初中數(shù)學垂心的向徑公的式證明例題講解
初中數(shù)學垂心的向徑公的式證明例題講解
初中數(shù)學垂心的向徑公式證明
垂心的向徑可以通過基本的公式來證明,也可以通過向量的知識來定義。
證明
由OA·OB=OB·OC,得
OA·OB-OC·OB=0
∴(OA-OC)·OB=0
∴CA·OB=0,即OB垂直于AC邊
同理由OB·OC=OC·OA,可得OC垂直于AB邊
由OA·OB=OC·OA,得OA垂直于BC邊
∴點O是三角形的垂心。
以上的證明方法采用的是基本的圖形公式證明,這樣使得同學們?nèi)菀桌斫狻?/p>
初中數(shù)學正方形定理公式
關(guān)于正方形定理公式的內(nèi)容精講知識,希望同學們很好的掌握下面的內(nèi)容。
正方形定理公式
正方形的特征:
、僬叫蔚乃倪呄嗟;
②正方形的四個角都是直角;
、壅叫蔚膬蓷l對角線相等,且互相垂直平分,每一條對角線平分一組對角;
正方形的判定:
、儆幸粋角是直角的菱形是正方形;
、谟幸唤M鄰邊相等的矩形是正方形。
希望上面對正方形定理公式知識的講解學習,同學們都能很好的掌握,相信同學們會取得很好的成績的哦。
初中數(shù)學平行四邊形定理公式
同學們認真學習,下面是老師對數(shù)學中平行四邊形定理公式的內(nèi)容講解。
平行四邊形
平行四邊形的性質(zhì):
①平行四邊形的對邊相等;
②平行四邊形的對角相等;
③平行四邊形的對角線互相平分;
平行四邊形的判定:
①兩組對角分別相等的四邊形是平行四邊形;
、趦山M對邊分別相等的四邊形是平行四邊形;
、蹖蔷互相平分的四邊形是平行四邊形;
、芤唤M對邊平行且相等的四邊形是平行四邊形。
上面對數(shù)學中平行四邊形定理公式知識的講解學習,同學們都能很好的掌握了吧,相信同學們會從中學習的更好的哦。
初中數(shù)學直角三角形定理公式
下面是對直角三角形定理公式的內(nèi)容講解,希望給同學們的學習很好的幫助。
直角三角形的性質(zhì):
、僦苯侨切蔚膬蓚銳角互為余角;
、谥苯侨切涡边吷系闹芯等于斜邊的一半;
、壑苯侨切蔚膬芍苯沁叺钠椒胶偷扔谛边叺钠椒剑ü垂啥ɡ恚;
、苤苯侨切沃30度
角所對的直角邊等于斜邊的一半;
直角三角形的判定:
、儆袃蓚角互余的三角形是直角三角形;
、谌绻切蔚娜呴La、b 、c有下面關(guān)系a^2+b^2=c^2
,那么這個三角形是直角三角形(勾股定理的逆定理)。
以上對數(shù)學直角三角形定理公式的內(nèi)容講解學習,同學們都能很好的掌握了吧,希望同學們都能考試成功。
初中數(shù)學等腰三角形的性質(zhì)定理公式
下面是對等腰三角形的性質(zhì)定理公式的內(nèi)容學習,希望同學們認真看看。
等腰三角形的性質(zhì):
、俚妊切蔚膬蓚底角相等;
、诘妊切蔚捻斀瞧椒志、底邊上的中線、底邊上的高互相重合(三線合一)
上面對等腰三角形的性質(zhì)定理公式的內(nèi)容講解學習,同學們都能很好的掌握了吧,希望同學們在考試中取得很好的成績。
初中數(shù)學三角形定理公式
對于三角形定理公式的學習,我們做下面的內(nèi)容講解學習哦。
三角形
三角形的三邊關(guān)系定理及推論:三角形的兩邊之和大于第三邊,兩邊之差小于第三邊;
三角形的內(nèi)角和定理:三角形的三個內(nèi)角的和等于180度;
三角形的外角和定理:三角形的一個外角等于和它不相鄰的兩個的和;
三角形的外角和定理推理:三角形的一個外角大于任何一個和它不相鄰的內(nèi)角;
三角形的三條角平分線交于一點(內(nèi)心);
三角形的三邊的垂直平分線交于一點(外心);
三角形中位線定理:三角形兩邊中點的連線平行于第三邊,并且等于第三邊的一半;
以上對三角形定理公式的內(nèi)容講解學習,希望同學們都能很好的掌握,并在考試中取得很好的成績哦。
【初中數(shù)學垂心的向徑公的式證明例題講解】相關(guān)文章:
數(shù)學單項式教案10-25
初中數(shù)學考點總結(jié)03-20
初中數(shù)學小課題研修報告10-11
釋放證明04-06
高二量向公式總結(jié)08-29
多項式除以單項式的教案范文(通用6篇)10-15
關(guān)于小學二年級數(shù)學的脫式計算練習題04-11
公文式總結(jié)的基本格式06-27