角平分線的性質(zhì)教案
角平分線的性質(zhì)教案
角平分線的性質(zhì)
教學(xué)目標(biāo)
1.了解角平分線的性質(zhì),并運(yùn)用其解決一些實(shí)際問題。
2.經(jīng)歷操作,推理等活動(dòng),探索角平分線的性質(zhì),發(fā)展空間觀念,在解決問題的過程中進(jìn)行有條理的思考和表達(dá)。
教材分析
重點(diǎn):角平分線性質(zhì)的探索。
難點(diǎn):角平分線性質(zhì)的應(yīng)用。
教學(xué)方法:
預(yù)學(xué)----探究----精導(dǎo)----提升
教學(xué)過程
一創(chuàng)設(shè)問題情境,預(yù)學(xué)角平分線的性質(zhì)
閱讀課本P128-P129,并完成預(yù)學(xué)檢測。
二合作探究
如圖,OC為∠AOB的角平分線,P為OC上任意一點(diǎn)。
提問:
1.如何畫出∠AOB的平分線?
2.若點(diǎn)P到角兩邊的距離分別為PD,PE,量一量,PD,PC是否相等?你能說明為什么嗎?
讓學(xué)生活動(dòng)起來,通過測量,比較,得出結(jié)論。
教師鼓勵(lì)學(xué)生大膽猜測,肯定它們的發(fā)現(xiàn)。
歸納:角平分線上任意一點(diǎn)到角兩邊的距離相等。
三想一想,鞏固角平分線的性質(zhì)
三條公路兩兩相交,為更好的使公路得到維護(hù),決定在三角區(qū)建立一個(gè)公路維護(hù)站,那么這個(gè)維護(hù)站應(yīng)該建在哪里?才能使維護(hù)站到三條公路的距離都相等?
三做一做,拓展課題
如圖,P為△ABC的外角平分線上一點(diǎn),且PE⊥AB,PD⊥AC,E,D分別是垂足,試探索BE與PB+PD的大小關(guān)系。
讓學(xué)生充分討論,鼓勵(lì)學(xué)生自主完成。
教師歸納:
因?yàn)樯渚AP是△ABC的外角∠CAE平分線,
所以PD=PE(角平分線上的點(diǎn)到角兩邊的距離相等)
所以PB+PD=PB+PE
又PB+PE>BE(三角形兩邊之和大于第三邊)
所以PB+PD>BE
思考:若CP也平分△ABC中的∠ACB的外角,則射線BP有怎樣的性質(zhì)?點(diǎn)P又有怎樣的位置?
四課堂練習(xí)
課本P130練習(xí)
五小結(jié)
本節(jié)課學(xué)習(xí)了角平分線的性質(zhì):角平分線上的點(diǎn)到這個(gè)角兩邊的距離相等,反過來,到一個(gè)角兩邊距離相等的點(diǎn),在這個(gè)角的平分線上,三角形的三條角平分線交于一點(diǎn),且這一點(diǎn)到三角形三邊的距離相等。
六作業(yè)
1.課本P130習(xí)題A組T1,T2
2.基礎(chǔ)訓(xùn)練同步練習(xí)。
3.選作拓展題。
七課后反思:
新舊教法對比:新教法更有利于培養(yǎng)學(xué)生合作學(xué)習(xí)的能力。
學(xué)生對于角平分線的性質(zhì)可以倒背如流,但就是容易把到角兩邊的距離看錯(cuò),在以后的教學(xué)中要多加強(qiáng)對距離的認(rèn)識。
學(xué)案
學(xué)習(xí)目標(biāo):
1了解角平分線的性質(zhì)。
2并運(yùn)用角平分線的性質(zhì)解決一些實(shí)際問題。
預(yù)學(xué)檢測:
1角平分線上任意一點(diǎn)到 相等。
2⑴如圖,已知∠1=∠2,DE⊥AB,
DF⊥AC,垂足分別為E、F,則DE____DF.
⑵已知DE⊥AB,DF⊥AC,垂足分別
為E、F,且DE=DF,則∠1_____∠2.
學(xué)點(diǎn)訓(xùn)練:
1.如圖,OP平分∠AOB,PC⊥OA,PD⊥OB,垂足分別是C、D.下列結(jié)論中錯(cuò)誤的是()
A.PC=PDB.OC=OD
C.∠CPO=∠DPOD.OC=PC
2.如圖,△ABC中,∠C=90°,AC=BC,
AD是∠BAC的平分線,DE⊥AB于E,
若AC=10cm,則△DBE的周長等于()
A.10cmB.8cmC.6cmD.9cm
鞏固練習(xí):
已知:如圖,在△ABC中,∠A=90°,AB=AC,
BD平分∠ABC.求證:BC=AB+AD
拓展提升:
如圖,P為△ABC的外角平分線上一點(diǎn),且PE⊥AB,PD⊥AC,E,D分別是垂足,試探索BE與PB+PD的大小關(guān)系。
【角平分線的性質(zhì)教案】相關(guān)文章:
《線段的垂直平分線的性質(zhì)》教學(xué)設(shè)計(jì)07-02
初中數(shù)學(xué)角平分線的公式定理總結(jié)11-01
角的度量經(jīng)典教案06-06
角的認(rèn)識教案06-08
《角的度量》教案06-09
《認(rèn)識角》教案07-10
等式和它的性質(zhì)教案(精選6篇)11-10