除數減去商與除數的乘積,如果沒有剩余,就表示能除盡。
4、有余數的除法的計算方法可以分四步進行:一商,二乘,三減,四比。
(1)商:即試商,想除數和幾相乘最接近被除數且小于被除數,那么商就是幾,寫在被除數的個位的上面。
(2)乘:把除數和商相乘,將得數寫在被除數下面。
(3)減:用被除數減去商與除數的乘積,所得的差寫在橫線的下面。
(4)比:將余數與除數比一比,余數必須必除數小。
5、解決問題
根據除法的意義,解決簡單的有余數的除法的問題,要根據實際情況,靈活處理余數。
(1)余數比除數小。
例:43÷7=()…( )余數可能是( )或者余數最大是( )
(2)至少問題(進一法):商+1
例:有27箱菠蘿,王叔叔每次最多能運8箱。至少要運多少次才能運完這些菠蘿。
(3)最多問題(去尾法)
例:小麗有10元錢,買3元一個的面包,最多能買幾個?
課例:
1. 22個學生去劃船,每條船最多坐4人,他們至少要租多少條船?
22÷4=5(條)……2(人)
答:他們至少要租6條船。
第七單元 萬以內數的認識
一、1000以內數的認識
1、10個一百就是一千。
2、讀數時,要從高位讀起。百位上是幾就幾百,十位上幾就幾十,個位上是幾就讀幾中間有一個0,就讀“零”,末尾不管有幾個0,都不讀!纠纾20xx讀作二千零三,2300讀作二千三百】
3、寫數時,要從高位寫起,幾個百就在百位寫幾,幾個十就在十位寫幾,幾個一就在個位寫幾,哪一位上一個數也沒有就寫0占位。 【例如:三千五百寫作3500,三千零六十九寫作3069】
4、數的組成:看每個數位上是幾,就由幾個這樣的計數單位組成。例:2369由( )個千、( )個百、( )個十和( )個一組成的。
二、10000以內數的認識
1、10個一千是一萬。
2、萬以內數的讀法和寫法與1000以內的數讀法和寫法相同。
3、最小兩位數是10,最大的兩位數是99;最小三位數是100,最大的三位數是999;最小四位數是1000,最大的四位數是9999;最小的五位數是10000,最大的五位數是99999。
三、整百、整千數加減法
1、整百、整千加減法的計算方法。
(1)把整百、整千數看成幾個百,幾個千,然后相加減。
(2)先把0前面的數相加減,再在得數末尾添上與整百、整千數相同個數的0。
2、估算
把數看做它的近似數再計算。
四、10000以內數的大小比較的方法:
(1)位數多的數就大,例如453 < 1000
(2)如果位數相同,就比較最高位上的數字,數字大的這個數就大,反之就小;例如 357 < 978
(3)如果最高位上的數字相同,就比較下一位上的數,依次類推。246 > 219
補充:
1、相鄰兩個計數單位之間的進率是10。記:一個一個地數,10個一是( )。一十一十地數,10個十是( )。一百一百地數,10個一百是( )。一千一千地數,10個一千是( )。
2.在數位順序表中,從右邊起,第一位是(個位),第二位是(十位),第三位是(百位),第四位是(千位),第五位是(萬位)。
3、數的組成:就是看每個數位上是幾,就有幾個這樣的計數單位組成。
例:2647=( )+( )+( )+( )
4、用估算策略解決問題。
96頁 例13(估大)
練習19 第8題(估小)
第八單元 克、千克
1.(千克)和(克)都是國際上通用的質量單位。計量比較重的物品,常用“千克”(kg)作單位。
2、稱較輕的物品的質量時,用“克”作單位;稱較重的物品的質量時,用“千克”作單位。
3、一個兩分的硬幣約是1克。兩袋500克的鹽約是1千克。
4、1千克=1000克 1kg=1000g.進率是1000.( 1千克=1公斤、1公斤=2斤、1斤=500克、
1斤=10兩、1兩=50克)
5、計算或者比較大小時,如果單位不同,就需要把單位統(tǒng)一。一般統(tǒng)一成單位“克”。
估計物品有多重,要結合物品的大小、質地等因素。
高中感悟作文800字13
四個公式:
兩個公式:
、僭黾恿浚p少量)=原來的量×增加的百分數(減少的百分數)
、诂F在的量=原來的量±增加量(減少量)
求增加百分之幾?減少百分之幾?
