男人天堂日韩,中文字幕18页,天天伊人网,成人性生交大片免费视频

實用文檔>二次函數(shù)應(yīng)用的教學(xué)反思

二次函數(shù)應(yīng)用的教學(xué)反思

時間:2022-07-09 10:40:21

二次函數(shù)應(yīng)用的教學(xué)反思(通用16篇)

  在日常生活中,我們需要很強的課堂教學(xué)能力,所謂反思就是能夠迅速從一個場景和事態(tài)中抽身出來,看自己在前一個場景和事態(tài)中自己的表現(xiàn)。反思我們應(yīng)該怎么寫呢?下面是小編精心整理的二次函數(shù)應(yīng)用的教學(xué)反思,供大家參考借鑒,希望可以幫助到有需要的朋友。

二次函數(shù)應(yīng)用的教學(xué)反思(通用16篇)

  二次函數(shù)應(yīng)用的教學(xué)反思 篇1

  二次函數(shù)是中學(xué)數(shù)學(xué)的重要內(nèi)容,也是中考的熱點,二次函數(shù)應(yīng)用教學(xué)反思。其中考試涉及的主要有考查二次函數(shù)的定義、圖象與性質(zhì)及應(yīng)用等。在九年級的教學(xué)中,教師就要立足課堂,瞄準(zhǔn)中考,研究中考試題。近年來,二次函數(shù)的應(yīng)用題目不斷出現(xiàn)在各地中考題中,特別值得一提的是,有些源自課本中的例題或習(xí)題原型和變式。在日常教學(xué)時,注重對接,為中考做好鋪墊,是我對這節(jié)二次函數(shù)解決實際問題實踐探索課的期待。

  二次函數(shù)應(yīng)用題型一般情況下,解題思路不外乎建立平面直角坐標(biāo)系,標(biāo)出圖象上的點的坐標(biāo),求圖象解析式,利用圖象解析式及性質(zhì),來解決最優(yōu)化等實際問題。一開始我引導(dǎo)學(xué)生回憶二次函數(shù)的三種不同形式的解析式,即一般式、頂點式、交點式,并說出它們各自的性質(zhì)如拋物線的開口方向,對稱軸,頂點坐標(biāo),最大最小值,函數(shù)在對稱軸兩側(cè)的增減性。結(jié)合教材教學(xué)內(nèi)容,呈現(xiàn)習(xí)題27.2第5題,讓學(xué)生分小組去試驗探索解決問題。各小組很快就得出三個特殊點的坐標(biāo)(0,0)(5,4)(10,0),并求出了拋物線的解析式,當(dāng)然速度有快有慢,第二問,就是求當(dāng)x=6時y的值,不少學(xué)生紛紛舉手示意完成,我很高興,也沒細究每個同學(xué)的情況。繼續(xù)按照預(yù)定方案,組織學(xué)生活動,開始對一道試題進行探究。

  如圖,有一個橫截面為拋物線的橋洞,橋洞地面寬為8米,橋洞最高處距地面6米。現(xiàn)有一輛卡車,裝載集裝箱,箱寬3米,車與箱共高4.5米,請您計算一下,車輛能否通過橋洞。

  對于這個問題,不少學(xué)生表情凝重,目光迷惘,思路不暢,不知從何處下手,教學(xué)反思《二次函數(shù)應(yīng)用教學(xué)反思》。我反復(fù)引導(dǎo),幾次提醒按例題的.方法,從函數(shù)的圖象上進行考慮,但就是沒有人響應(yīng),探究幾乎陷于停頓,讓我大感意外,超乎我的想象。好在我尚能應(yīng)付,便提問素有“小諸葛”之稱的張文賀,你是怎樣思考的?張文賀說,他也知道首先建立平面直角坐標(biāo)系,但問題是不知道把坐標(biāo)系原點建在哪里,更不知道卡車是如何穿過橋洞,是靠中間走,還是靠邊通過?我一聽,才恍然大悟。原來學(xué)生的認(rèn)知和老師想象的不一樣,加上生活經(jīng)驗較少,難怪學(xué)生會沉默不語。對于坐標(biāo)系的建立方法,學(xué)生面對多種可能的選擇,往往束手無策,根本原因就是老師不重視對學(xué)生思考水平的研究,導(dǎo)致以老師思維代替學(xué)生思維,造成學(xué)生思考與實踐脫節(jié)。這就要求老師要從學(xué)生的實際出發(fā),了解學(xué)生的學(xué)習(xí)狀況,善于啟發(fā)和引導(dǎo),才能較好的達到教學(xué)目標(biāo)。

  本節(jié)課的設(shè)計初衷,原是讓學(xué)生從具體的生活實踐中,感知數(shù)學(xué)模型,達到從實際問題中抽象出數(shù)學(xué)模型,并用數(shù)學(xué)知識解決問題,同時讓學(xué)生感知和體會一題多變的變式訓(xùn)練,增加對數(shù)學(xué)解題思想的認(rèn)識。但在教學(xué)時,學(xué)生對一些常規(guī)知識的缺失突出的暴露出來。如利用三點坐標(biāo)求二次函數(shù)解析式,學(xué)生解三元一次方程組感到困難等。

  當(dāng)我充滿自信準(zhǔn)備進行下一問時,有學(xué)生說,我還沒得出答案呢?我說,你們小組不是展示過了,怎么你還不會呢?他說,我的解析式設(shè)y=ax2+bx+c,我代入得不出來,組長設(shè)的和我不一樣。我告訴他,其實你用一般式同樣可以做的很準(zhǔn),只不過速度稍慢一些,這就需要加強運算練習(xí)。下課后我一直在思考,學(xué)生越是基礎(chǔ)差,那些好的方法他們就越難掌握。學(xué)起來既吃力又費氣,這就需要在平常加強雙基訓(xùn)練,每個學(xué)生都必須掌握好基本概念和基本技能。

  二次函數(shù)應(yīng)用的教學(xué)反思 篇2

  二次函數(shù)的應(yīng)用是學(xué)習(xí)二次函數(shù)的圖像與性質(zhì)后,檢驗學(xué)生應(yīng)用所學(xué)知識解決實際問題能力的一個綜合考查,它是本章的難點。新的課程標(biāo)準(zhǔn)要求學(xué)生能通過對實際問題的情境的分析確定二次函數(shù)的表達式,體會其意義,能根據(jù)圖像的性質(zhì)解決簡單的實際問題,而最大值問題是生活中利用二次函數(shù)知識解決最常見、最有實際應(yīng)用價值的問題,它生活背景豐富,學(xué)生比較感興趣。本節(jié)課通過學(xué)習(xí)求水流的最高點問題,引導(dǎo)學(xué)生將實際問題轉(zhuǎn)化為數(shù)學(xué)模型,利用數(shù)學(xué)建模的思想去解決和函數(shù)有關(guān)的應(yīng)用問題。此部分內(nèi)容是學(xué)習(xí)一次函數(shù)及其應(yīng)用后的鞏固與延伸,又為高中乃至以后學(xué)習(xí)更多函數(shù)打下堅實的基礎(chǔ)。

  由于本節(jié)課是二次函數(shù)的應(yīng)用問題,重在通過學(xué)習(xí)總結(jié)解決問題的方法,故而本節(jié)課以“啟發(fā)探究式”為主線開展教學(xué)活動,以學(xué)生動手動腦探究為主,必要時加以小組合作討論,充分調(diào)動學(xué)生學(xué)習(xí)積極性和主動性,突出學(xué)生的主體地位,達到“不但使學(xué)生學(xué)會,而且使學(xué)生會學(xué)”的目的。二次函數(shù)應(yīng)用的教學(xué)后,比我預(yù)想的效果要好一些,出現(xiàn)了幾個點引人深思:

  1、精心設(shè)計問題,引發(fā)學(xué)生思考建立數(shù)模

  在《二次函數(shù)的應(yīng)用》的教學(xué)過程中,復(fù)習(xí)舊知后,主要安排了一道例3—水流最高點問題:人工噴泉有一個豎直的噴水槍AB,噴水口A距地面2m,噴水水流的軌跡是拋物線。如果要求水流的最高點P到噴水槍AB所在直線的距離為1m,且水流的著地點C距離水槍底部B的距離為2.5m,那么,水流的最高點距離地面是多少米?以此題為契機,培養(yǎng)學(xué)生的分析問題、解決問題的能力。本節(jié)課重點放在分析問題,將實際問題轉(zhuǎn)化為數(shù)學(xué)問題,建立數(shù)學(xué)模型解決問題。所以在教學(xué)時,教師應(yīng)有意鍛煉學(xué)生從讀題開始,分析題意,搜索與問題有聯(lián)系的數(shù)學(xué)知識,運用知識和技能使問題獲得解決。在備課中,我發(fā)現(xiàn)學(xué)生對例題的理解存在困難,采用設(shè)計小問題,鋪設(shè)小臺階,引導(dǎo)學(xué)生探究,突破教學(xué)難點,帶領(lǐng)學(xué)生尋找解決的方法。我設(shè)計的問題如下:

 。1)讀題,檢索有用信息;

 。2)分析已知,他們講的是什么含義?根據(jù)題意畫出圖形;

  (3)分析所求,是讓我們求什么?將實際問題可轉(zhuǎn)化為什么知識來解決?

  (4)如何求二次函數(shù)的最大值?

  學(xué)生根據(jù)老師提出的問題,小組討論,同學(xué)間互相交流與補充,在教師的引領(lǐng)下,發(fā)現(xiàn)本題就是轉(zhuǎn)化為求二次函數(shù)的最大值問題,逐步將難點突破,幫助學(xué)生建立數(shù)模解決問題。學(xué)生在動手畫圖、討論的基礎(chǔ)上找到解決的方法與步驟,先求二次函數(shù)的解析式,再求二次函數(shù)的最大值。學(xué)生在理解題意后畫圖形,又加深了對題目的理解,為解決問題奠定了基礎(chǔ),進一步體會運用數(shù)形結(jié)合的思想方法求解二次函數(shù)的問題,將數(shù)學(xué)思想與方法滲透到整個教學(xué)過程中。

  2、為學(xué)生提供思考的空間,注重一題多解

  學(xué)生在建立平面直角坐標(biāo)系后,根據(jù)題意知道,對稱軸是x=1,A點坐標(biāo)(0,2),B點坐標(biāo)(0,0),C點坐標(biāo)(0,2),確定二次函數(shù)解析式時,出現(xiàn)了一個小插曲。學(xué)生用一般式確定二次函數(shù)解式后,有同學(xué)想用其他的方法求解想法,我馬上鼓勵學(xué)生去尋找新的方法。四班學(xué)生思維活躍,有個學(xué)生想用兩根式求解析式,讓這個學(xué)生說出自己的思路,其他學(xué)生幫助他進行分析與補充。該同學(xué)將A、B、C三點坐標(biāo)帶入兩根式求解,發(fā)現(xiàn)求得解析式與用一般式求得解析式不同,很疑惑,不知道問題出在哪里?我并沒有否定該同學(xué)的'方法,而是讓其他學(xué)生幫助糾正,在大家的分析圖形中發(fā)現(xiàn),B點坐標(biāo)不在拋物線上,不能將其帶入。

  在教學(xué)中出現(xiàn)分歧時,要給學(xué)生空間去思考,發(fā)現(xiàn)問題的原因,從而確定解決得方法,避免今后出現(xiàn)類似錯誤。而六班學(xué)生善于思考,在用兩根式求解析式時,我設(shè)計一個小陷阱,故意引導(dǎo)學(xué)生選用A、B、C三點求解析式,學(xué)生通過計算與觀察,同樣發(fā)現(xiàn)了這個問題:B點坐標(biāo)不在拋物線上,不能將其帶入求解。在這種情景下,追問:如何利用兩根式確定解析式呢?學(xué)生積極性很高,小組討論,學(xué)生根據(jù)拋物線的對稱性找到它與x軸另一個交點D(—0.5,0),將A、D、C三點帶入可求出二次函數(shù)的解析式。在教學(xué)中,要注重解題方法的靈活性,一題多解,開闊學(xué)生的思維,提高學(xué)生的發(fā)現(xiàn)問題,解決問題的能力。在教學(xué)過程中,層層設(shè)疑,激發(fā)學(xué)生求知欲,積極主動參與教學(xué)活動,大大提高了課堂效率。

  3、數(shù)學(xué)來源于生活并運用于生活

  例題3有較強的現(xiàn)實感,例題的選擇增加數(shù)學(xué)教學(xué)的現(xiàn)實性,使學(xué)生體驗數(shù)學(xué)知識與日常生活的密切聯(lián)系,從而培養(yǎng)學(xué)生喜愛數(shù)學(xué),學(xué)好數(shù)學(xué)的情感。課堂中,學(xué)生在解決數(shù)學(xué)情境問題的過程中,感悟數(shù)學(xué)來源于生活并運用于生活,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣。在課上,學(xué)生因問題來自于身邊而思維活躍,有強烈的探索欲望,這樣才能充分發(fā)揮學(xué)生學(xué)習(xí)的積極性,進而提高課堂教學(xué)質(zhì)量。

  4、不足之處

  《數(shù)學(xué)課程標(biāo)準(zhǔn)》提出:教師不僅是學(xué)生的引導(dǎo)者,也是學(xué)生的合作者。教學(xué)中,要讓學(xué)生通過自主討論、交流,來探究學(xué)習(xí)中碰到的問題、難題,教師從中點撥、引導(dǎo),并和學(xué)生一起學(xué)習(xí)探討。在本節(jié)課的教學(xué)中,教師引導(dǎo)學(xué)生較多,沒有完全放開讓學(xué)生自主探究學(xué)習(xí),獲得新知;學(xué)生在數(shù)學(xué)學(xué)習(xí)中還是有較強的依賴性,教師要有意培養(yǎng)學(xué)生自主學(xué)習(xí)的能力。

  教師要想在開放的課堂上具有靈活駕馭的能力,就需要在備課時盡量考慮周到,既要備教材,又要備學(xué)生,更需要教師具有豐富的科學(xué)文化知識,這樣才能使我們的學(xué)生在輕松活躍的課堂上找到學(xué)習(xí)的樂趣與興趣。