公式:
增加百分之幾=增加的部分÷單位1
減少百分之幾=減少的部分÷單位1
例如:
1、45立方厘米的水結成冰后,冰的體積為50立方厘米,冰的體積比原來水的體積增加百分之幾?
解題思路:根據公式增加百分之幾=增加的部分÷單位1,先確定單位1是水,已經知道是45:增加的部分不知道,可以利用50減45求得5;最后用增加的部分5÷單位1水的45就等于增加百分之幾。
計算步驟:第一步:單位1:水:45立方厘米
第二步:增加的部分:50—45=5立方厘米
第三步:增加百分之幾:5÷45=
2、45立方厘米的水結成冰后,體積增加了5立方厘米,冰的體積比原來水的體積增加百分之幾?
解題思路:根據公式增加百分之幾=增加的部分÷單位1,先確定單位1是水,已經知道是45:增加的部分是5立方厘米;最后用增加的部分5÷單位1水的45就等于增加百分之幾。
計算步驟:第一步:單位1:水:45立方厘米
第二步:增加的部分:5立方厘米
第三步:增加百分之幾:5÷45=
3、水結成冰后,體積增加了5立方厘米,冰的體積為50立方厘米,冰的體積比原來水的體積增加百分之幾?
解題思路:根據公式增加百分之幾=增加的部分÷單位1,先確定單位1是水,不知道但可以根據題目“水結成冰后,體積增加了5立方厘米”知道水是少的,冰是多的`,所以可以用50—5求出水是45立方厘米。加的部分是5立方厘米;最后用增加的部分5÷單位1水的45就等于增加百分之幾。
計算步驟:第一步:單位1:水:50—5=45立方厘米
第二步:增加的部分:5立方厘米
第三步:增加百分之幾:5÷45=
4、“減少百分之幾與增加百分之幾”的解題方法完全相同。
5、與增加百分之幾相同的還有“多百分之幾”“提高百分之幾”“增長百分之幾“等。
與減少百分之幾相同的還有“少百分之幾”“降低百分之幾”“節(jié)約百分幾”等。
高中感悟作文800字14
第一單元 測量
1、在生活中,測量比較短的物品,可以用(毫米、厘米、分米 )做單位;測量比較長的物體,常用( 米 )做單位;測量比較長的路程一般用( 千米 )做單位,千米也叫( 公里 )。10個100米就是1千米,1千米(公里)=1000米。
2、1厘米的長度里有( 10 )小格,每個小格的長度( 相等 ),都是( 1 )毫米。所以,毫米是比厘米小的長度單位。1厘米=10毫米。
3、1枚1分的硬幣、尺子、磁卡、小紐扣、鑰匙的厚度大約是1毫米。
4、10厘米的長度就是1分米,因此1分米=10厘米。1米=10分米。
5、在計算長度時,只有相同的長度單位才能相加減。
小技巧:換算長度單位時,把大單位換成小單位就在數字的末尾添加0(關系式中有幾個0,就添幾個0);把小單位換成大單位就在數字的末尾去掉0(關系式中有幾個0,就去掉幾個0)。
6、長度單位的關系式有:
、 進率是10
1 米 = 10 分米 1 分米 = 10 厘米 1 厘米 = 10 毫米
10 分米=1 米 10 厘米= 1 分米 10 毫米= 1 厘米
、 進率是100
1 米 = 100 厘米 1分米=100毫米 100 厘米=1 米 100毫米=1分米
③ 進率是1000
1千米=1000米 1公里= 1000米 1000米=1千米 1000米 = 1公里
7、當我們表示物體有多重時,通常要用到(質量單位 )。在生活中,稱比較輕的物品的質量,可以用( 克 )做單位;稱一般物品的質量,常用(千克 )做單位;計量較重的或大宗物品的質量,通常用( 噸 )做單位。