  二次函數(shù)應(yīng)用的教學(xué)反思 篇3

  教學(xué)中,對函數(shù)與方程的關(guān)系有一個逐步認(rèn)識的過程,教材遵循了由淺入深、循序漸進的原則。分三步來展開這部分的內(nèi)容。第一步,從學(xué)生認(rèn)為較簡單的一元二次方程與相應(yīng)的二次函數(shù)入手,由具體到一般,建立一元二次方程的根與相應(yīng)的二次函數(shù)的零點的聯(lián)系,然后將其推廣到一般方程與相應(yīng)的函數(shù)的情形。第二步,在用二分法求方程近似解的過程中,通過函數(shù)圖象和性質(zhì)研究方程的解,體現(xiàn)函數(shù)與方程的關(guān)系。第三步,在函數(shù)模型的應(yīng)用過程中,通過建立函數(shù)模型以及模型的求解,更全面地體現(xiàn)函數(shù)與方程的關(guān)系逐步建立起函數(shù)與方程的聯(lián)系。

  除了函數(shù)模型的應(yīng)用之外,還要介紹函數(shù)的零點與方程的根的關(guān)系,用二分法求方程的`近似解,以及幾種不同增長的函數(shù)模型。教科書在處理上,以函數(shù)模型的應(yīng)用這一內(nèi)容為主線,以幾個重要的函數(shù)模型為對象或工具,將各部分內(nèi)容緊密結(jié)合起來,使之成為一個系統(tǒng)的整體。教學(xué)中應(yīng)當(dāng)注意貫徹教科書的這個意圖,是學(xué)生經(jīng)歷函數(shù)模型應(yīng)用的完整。

  二次函數(shù)應(yīng)用的教學(xué)反思 篇4

  這節(jié)課我首先讓學(xué)生思考了三個列函數(shù)關(guān)系式的實際問題,接著在學(xué)生探究這三個實際問題的基礎(chǔ)上,思考、歸納出二次函數(shù)的定義以及探討對二次函數(shù)的判斷,最后針對二次函數(shù)的定義和能用二次函數(shù)表示變量之間關(guān)系進行了鞏固應(yīng)用。本節(jié)課通過豐富的現(xiàn)實背景,使學(xué)生感受二次函數(shù)的意義,感受數(shù)學(xué)的廣泛聯(lián)系和應(yīng)用價值。通過學(xué)生的.探究性活動(經(jīng)歷數(shù)學(xué)化的過程),和學(xué)生之間的合作與交流,通過分析實際問題,引出二次函數(shù)的概念,使學(xué)生感受二次函數(shù)與生活的密切聯(lián)系。

  在新知的鞏固應(yīng)用環(huán)節(jié),我精心設(shè)計了不同題型的問題,很好鞏固應(yīng)用了本節(jié)的新知,課堂達到了較好的教學(xué)效果。通過本節(jié)課也讓我真正意識到:對于每節(jié)課的教學(xué)不能僅僅憑經(jīng)驗設(shè)計。在每節(jié)課的課前,一定要進行精心的預(yù)設(shè)。在課堂中,同時要結(jié)合課堂的實際效果和學(xué)生的情況注意靈活處理課堂生成。課堂上在進行分組教學(xué)時,提前預(yù)設(shè)好教學(xué)時間,在每節(jié)課上,既要放的開,同時又要注意在適當(dāng)?shù)臅r機收回,以保證每節(jié)教學(xué)基本任務(wù)完成。

  二次函數(shù)應(yīng)用的教學(xué)反思 篇5

  課后查看了數(shù)學(xué)課程標(biāo)準(zhǔn)中對二次函數(shù)的要求:

  1、通過對實際問題情境的分析確定二次函數(shù)的表達式,并體會二次函數(shù)的意義。

  2、會用描點法畫出二次函數(shù)的圖象,能從圖象上認(rèn)識二次函數(shù)的性質(zhì)。

  3、會根據(jù)公式確定圖象的頂點、開口方向和對稱軸(公式不要求記憶和推導(dǎo)),并能解決簡單的實際問題。

  4、會利用二次函數(shù)的圖象求一元二次方程的近似解。

  發(fā)現(xiàn)并沒有提到用頂點式來求二次函數(shù)的解析式,而且在后面的幾節(jié)課的'教學(xué)中也沒有要求用頂點式來求二次函數(shù)的解析式。但是我認(rèn)為新課標(biāo)所提出的要求應(yīng)該是對學(xué)生的最低要求,它并不反對教師結(jié)合學(xué)生的實際對教材的重新處理。并且從教學(xué)的反饋來看,加上了這3個練習(xí)學(xué)生能較好的理解本課的教學(xué)目標(biāo),同時也能對前面所學(xué)的二次函數(shù)頂點的知識加深印象。適應(yīng)學(xué)生的最近發(fā)展區(qū)。何樂而不為。

  二次函數(shù)應(yīng)用的教學(xué)反思 篇6

  從課本的體系來看,這節(jié)課明顯是要讓學(xué)生明白什么是二次函數(shù),能區(qū)別二次函數(shù)與其他函數(shù)的不同,能深刻理解二次函數(shù)的一般形式,并能初步理解實際問題中對定義域的限制。

  完成這節(jié)課后,靜下心來準(zhǔn)備寫個教學(xué)反思。重新思索教材的編寫意圖,發(fā)現(xiàn)課本這部分內(nèi)容大部分篇幅是在講三個實際問題,由此引出了二次函數(shù),我才意識其實這節(jié)課的重點實際上應(yīng)該放在“經(jīng)歷探索和表示二次函數(shù)關(guān)系的過程,獲得用二次函數(shù)表示變量之間關(guān)系的體驗,從而形成定義”上,有了這個認(rèn)識,一切變得簡單了!

  對于實際問題的選擇,我將4個問題整和于同一個實際背景下,這樣設(shè)計既能引起學(xué)生興趣,也盡量減少學(xué)生審題的時間,顯得非常有層次性,這些實際問題貫穿整個課堂的始終,使整個課堂有渾然天成的感覺。

  對于練習(xí)的設(shè)計,仍然采取了不重復(fù)的原則性,盡量做到每題針對一個問題,并進行及時的小結(jié),也遵循了從開放到封閉的原則,達到了良好的效果。

  對于最后討論題的設(shè)計和提出,是我在進行了整個一章的單元備課后發(fā)現(xiàn),我們其實對二次函數(shù)的最值問題是不講的,但是不講并不代表一點都不會涉及到,其中用到的思想方法還是相當(dāng)重要的,在圖象的觀察中也具有了重要的`地位,再加上這個問題在進行了前面的實際問題的解答之后是呼之欲出的:多種樹——想提高產(chǎn)量——多種幾棵好呢?,所以我設(shè)計了這個探索性的問題:假如你是果園的主人,你準(zhǔn)備多種幾棵?注意這里我并沒有提出最大最小值的問題,但是所有的學(xué)生都能理解到,這是數(shù)學(xué)的魅力。這個問題的提出是整節(jié)課的一個高潮和精華,是學(xué)生學(xué)完二次函數(shù)定義之后,綜合利用函數(shù)的基本知識,代數(shù)式的知識和一元二次方程的知識進行的思考,因而他們的想法和說法,不論對錯,不論全面還是有所偏頗,其中都涉及到了重要的數(shù)學(xué)思想方法,而這些恰恰是非常重要的。事實證明學(xué)生的思維真的是非;钴S的,你要你給了足夠的空間,他們總能從各方各面進行思考和解釋,我也從中看到了他們智慧的火花,這是很令人欣慰的。

  二次函數(shù)應(yīng)用的教學(xué)反思 篇7

  新人教版九年級數(shù)學(xué)第二十二章《二次函數(shù)》是學(xué)生學(xué)習(xí)了正比例函數(shù)、一次函數(shù)進一步學(xué)習(xí)函數(shù)知識,是函數(shù)知識螺旋發(fā)展的一個重要環(huán)節(jié),二次函數(shù)單元教學(xué)反思。二次函數(shù)是描述變量之間關(guān)系的重要的數(shù)學(xué)模型,它既是其他學(xué)科研究時所采用的重要方法之一,也是某些單變量最優(yōu)化問題的數(shù)學(xué)模型。和一次函數(shù)一樣,二次函數(shù)也是一種非;镜某醯群瘮(shù),對二次函數(shù)的研究將為學(xué)生進一步學(xué)習(xí)函數(shù)、體會函數(shù)的思想奠定基礎(chǔ)和積累經(jīng)驗。二次函數(shù)作為初中階段學(xué)習(xí)的重要函數(shù)模型,對理解函數(shù)的性質(zhì),掌握研究函數(shù)的方法,體會函數(shù)的思想是十分重要的,因此本章的重點是二次函數(shù)的圖象與性質(zhì)的理解與掌握,應(yīng)教會學(xué)生畫二次函數(shù)圖象,學(xué)會觀察函數(shù)圖象,借助函數(shù)圖象來研究函數(shù)性質(zhì)并解決相關(guān)的問題。本章的難點是體會二次函數(shù)學(xué)習(xí)過程中所蘊含的數(shù)學(xué)思想方法,函數(shù)圖象的特征和變換有及二次函數(shù)性質(zhì)的靈活應(yīng)用。

  下面是我通過本單元對《二次函數(shù)》教學(xué)內(nèi)容的分類后的幾點反思:

  “二次函數(shù)概念”教學(xué)反思

  關(guān)于“二次函數(shù)概念”教學(xué)中我的成功之處是:教學(xué)時,通過實例引入二次函數(shù)的概念,讓學(xué)生明確二次函數(shù)是一種常見的函數(shù),應(yīng)用非常廣泛,它是客觀地反映現(xiàn)實世界中變量之間的數(shù)量關(guān)系和變化規(guī)律的一種非常重要的數(shù)學(xué)模型。通過學(xué)習(xí)求一些簡單的實際問題中二次函數(shù)的解析式和它的定義域;大部分學(xué)生重視了二次函數(shù)概念的形成和建構(gòu),在概念的學(xué)習(xí)過程中,讓學(xué)生體驗從問題出發(fā)到列二次函數(shù)解析式的過程,體驗用函數(shù)思想去描述、研究變量之間變化規(guī)律的.意義。絕大多數(shù)學(xué)生理解了二次函數(shù)的概念;掌握了二次函數(shù)的一般表達式以及二次項和二次項的系數(shù)、一次項和一次項的系數(shù)及常數(shù)項。

  不足之處表現(xiàn)在:少數(shù)學(xué)生不能從函數(shù)本身的實際意義去正確判定一個函數(shù)是否是二次函數(shù)。

  “二次函數(shù)的圖像及性質(zhì)”教學(xué)反思

  關(guān)于“二次函數(shù)的圖象和性質(zhì)”在教學(xué)中我采用了體驗探究的教學(xué)方式,在教師的配合引導(dǎo)下,讓學(xué)生自己動手作圖,觀察、歸納出二次函數(shù)的性質(zhì),體驗知識的形成過程,力求體現(xiàn)"主體參與、自主探索、合作交流、指導(dǎo)引探"的教學(xué)理念。通過引導(dǎo)學(xué)生在坐標(biāo)紙上畫出二次函數(shù)y=ax的圖象。畫圖的過程包括列表、描點、連線。列表過程是我引導(dǎo)學(xué)生取點的,其間我引導(dǎo)學(xué)生要明確取點注意的事項,比如代表性、易操作性。在性質(zhì)的探究中我讓學(xué)生觀察圖像自主探討當(dāng)a>0時函數(shù)y=ax的性質(zhì)。當(dāng)a<0時函數(shù)y=ax的性質(zhì)。探討函數(shù)的性質(zhì)主要從開口方向、對稱軸、增減性、頂點坐標(biāo)和最值方面入手,讓學(xué)生從特殊函數(shù)來歸納總結(jié)一般函數(shù)的性質(zhì)。通過觀察自己畫出的兩個圖象,它們代表函數(shù)y=ax的兩種情況,找出a的符號不同時他們的相同點、不同點和聯(lián)系點。絕大多數(shù)學(xué)生通過觀察圖像理解并掌握了y=ax圖像的性質(zhì),緊接著,我用了三節(jié)課時間引導(dǎo)學(xué)生通過坐標(biāo)平移探究了y=ax+k、y=a(x-h)、y=a(x-h)+k的圖像,絕大多數(shù)學(xué)生很快掌握了圖形平移的規(guī)律,理解了平移后圖像的性質(zhì),教學(xué)反思《二次函數(shù)單元教學(xué)反思》。達到了學(xué)習(xí)目標(biāo)中的要求。

  不足之處表現(xiàn)在:

  1.課堂上時間安排欠合理。學(xué)生說的多,動手不夠。

  2.學(xué)生作圖速度慢。簡單的列表、描點、連線。學(xué)生做起來就比較困難,作圖中單位長度不準(zhǔn)確,描點不準(zhǔn)確,圖象中的平滑曲線不夠平滑。

  3.合作學(xué)習(xí)的有效性不夠。對于老師提出的問題,各組匯報討論結(jié)果的效果不明顯。說明自主、探究、合作的學(xué)習(xí)方式?jīng)]有落到實處,學(xué)生的創(chuàng)新能力的培養(yǎng)不夠。

  4.少數(shù)學(xué)生二次函數(shù)圖像平移變換能力差。不會進行二次函數(shù)圖像的平移變換。

  “求二次函數(shù)解析式”教學(xué)反思

  關(guān)于“求二次函數(shù)解析式”教學(xué)中,我通過創(chuàng)設(shè)有關(guān)待定系數(shù)法的問題情境出發(fā),導(dǎo)入求二次函數(shù)一般解析式的方法。學(xué)生把已知點代入二次函數(shù)的一般解析式,很快就得出了三元一次方程組,學(xué)生很快就理解了求二次函數(shù)一般解析式的方法。然后我通過變式,給出拋物線的頂點坐標(biāo)和經(jīng)過拋物線的一個點,引導(dǎo)學(xué)生設(shè)頂點式的二次函數(shù)解析式,學(xué)生在老師的點撥下,將已知點代入,很快理解了用頂點式求的二次函數(shù)解析式的方法。再通過變式我又引導(dǎo)學(xué)生觀察拋物線與x軸的交點,啟發(fā)學(xué)生設(shè)交點式解析式求二次函數(shù)解析式的方法。在整個教學(xué)中,環(huán)環(huán)相扣,充分調(diào)動了學(xué)生學(xué)習(xí)的積極性和主動性,所以教學(xué)非常流暢,效果不錯,目標(biāo)的達成度較高。