小技巧:在“噸”與“千克”的換算中,把噸換算成千克,是在數字的末尾加上3個0;把千克換算成噸,是在數字的末尾去掉3個0。如:3噸=3000千克 5000千克=5噸
7、(相鄰)質量單位進率是1000 。
1 噸 = 1000千克 1千克=1000克
1000千克 = 1 噸 1000克=1千克
第二單元 萬以內的加法和減法(二)
1、筆算加、減法要注意:
(1)相同數位要對齊;
(2)從個位算起;
(3)哪一位上的數相加滿十,就向前一位進1;哪一位上的數不夠減,就從前一位退1作十再減。
2、估算的方法:
結合實際,把題目中的數分別看作與它接近的整百或整十的數,再通過口算確定它們的得數范圍。
3、加、減法驗算的方法:
(1)加法的驗算:
①交換加數的位置再加一遍,看看兩次相加的和是不是相同;
②用“和”減去“其中一個加數”,看看結果是不是等于“另一個加數”。
(2)減法的驗算:
、儆谩氨粶p數”減去“差”,看看結果是不是等于“減數”;
、谟谩安睢奔印皽p數”,看看結果是不是等于“被減數”。
第三單元 四邊形
1、由4條直的邊和4個角組成的圖形叫做四邊形。
2、四邊形的特點:有四條直的邊;有四個角。
3、長方形的特點:長方形有兩條長,兩條寬,四個直角,對邊相等。
4、正方形的特點:有4個直角,4條邊相等。
5、長方形和正方形都是特殊的平行四邊形。
6、平行四邊形的特點:對邊相等、對角相等。平行四邊形容易變形。(三角形不容易變形)
7、封閉圖形一周的'長度,就是它的周長。
8、要求長方形的周長必須知道長方形的(長)和(寬);要求正方形的周長必須知道正方形的(邊長)。
9、公式。
長方形的周長 = (長+寬)×2 長方形的長 = 周長÷2-寬 長方形的寬 = 周長÷2-長
正方形的周長 = 邊長×4 正方形的邊長 = 周長÷4
第四單元 有余數的除法
1、余數和除數之間的關系:進行有余數的除法計算時,結果中的余數一定要比除數小。
2、公式。
被除數 =商×除數+余數 除數 = (被除數-余數)÷商 商 = (被除數-余數)÷除數
第五單元 時分秒
1、鐘面上有3根針,它們是(時針)、(分針)和(秒針),其中走得最快的是(秒針),走得最慢的是(時針)。
2、鐘面上有( 12 )個數字,( 12 )個大格,( 60 )個小格;每兩個數間是( 1 )個大格,也就是( 5 )個小格。
3、時針走1大格是( 1 )小時;分針走1大格是( 5 )分鐘,走1小格是( 1 )分鐘;秒針走1大格是( 5 )秒鐘,走1小格是( 1 )秒鐘。
4、時針走1大格,分針正好走( 1 )圈,分針走1圈是( 60 )分,也就是( 1 )小時。
5、分針走1小格,秒針正好走( 1 )圈,秒針走1圈是( 60 )秒,也就是( 1 )分鐘。
6、時針從一個數走到下一個數是( 1小時 )。分針從一個數走到下一個數是( 5分鐘)。秒針從一個數走到下一個數是( 5秒 )。
7、公式。
1時= 60分 1分= 60秒 半時= 30 分 60分=1時 60秒=1分 30 分=半時
8、時間單位間的簡單換算。
例如:2時=( )分
因為1時=60分,2時有2個60分,2×60=120,所以2時=(120)分。
例如:180秒=( )分
因為60秒=1分,180秒里面有3個60秒,所以180秒=(3)分。
例如:1分35秒=( )秒
因為1分=60秒,60+35=95,所以1分35秒=(95)秒。
9、計算簡單的經過時間:經過的時間=結束的時刻-開始的時刻。
例如:小明晚上7:30開始寫作業(yè),8:40寫完作業(yè),小明完成作業(yè)用了多長時間?