  不足之處表現(xiàn)在:

  1.一般式的應(yīng)用中學(xué)生的難度在于解三元一次方程組上。

  2.學(xué)生對求頂點式和交點式的二次函數(shù)解析式方法欠靈活

  3.變式訓(xùn)練的習(xí)題太少導(dǎo)致學(xué)生掌握知識不夠牢固

  “實際問題與二次函數(shù)”教學(xué)反思

  關(guān)于“實際問題與二次函數(shù)”教學(xué)中我通過引導(dǎo)學(xué)生回憶二次函數(shù)的三種不同形式的解析式,即一般式、頂點式、交點式的表達形式,以及二次函數(shù)的性質(zhì)如拋物線的開口方向,對稱軸,頂點坐標(biāo),最大最小值,函數(shù)在對稱軸兩側(cè)的增減性。然后出示問題1,即最大面積問題。教材中的三個探究我分別安排了三節(jié)課進行分類教學(xué)。我從學(xué)生的實際出發(fā),幫助學(xué)生解決學(xué)習(xí)中的困難,啟發(fā)和引導(dǎo)學(xué)生觀察二次函數(shù)圖像,對圖像進行分析,得出解決問題的方案。教學(xué)每一類實際問題,我都搜集了大量的實例,所以教學(xué)重點、難點把握的較準(zhǔn)確,同時調(diào)動大多數(shù)學(xué)生學(xué)習(xí)的積極性和主動性,所以這部分內(nèi)容學(xué)生掌握的比較好。

  不足之處表現(xiàn)在:

  1.“探究1”中少數(shù)學(xué)生對于用配方法或公式法求函數(shù)的極值容易出錯

  2.少數(shù)學(xué)生不會分析題意,不能正確列式求出二次函數(shù)的解析式

  3.“探究2”少數(shù)學(xué)生對最大利潤問題中的漲價和定價理解有偏差

  4.“探究3”少數(shù)學(xué)生不會靈活建立直角坐標(biāo)系把實際問題轉(zhuǎn)化為數(shù)學(xué)問題

  以上就是我在教學(xué)本單元的感受、體會。因為二次函數(shù)知識是函數(shù)中的重點也是中考的重點考點,所以針對教學(xué)中的不足和學(xué)生暴露出的問題,在期末復(fù)習(xí)中還要制定詳實有效的復(fù)習(xí)計劃,通過精選習(xí)題再進行最后的強化訓(xùn)練。

  二次函數(shù)應(yīng)用的教學(xué)反思 篇8

  在新課程中,教學(xué)過程要符合學(xué)生學(xué)習(xí)過程,學(xué)生在學(xué)習(xí)過程中應(yīng)該以探究、實踐、合作學(xué)習(xí)為重,要善于引導(dǎo)學(xué)生積極參與教學(xué)過程中的探討活動,讓學(xué)生在動手實踐、自主探究與合作交流的過程中來學(xué)習(xí)數(shù)學(xué)。教師的教學(xué)活動要能激發(fā)學(xué)生探求新知識的興趣和欲望,逐步培養(yǎng)他們提問的意識,鼓勵學(xué)生多思考。同時還要關(guān)注他們在數(shù)學(xué)學(xué)習(xí)過程中的變化和發(fā)展,關(guān)注學(xué)習(xí)方法與習(xí)慣的養(yǎng)成。

  在初中一元二次方程和二次函數(shù)學(xué)習(xí)的基礎(chǔ)上,教學(xué)中通過比較一元二次方程的根與對應(yīng)的二次函數(shù)的圖象和x軸的交點的橫坐標(biāo)之間的關(guān)系,給出函數(shù)的零點的概念,并揭示了方程的根與對應(yīng)的函數(shù)的零點之間的`關(guān)系。然后,通過探究介紹了判斷一個函數(shù)在某個給定區(qū)間存在零點的方法和二分法。并且,教科書在“用二分法求函數(shù)零點的步驟”中滲透了算法的思想,為學(xué)生后續(xù)學(xué)習(xí)算法內(nèi)容埋下伏筆。

  二次函數(shù)應(yīng)用的教學(xué)反思 篇9

  我們已經(jīng)學(xué)習(xí)過了正、反比例、一次函數(shù)的性質(zhì)和圖像,并且學(xué)習(xí)過了一元二次方程之后,現(xiàn)在要學(xué)習(xí)二次函數(shù)的圖像和性質(zhì),從課本和教學(xué)大綱的體系來看,二次函數(shù)是初中數(shù)學(xué)的重中重,怎樣讓學(xué)生們學(xué)好二次函數(shù)?掌握好二次函數(shù)的圖像和性質(zhì)?讓學(xué)生明白什么是二次函數(shù),能區(qū)別二次函數(shù)與其他函數(shù)的不同,能深刻理解二次函數(shù)的一般形式,并能初步理解實際問題中對定義域的限制。

  為此我們?nèi)昙墧?shù)學(xué)組把李進有李校長請到數(shù)學(xué)組里,李校長說要想教好二次函數(shù)開始時一定要讓學(xué)生們動手畫圖,畫不同情況的圖形,通過畫圖讓學(xué)生觀察、理解、掌握所學(xué)的內(nèi)容,并能總結(jié)出各個圖像的相同點和不同點,通過李校長指點,我們在學(xué)習(xí)y=a(x—h)2的圖像和性質(zhì)時,首先讓同學(xué)們開始畫y=x2、y=(x—2)2、和y=(x+2)2。通過對比,觀察發(fā)現(xiàn)它們之間是通過y=x2向左或向右平移得到y(tǒng)=(x—2)2、和y=(x+2)2,但是好多同學(xué)對著圖形還是不理解加2為什么向左平移??這時我想到李校長說的不要害怕費時間,一定要讓同學(xué)畫圖,我又讓同學(xué)畫一組,終于同學(xué)們在學(xué)習(xí)二次函數(shù)y=a(x—h)2的圖象和二次函數(shù)y=ax2的圖象的關(guān)系時,解決了向左或向右平移引出了加減問題,解決了學(xué)生在此容易混淆的難點,讓學(xué)生結(jié)合圖象十分明確地看到在x后面如果是加上h就是向左平移h個單位,反之就是向右平移h個單位,其次就是在看如何平移時關(guān)鍵是看頂點的平移,頂點如何平移那么圖象就如何平移。先由解析式求出頂點從標(biāo),再看平移的問題。

  通過本節(jié)課的講解我感到要想教好數(shù)學(xué),一定要讓同學(xué)動起了,既能引起學(xué)生興趣,又能對前面所學(xué)的二次函數(shù)的.知識加深印象,適應(yīng)學(xué)生的最近發(fā)展區(qū),今后要及時反思自己教學(xué)中存在的不足,在每一節(jié)課前充分預(yù)想到課堂的每一個細節(jié),想好對應(yīng)的措施,不斷提高自己的教學(xué)水平。

  二次函數(shù)應(yīng)用的教學(xué)反思 篇10

  在二次函數(shù)教學(xué)中,根據(jù)它在初中數(shù)學(xué)函數(shù)在教學(xué)中的地位,細心地準(zhǔn)備《二次函數(shù)》的教學(xué),教學(xué)重點為二次函數(shù)的圖象性質(zhì)及應(yīng)用,教學(xué)難點為a、b、c與二次函數(shù)的圖象的關(guān)系。根據(jù)反思備課過程和講課效果,感受頗深,有收獲,也有不足。

  本章的教學(xué)是我對選題有了進一步認(rèn)識,要體現(xiàn)教學(xué)目標(biāo),要有實際意義。要體現(xiàn)學(xué)生的“最近發(fā)展區(qū)”,有利于學(xué)生分析。如為了幫助學(xué)生建立二次函數(shù)的概念,從學(xué)生非常熟悉的正方形的面積的研究出發(fā),通過建立函數(shù)解析式,歸納解析式特點,給出二次函數(shù)的定義。建立了二次函數(shù)概念后,再通過三個例題的分析和解決,促進學(xué)生理解和建構(gòu)二次函數(shù)的概念,在建構(gòu)概念的過程中,讓學(xué)生體驗從問題出發(fā)到列二次函數(shù)解析式的過程。體驗用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義。

  接下來教學(xué)主要從“拋物線的開口方向、對稱軸、頂點坐標(biāo)、增減性”循序漸進,由特殊到一般的學(xué)習(xí)二次函數(shù)的性質(zhì),并幫助學(xué)生總結(jié)性的去記憶。在學(xué)習(xí)過程中加強利用配方法將二次函數(shù)一般式化頂點式、判斷拋物線對稱軸、借圖象分析函數(shù)增減性等的訓(xùn)練。這部分內(nèi)容就是中等偏下的學(xué)生容易混淆,還需掌握方法,加強記憶,強調(diào)必須利用圖形去分析。通過教學(xué),讓學(xué)生對建模思想、圖形結(jié)合思想及分類討論思想都有了較清晰的認(rèn)識,學(xué)會了分析問題的初步方法。

  本章中二次函數(shù)上下左右的平移是我覺得上的比較成功的一部分,主要是借助多媒體,動態(tài)的展示了二次函數(shù)的平移過程,讓學(xué)生自己總結(jié)規(guī)律,很形象,便于記憶。

  二次函數(shù)中含有三個字母系數(shù),因此確定其解析式要三個獨立的條件,用待定系數(shù)法來解。學(xué)習(xí)確定二次函數(shù)的一般式,即的形式,這方面,學(xué)生的學(xué)習(xí)情況還是比較理想的',但方法沒有問題,計算能力還有待加強。

  在學(xué)習(xí)了二次函數(shù)的知識后,我們嘗試運用于解決三個實際問題。問題1是根據(jù)實際問題建立函數(shù)解析式并學(xué)習(xí)如何確定函數(shù)的定義域;問題二是根據(jù)二次函數(shù)的解析式,分析二次函數(shù)的性質(zhì),并通過畫函數(shù)圖像檢驗作出的分析和判斷是否;問題三是綜合應(yīng)用一次函數(shù)、二次函數(shù)的知識確定函數(shù)的解析式和定義域,并嘗試解決銷售問題中最大利潤的問題;通過這三個問題的分析和解決,讓學(xué)生初步體會二次函數(shù)在實際生活中的運用,再次感悟數(shù)學(xué)源于生活又服務(wù)于生活。雖然有部分學(xué)生尚不能熟練解決相關(guān)應(yīng)用問題,但在下面的學(xué)習(xí)中會得到補充和提高。

  但在教學(xué)中,我自認(rèn)為熱情不夠,沒有積極調(diào)動學(xué)生學(xué)習(xí)熱情的語言,感染力不足。今后備課時要重視創(chuàng)設(shè)豐富而風(fēng)趣的語言,來調(diào)動學(xué)生的積極性。

  總之,在數(shù)學(xué)教學(xué)中不但要善于設(shè)疑置難,而且要理論聯(lián)系實際,只有這樣,才會吸引學(xué)生對數(shù)學(xué)學(xué)科的熱愛。

  二次函數(shù)應(yīng)用的教學(xué)反思 篇11

  二次函數(shù)是一種常見的函數(shù),應(yīng)用非常廣泛,它是客觀地反映現(xiàn)實世界中變量之間的'數(shù)量關(guān)系和變化規(guī)律的一種非常重要的數(shù)學(xué)模型。許多實際問題往往可以歸結(jié)為二次函數(shù)加以研究。本節(jié)課是學(xué)習(xí)二次函數(shù)的第一節(jié)課,通過實例引入二次函數(shù)的概念,并學(xué)習(xí)求一些簡單的實際問題中二次函數(shù)的解析式和它的定義域。在教學(xué)中要重視二次函數(shù)概念的形成和建構(gòu),在概念的`學(xué)習(xí)過程中,讓學(xué)生體驗從問題出發(fā)到列二次函數(shù)解析式的過程,體驗用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義。在教學(xué)中,我主要遇到了這樣幾個問題:

  1、關(guān)于能夠進行整理變?yōu)檎降氖阶有问脚袛嗖粶?zhǔn),主要是我自身對這個概念把握不是很清楚,通過這節(jié)課的教學(xué)過程,和各位老師的幫助知道,真正達到了教學(xué)相長的效果。

  2、在細節(jié)方面我還有很多的不足,比如,在二次函數(shù)的表示過程中,應(yīng)注意強調(diào)按自變量的降冪排列進行整理,這類問題在今后的教學(xué)中,我會注意這些方面的教學(xué)。

  3、在變式訓(xùn)練的過程中要注意思考容量和密度以及效度的關(guān)系,注意教學(xué)安排的合理性。另外在教學(xué)語言的精煉方面我還有待加強。

  二次函數(shù)應(yīng)用的教學(xué)反思 篇12

  二次函數(shù)是初中階段的重要知識點,如何讓學(xué)生學(xué)得好,也是困擾我很久的問題。通過畫圖,在觀察圖形中總結(jié)出圖形的性質(zhì),對學(xué)生來說不是難點。重點和難點在準(zhǔn)確靈活地應(yīng)用性質(zhì)。但是要想準(zhǔn)確應(yīng)用,熟記圖形與性質(zhì)是前提,于是我重點放在對“性質(zhì)的記憶”和“對學(xué)生高要求上”。

  強化記憶,功夫在平時。每節(jié)課上課一開始,我在黑板上板書上節(jié)學(xué)過的有代表性的函數(shù),為防止出錯,開始以小組或者同為相互檢查快速說性質(zhì):包括圖形、對稱軸、頂點坐標(biāo)、增減性、最值六個方面。每節(jié)課都將前幾節(jié)課學(xué)過的函數(shù)式板書,學(xué)生自然形成習(xí)慣。直到學(xué)習(xí)頂點式的一般形式這節(jié)課,共出示六個代表性的函數(shù),盡管多,但是在前幾節(jié)課的.基礎(chǔ)上,學(xué)生已經(jīng)達到熟練快速準(zhǔn)確。我和學(xué)生開玩笑說,必須將函數(shù)性質(zhì)記憶到說夢話都說函數(shù)性質(zhì)的地步。