8:40-7:30=1小時10分
第六單元 多位數乘一位數
1、口算。
整十、整百、整千的數乘一位數,可以先把題目轉化成一位數乘一位數,直接用乘法口訣來算,算出積后,再看因數末尾共有幾個0,就在積的末尾添上幾個0。
2、多位數乘一位數的計算方法:
計算兩、三位數乘一位數,都是把這個多位數的每個數位上的數依次乘一位數。哪一位上的乘積滿幾十,就要向前一位進幾。
3、0和任何數相乘都得0。
4、多位數乘一位數的估算。
把因數中的兩位數或三位數看成和它最接近的整十、整百的數來與一位數相乘。
如:48×9≈ 可以這樣想:因為48接近50,50×9=450,所以48×9≈450
第七單元 分數的初步認識
1、分數的初步認識:
(1)幾分之一:把一個物體或圖形平均分成幾份,每份就是它的幾分之一。
(2)幾分之幾:有幾個幾分之一,就是幾分之幾。
(3)分數的表示方法和各部分的名稱:
2 ……分子(表示取了其中的幾份)
……分數線(表示平均分)
5 ……分母(表示平均分成了幾份)
第八單元 可能性
1、確定現象與不確定現象。
(1)確定現象:事件發(fā)生的結果是確定的。(如:太陽不可能從西方升起;太陽每天從東方升起。)
(2)不確定現象:事件發(fā)生的結果無法確定。(如:下星期一會下雨。)
2、事件發(fā)生與否有三種情況。
(1)一定(如:正方體一定有6個面。)
(2)可能(如:明天可能是晴天。)
(3)不可能(如:地球不可能繞著月球轉。)
3、事件發(fā)生的可能性是有大小的。
例如:盒子里有10個紅球,3個白球,紅球與白球的數量不相等,那么摸到紅球的可能性與摸到白球的可能性是不一樣的。紅球多,摸到紅球的可能性較大;白球少,摸到白球的可能性就小。
第九單元 數學廣角
簡單的排列與組合:
在解決問題時,要弄清楚實際問題與事物的順序有沒有關系,做到既不重復也不遺漏。
1、與順序有關的是排列數。例如:用數字卡片組數、排隊、站不同位置照相、扮演不同的角色等問題。
2、與順序無關的是組合數。例如:衣服和早餐的搭配、行走路線的選擇、兩兩通話、兩兩握手、安排比賽場次等問題。
高中感悟作文800字15
1、一個因數是兩位數的乘法法則
(1)、先用兩位數個位上的數去乘另一個因數,得數的末位和兩位數個位對齊;
(2)、再用兩位數的十位上的數去乘另一個因數,得數的末位和兩位數十位對齊;
(3)、然后把兩次乘得的數加起來。
2、除數是兩位數的除法法則
(1)、從被除數高位起,先用除數試除被除數前兩位,如果它比除數小,(2)、除到被除數的哪一位就在哪一位上面寫商;
(3)、每求出一位商,余下的數必須比除數小。
3、萬級數的讀法法則
(1)、先讀萬級,再讀個級;
(2)、萬級的數要按個級的讀法來讀,再在后面加上一個“萬”字;
(3)、每級末位不管有幾個0都不讀,其它數位有一個0或連續(xù)幾個零都只讀一個“零”。
4、多位數的讀法法則
(1)、從高位起,一級一級往下讀;
(2)、讀億級或萬級時,要按照個級數的讀法來讀,再往后面加上“億”或“萬”字;
(3)、每級末尾的0都不讀,其它數位有一個0或連續(xù)幾個0都只讀一個零。
5、計算小數乘法,先按照乘法的法則算出積,再看因數中一共幾位小數,就從積的右邊起數出幾位,點上小數點。
6、除數是整數的小數除法,按照整數除法的法則去除,商的小數點要和被除數小數點對齊,如果除到被除數的末尾仍有余數,就在余數后面添0再繼續(xù)除。
7、除數是小數的除法,先移動除數小數點,使它變成整數;除數的小數點向右移幾位,被除數小數點也向右移幾位(位數不夠在被除數末尾用0補足)然后按照除數是整數的小數除法進行計算。
8、同分母分數相加減,分母不變,只把分子相加減。
9、帶分數相加減,先把整數部分和分數部分分別相加減,再把所得的數合并起來。
10、分數乘以整數,用分數的分子和整數相乘的'積作分子,分母不變。
11、異分母分數相加減,先通分,然后按照同分母分數加減的法則進行計算。