  深化理解,學(xué)生對著自己曾經(jīng)畫過函數(shù)說性質(zhì),不知不覺中將圖像和性質(zhì)有機的結(jié)合在了一起。并逐步的將說具體函數(shù)的性質(zhì)過渡到說一般表達式的函數(shù)性質(zhì)。y=ax2y=ax2+k,y=a(x-h)2+k。

  提高要求。因為手中沒有合適的材料供學(xué)生練習(xí)使用,因此我們每節(jié)課印制了兩份隨堂練習(xí),因為剛學(xué)完性質(zhì),對學(xué)生來說訓(xùn)練題難度不大,開始對學(xué)生的要求是最多錯一個題,結(jié)果發(fā)現(xiàn)學(xué)生的錯誤很少,后期發(fā)現(xiàn)自己的要求低了,于是我改變要求,必須一個不錯方可得A等級。結(jié)果發(fā)現(xiàn),學(xué)生自然對自己的要求也提高了。當(dāng)發(fā)現(xiàn)自己錯一個時,就會反思自己那里沒學(xué)好。一班的學(xué)生平時反映靈活,但是缺少深入細致,必須提高要求,方可讓他們耐下心來認(rèn)真學(xué)習(xí)。

  同時從學(xué)生的答題中,及時發(fā)現(xiàn)學(xué)生存在的問題,及時提醒學(xué)生反思改進。上節(jié)課講過的下次再考照樣錯,如:李萌。在她的反思中,分析到自己不是智力問題,而是心態(tài)和習(xí)慣問題,遇到問題不深入細致,導(dǎo)致基礎(chǔ)知識的應(yīng)用出問題。他月考和期中檢測均是等級B!熬桶催@樣的習(xí)慣學(xué)下去,不能考A”“老師,下次我一定考A”我試圖在平時的學(xué)習(xí)中發(fā)現(xiàn)她的問題,多么希望她保持好的等級。

  二次函數(shù)應(yīng)用的教學(xué)反思 篇13

  9月23日,我在九年級三班講授了二次函數(shù)y=ax2+k、y=a(x-h)2的圖象和性質(zhì)。

  先從復(fù)習(xí)二次函數(shù)y=ax2入手,通過檢測學(xué)生對于二次函數(shù)y=ax2的性質(zhì)掌握較好。然后結(jié)合圖象讓學(xué)生理解二次函數(shù)y=ax2+k的圖象與二次函數(shù)y=ax2的圖象的關(guān)系,通過觀察圖象學(xué)生很容易地理解了二者之間的關(guān)系,在做對應(yīng)練習(xí)時效果也較好。

  在學(xué)習(xí)二次函數(shù)y=a(x-h)2的圖象和二次函數(shù)y=ax2的圖象的關(guān)系時,由于涉及向左或向右平移引出了加減問題,學(xué)生在此容易混淆,盡管讓學(xué)生結(jié)合圖象明確地看到在x后面如果是加就是向左平移的,反之就是向右平移,再就是在看如何平移時關(guān)鍵是看頂點的.平移,頂點如何平移那么圖象就如何平移。先由解析式求出頂點從標(biāo),再看平移的問題。但是還是有一部分同學(xué)混淆了。這一部分內(nèi)容學(xué)習(xí)得不夠理想。反思這一節(jié)課整個過程中的成功和不足之處,我覺得需要改進的有如下幾點:

  1、靈活處理教材。教材上是一節(jié)課學(xué)習(xí)兩種類型的函數(shù),但是根據(jù)學(xué)生作圖的速度和理解能力,一節(jié)課完成兩種類型的函數(shù)有一定的困難。雖然也想過適當(dāng)處理,但是想到教材是一節(jié)課完成兩種函數(shù),所以還是決定兩種函數(shù)在一節(jié)課完成,事實證明一節(jié)課完成兩種函數(shù)效果不是很好。由此可見有時教材上的安排不一定是科學(xué)的,所以要根據(jù)學(xué)生的實際情況進行靈活處理。

  2、認(rèn)真考慮每一個細節(jié)?紤]到一節(jié)課上學(xué)習(xí)兩種類型的函數(shù)時間有些緊張,所以我讓學(xué)生提前畫好了圖象,這樣在課堂上可以節(jié)省時間,由于默認(rèn)學(xué)生已經(jīng)畫好了圖象,所以我也沒有在黑板上再畫出圖象,這樣讓學(xué)生在看圖象時,有的學(xué)生沒有畫出,有的同學(xué)畫錯了,這樣就給學(xué)習(xí)新知識帶來了困難,這是我沒有想到的。所以以后要充分考慮到每一個細節(jié),要想到學(xué)生可能會出現(xiàn)什么情況。

  3、小組評價要掌握好度。在課堂上我運用了小組評價,學(xué)生回答問題非常積極,可是我感到小組評價還有需要改進的地方。學(xué)生回答問題后加分比較耽誤時間,在以后的教學(xué)中我覺得應(yīng)該更靈活把握好度,使評價為教學(xué)服務(wù)而不能因評價而耽誤教學(xué)。

  我覺得要想提高自己的教學(xué)水平,就要及時反思自己教學(xué)中存在的不足,在每一節(jié)課前充分預(yù)想到課堂的每一個細節(jié),想好對應(yīng)的措施,不斷提高自己的教學(xué)水平。

  二次函數(shù)應(yīng)用的教學(xué)反思 篇14

  二次函數(shù)是學(xué)生學(xué)習(xí)了正比例函數(shù),一次函數(shù)和反比例函數(shù)以后進一步學(xué)習(xí)函數(shù)知識,是函數(shù)知識螺旋發(fā)展的一個重要環(huán)節(jié),二次函數(shù)是描述變量之間關(guān)系的重要的數(shù)學(xué)模型,它既是其他學(xué)科研究時所采用的重要方法之一,也是某些簡單變量最優(yōu)化問題的數(shù)學(xué)模型。和一次函數(shù),反比例函數(shù)一樣,它也是一種非;镜某醯群瘮(shù),對二次函數(shù)的研究將為學(xué)生進一步學(xué)習(xí)函數(shù),體會函數(shù)的思想奠定基礎(chǔ)和積累經(jīng)驗。

  本節(jié)課的具體內(nèi)容是讓學(xué)生理解二次函數(shù)的概念,會判斷一個函數(shù)是否是二次函數(shù),并能夠用二次函數(shù)的一般形式解決一些問題。為此,我先帶領(lǐng)學(xué)生復(fù)習(xí)了什么是一次函數(shù),然后設(shè)計具體的問題情境讓學(xué)生自己“推導(dǎo)”出一個二次函數(shù),并觀察、總結(jié)它與一次函數(shù)有什么不同。在此基礎(chǔ)上,逐步歸納出二次函數(shù)的一般解析式:y=ax+bx+c(a,b,c是常數(shù),a≠0)。最后,通過隨堂練習(xí)鞏固二次函數(shù)的概念并解決一些簡單的數(shù)學(xué)問題。

  我個人以為,本節(jié)課的成功之處是:

  教學(xué)時,通過實例引入二次函數(shù)的概念,讓學(xué)生明確二次函數(shù)是一種常見的'函數(shù),應(yīng)用非常廣泛,它是客觀地反映現(xiàn)實世界中變量之間的數(shù)量關(guān)系和變化規(guī)律的一種非常重要的數(shù)學(xué)模型,通過學(xué)習(xí)求一些簡單的實際問題中二次函數(shù)的解析式,大部分學(xué)生重視了二次函數(shù)概念的形成和建構(gòu),在概念的學(xué)習(xí)過程中,讓學(xué)生體驗從問題出發(fā)到列二次函數(shù)解析式的過程,體驗用函數(shù)思想去描述,研究變量之間變化規(guī)律的意義。讓學(xué)生終生受用的思考方法,使學(xué)生的思維水平有所提高。這樣不僅提高了學(xué)生獨立發(fā)現(xiàn)問題、解決問題的能力,避免學(xué)習(xí)落入程式化的窠臼,而且也讓學(xué)生體驗到了成功的快樂。

  二次函數(shù)應(yīng)用的教學(xué)反思 篇15

  二次函數(shù)是初中階段研究的一個具體、重要的函數(shù),在歷年來中考題中都占有較大的分值。二次函數(shù)不僅和學(xué)生前面學(xué)習(xí)的一元二次方程有著密切的聯(lián)系,而且對培養(yǎng)學(xué)生“數(shù)形結(jié)合”的數(shù)學(xué)思想有著重要的作用。而二次函數(shù)的概念是后面學(xué)習(xí)二次函數(shù)的基礎(chǔ),在整個教材體系中起著承上啟下的作用。

  本節(jié)課的內(nèi)容是讓學(xué)生理解二次函數(shù)的概念,會判斷一個函數(shù)是否是二次函數(shù),并能夠用二次函數(shù)的一般形式解決實際問題。為此,先讓學(xué)生復(fù)習(xí)了函數(shù)及一次函數(shù)的相關(guān)內(nèi)容,然后設(shè)計具體的問題情境讓學(xué)生自己推導(dǎo)出一個二次函數(shù),并觀察、總結(jié)它與一次函數(shù)的不同,在此基礎(chǔ)上逐步歸納出二次函數(shù)的一般表達式,最后通過習(xí)題鞏固二次函數(shù)的`概念并解決一些簡單的數(shù)學(xué)問題。

  我個人認(rèn)為,本節(jié)課的成功之處是:一是在教學(xué)設(shè)計上“步步為營”,學(xué)生的思維能力“層層提高”。在教學(xué)設(shè)計上,根據(jù)內(nèi)容的需要,我合理設(shè)計具有針對性的問題,借助學(xué)生已有的知識展開教學(xué),通過解決問題,充分激發(fā)學(xué)生的求知欲,調(diào)動學(xué)生學(xué)習(xí)的積極性和主動性。

  二是在學(xué)習(xí)的過程中,不僅注重對學(xué)生知識的教授,更注重教給學(xué)生學(xué)習(xí)和思考的方法,提高學(xué)生獨立發(fā)現(xiàn)問題、解決問題的能力,讓學(xué)生時時體驗到成功的快樂。

  三是在整個教學(xué)過程中,注重不同層次學(xué)生的發(fā)展,不同的學(xué)生的個體差異,再加上受教學(xué)目的等因素的限制,導(dǎo)致一些學(xué)有余力的學(xué)生會感到吃不飽現(xiàn)象,因此在后面的練習(xí)設(shè)計中,也有針對性的習(xí)題,對這部分學(xué)生提高也是很有幫助的。

  不足之處表現(xiàn)在:

  1、由于學(xué)生對一次函數(shù)的遺忘,因此復(fù)習(xí)占用的太多的時間,導(dǎo)致課后練習(xí)沒完成。

  2、學(xué)生自學(xué)環(huán)節(jié),要求不夠細致,學(xué)生學(xué)的不夠深入只是看了教材,而未挖掘出教材以外的東西。

  3、由于時間緊張小結(jié)的不夠完整。

  總之,本節(jié)課的教學(xué),雖取得了一些成績。但也暴露出了許多問題。今后在教學(xué)中我一定吸取教訓(xùn),努力改正自己的不足,提高自己的教學(xué)上水平。

  二次函數(shù)應(yīng)用的教學(xué)反思 篇16

  二次函數(shù)的應(yīng)用本身是學(xué)習(xí)二次函數(shù)的圖象與性質(zhì)后,檢驗學(xué)生應(yīng)用所學(xué)知識解決實際問題能力的一個綜合考查。新課標(biāo)中要求學(xué)生能通過對實際問題的情境的分析確定二次函數(shù)的表達式,體會其意義,能根據(jù)圖象的性質(zhì)解決簡單的實際問題。本節(jié)課充分運用導(dǎo)學(xué)提綱,教師提前通過一系列問題串的設(shè)置,引導(dǎo)學(xué)生課前預(yù)習(xí),在課堂上通過對一系列問題串的解決與交流,讓學(xué)生通過掌握求面積最大這一類題,學(xué)會用建模的思想去解決其它和函數(shù)有關(guān)應(yīng)用問題。

  教材中設(shè)計先探索最大利潤問題,對九年級學(xué)生來說,在學(xué)習(xí)了一次函數(shù)和二次函數(shù)圖象與性質(zhì)以后,對函數(shù)的思想已有初步認(rèn)識,對分析問題的方法已會初步模仿,能識別圖象的增減性和最值,但在變量超過兩個的實際問題中,還不能熟練地應(yīng)用知識解決問題,而面積問題學(xué)生易于理解和接受,故而在這兒作此調(diào)整,為求解最大利潤等問題奠定基礎(chǔ)。從而進一步培養(yǎng)學(xué)生利用所學(xué)知識構(gòu)建數(shù)學(xué)模型,解決實際問題的能力,這也符合新課標(biāo)中知識與技能呈螺旋式上升的規(guī)律。所以在例題的`處理中適當(dāng)?shù)慕档土颂荻龋寣W(xué)生思維有一個拓展的空間,也有收獲快樂和成就感。在訓(xùn)練的過程中,通過學(xué)生的獨立思考與小組合作探究相結(jié)合,使學(xué)生的分析能力、表達能力及思維能力都得到訓(xùn)練和提高。同時也注重對解題方法與解題模式的歸納與總結(jié),并適當(dāng)?shù)貪B透轉(zhuǎn)化、化歸、數(shù)形結(jié)合等數(shù)學(xué)思想方法。

  就整節(jié)課看,學(xué)生的積極性得以充分調(diào)動,特別是學(xué)困生,在獨立思考和小組合作中改變以往的配角地位,也能積極參與到課堂學(xué)習(xí)活動中,今后繼續(xù)發(fā)揚從學(xué)生出發(fā),從學(xué)生的需要出發(fā),把問題梯度降低,設(shè)計讓學(xué)生在能力范圍內(nèi)掌握新知識,有了足夠的熱身運動之后再去拓展延伸。

【二次函數(shù)應(yīng)用的教學(xué)反思】相關(guān)文章:

正弦函數(shù)公式總結(jié)09-14

集合與函數(shù)概念總結(jié)07-14

《函數(shù)的概念》教案(通用7篇)04-30

教學(xué)反思大全06-24

教學(xué)反思的作用10-28

seasons教學(xué)反思04-27

《驚蟄》教學(xué)反思03-07

《登山游戲》教學(xué)反思12-20

《漢字的發(fā)展》教學(xué)反思03-09

用戶協(xié)議