12、圍成一個圖形所有邊長的總和就是這個圖形的周長。
13、求一個數的近似數時,看被省略的尾數最高位上的數是幾,如果是4或者比4小,就把尾數舍去,如果是5或者比5大,去掉尾數后,要在它的前一位加1。這種求近似數的方法,叫做四舍五入法。
14、兩個數相加,交換加數的位置后,它的和不變,這叫做加法交換律。
15、三個數相乘,先把前兩個數相乘,再同第三個數相乘,或者先把后兩個數相乘,再同第一個數相乘,它們的積不變,這叫乘法結合律。
16、已知兩個因數的積與其中的一個因數,求另一個因數的運算叫除法。
17、積=因數×因數 一個因數=積÷另一個因數。
18、面積計量單位及進率:
平方千米、公頃、平方米、平方分米、平方厘米
1平方千米=100公頃
1平方千米=1000000平方米
1公頃=10000平方米
1平方米=100平方分米
1平方分米=100平方厘米
19、質量單位及進率:
噸、千克、公斤、克
1噸=1000千克
1千克=1公斤
1千克=1000克
20、體積容積計量單位及進率:
立方米、立方分米、立方厘米、升、毫升
1立方米=1000立方分米
1立方分米=1000立方厘米
1立方分米=1升 1立方厘米=1毫升
21、長度計量單位及進率:
千米(公里)、米、分米、厘米、毫米
1千米=1公里 1千米=1000米
1米=10分米 1分米=10厘米
1厘米=10毫米
22、長方形面積=長×寬,計算公式S=ab
23、正方形面積=邊長×邊長,計算公式S=a×a=a2
24、長方形周長=(長+寬)×2,計算公式C=(a+b)×2
25、正方形周長=邊長×4,計算公式C=4a
26、平行四邊形面積=底×高,計算公式S=ah
27、三角形面積=底×高÷2,計算公式S=a×h÷2
28、梯形面積=(上底+下底)×高÷2,計算公式S=(a+b)×h÷2
29、長方體體積=長×寬×高,計算公式V=abh
30、圓的面積=圓周率×半徑平方,計算公式V=πr2
31、正方體體積=棱長×棱長×棱長,計算公式V=a3
32、長方體和正方體的體積都可以寫成底面積×高,計算公式V=sh
34、圓柱的體積=底面積×高,計算公式V=sh
35、比的前項和后項同時乘以或者同時除以相同的數(0除外)比值不變,這叫比的基本性質。
小學數學的學習方法
1、求教與自學相結合,在學習過程中,既要爭取教師的指導和幫助,但是又不能處處依靠教師。必須自己主動地去學習、去探索、去獲取,應該在自己認真學習和研究的基礎上去尋求教師和同學的幫助。
2、學用結合,勤于實踐,在學習過程中,要準確地掌握抽象概念的本質含義。了解從實際模型中抽象為理論的演變過程;對所學理論知識,要在更大范圍內尋求它的具體實例,使之具體化,盡量將所學的理論知識和思維方法應用于實踐。
3、學習與思考相結合,在學習過程中,對課本的內容要認真研究,提出疑問,追本窮源。對每一個概念、公式、定理都要弄清其來龍去脈、前因后果,內在聯系,以及蘊含于推導過程中的數學思想和方法。
4、博觀約取,由博返約,課本是學生獲得知識的主要來源,但不是唯一的來源。在學習過程中,除了認真研究課本外,還要閱讀有關的課外資料,來擴大知識領域。
5、及時復習,增強記憶。課堂上學習的內容,必須當天消化,要先復習,后做練習。復習工作必須經常進行,每一單元結束后,應將所學知識進行概括整理,使之系統(tǒng)化、深刻化。
6、學習中的總結和評價,是學習的繼續(xù)和提高,它有利于知識體系的建立、解題規(guī)律的掌握、學習方法和態(tài)度的調整和評判能力的提高。在學習過程中,應注意總結聽課、閱讀和解題中的收獲和體會。
【高中感悟作文800字】相關文章:
高中感悟作文11-15
感悟高中作文11-11
高中感悟收獲作文04-14
高中感悟軍訓作文02-24
感悟人生高中作文04-12
感悟軍訓高中優(yōu)秀作文08-08
感悟生命作文高中03-24
高中優(yōu)秀作文:感悟生命02-11
對高中生活感悟的作文08-31