多邊形的內角和與外角和教案
作為一名默默奉獻的教育工作者,很有必要精心設計一份教案,借助教案可以提高教學質量,收到預期的教學效果。那么應當如何寫教案呢?以下是小編幫大家整理的多邊形的內角和與外角和教案,歡迎閱讀與收藏。
多邊形的內角和與外角和教案1
[教學目標]
知識與技能:
1.會用多邊形公式進行計算。
2.理解多邊形外角和公式。
過程與方法:
經(jīng)歷探究多邊形內角和計算方法的過程,培養(yǎng)學生的合作交流意識力.
情感態(tài)度與價值觀:
讓學生在觀察、合作、討論、交流中感受數(shù)學轉化思想和實際應用價值,同時培養(yǎng)學生善于發(fā)現(xiàn)、積極思考、合作學習、勇于創(chuàng)新的學習態(tài)度。
[教學重點、難點與關鍵]
教學重點:多邊形的內角和.的應用.
教學難點:探索多邊形的內角和與外角和公式過程.
教學關鍵:應用化歸的數(shù)學方法,把多邊形問題轉化為三角形問題來解決.
[教學方法]
本節(jié)課采用“探究與互動”的教學方式,并配以真的情境來引題。
[教學過程:]
(一)探索多邊形的內角和
活動1:判斷下列圖形,從多邊形上任取一點c,作對角線,判斷分成三角形的個數(shù)。
活動2:①從多邊形的一個頂點出發(fā),可以引多少條對角線?他們將多邊形分成多少個三角形?②總結多邊形內角和,你會得到什么樣的結論?
多邊形邊數(shù)分成三角形的個數(shù)圖形
內角和計算規(guī)律
三角形31180°(3-2)·180°
四邊形4
五邊形5
六邊形6
七邊形7
。。。。。。
n邊形n
活動3:把一個五邊形分成幾個三角形,還有其他的分法嗎?
總結多邊形的內角和公式
一般的,從n邊形的一個頂點出發(fā)可以引____條對角線,他們將n邊形分為____個三角形,n邊形的內角和等于180×______。
鞏固練習:看誰求得又快又準!(搶答)
例1:已知四邊形ABCD,∠A+∠C=180°,求∠B+∠D=?
(點評:四邊形的`一組對角互補,另一組對角也互補。)
(二)探索多邊形的外角和
活動4:例2如圖,在五邊形的每個頂點處各取一個外角,這些外角的和叫做五邊形的外角和.五邊形的外角和等于多少?
分析:(1)任何一個外角同于他相鄰的內角有什系?
(2)五邊形的五個外角加上與他們相鄰的內角所得總和是多少?
(3)上述總和與五邊形的內角和、外角和有什么關系?
解:五邊形的外角和=______________-五邊形的內角和
活動5:探究如果將例2中五邊形換成n邊(n≥3),可以得到同樣的結果嗎?
也可以理解為:從多邊形的一個頂點A點出發(fā),沿多邊形的各邊走過各點之后回到點A.最后再轉回出發(fā)時的方向。由于在這個運動過程中身體共轉動了一周,也就是說所轉的各個角的和等于一個______角。所以多邊形的外角和等于_________。
結論:多邊形的外角和=___________。
練習1:如果一個多邊形的每一個外角等于30°,則這個多邊形的邊數(shù)是_____。
練習2:正五邊形的每一個外角等于________,每一個內角等于_______。
練習3.已知一個多邊形,它的內角和等于外角和,它是幾邊形?
(三)小結:本節(jié)課你有哪些收獲?
(四)作業(yè):
課本P84:習題7.3的2、6題
附知識拓展—平面鑲嵌
(五)隨堂練習(練一練)
1、n邊形的內角和等于__________,九邊形的內角和等于___________。
2、一個多邊形當邊數(shù)增加1時,它的內角和增加()。
3、已知多邊形的每個內角都等于150°,求這個多邊形的邊數(shù)?
4、一個多邊形從一個頂點可引對角線3條,這個多邊形內角和等于()
A:360°B:540°C:720°D:900°
5.已知一個多邊形,它的內角和等于外角和的2倍,求這個多邊形的邊數(shù)?
多邊形的內角和與外角和教案2
教學目標
知識與技能:經(jīng)歷探索多邊形的外角和公式的過程;會應用公式解決問題;
過程與方法:培養(yǎng)學生把未知轉化為已知進行探究的能力,在探究活動中,進一步發(fā)展學生的說理能力與簡單的推理能力.
情感態(tài)度與價值觀:讓學生體驗猜想得到證實的成功喜悅和成就感,在解題中感受生活中數(shù)學的存在,體驗數(shù)學充滿著探索和創(chuàng)造.
教學重點:多邊形外角和定理的探索和應用.
教學難點:靈活運用公式解決簡單的實際問題;轉化的數(shù)學思維方法的滲透.
教學準備:多媒體課件
教學過程
第一環(huán)節(jié) 創(chuàng)設情境,引入新課(5分鐘,學生理解情境,思考問題)
問題:(多媒體演示)清晨,小明沿一個五邊形廣場周圍的小路,按逆時針方向跑步。
(1)小明每從一條街道轉到下一條街道時,身體轉過的角是哪個角?
(2)他每跑完一圈,身體轉過的角度之和是多少?
(3)在上圖中,你能求出∠1+∠2+∠3+∠4+∠5的結果嗎?你是怎樣得到的?
第二環(huán)節(jié) 問題解決(10分鐘,小組討論,合作探究)
對于上述的問題,如果學生能給出一些合理的解釋和解答(例如利用內角和),可以按照學生的思路走下去。然后再給出“小亮的做法”或以“小亮做法”為提示,鼓勵學生思考。如果學生對于這個問題無法突破,教師可以給出“小亮的做法”,或引導學生按“小亮的做法”這樣的思路去思考,以便解決這個問題。
小亮是這樣思考的:如圖所示,過平面內一點O分別作與五邊形ABCDE各邊平行的射線OA′,OB′,OC′,OD′,OE′,得到∠α,∠β,∠γ,∠δ,∠θ,其中,∠α=∠1,∠β=∠2,∠γ=∠3,∠δ=∠4,∠θ=∠5.
這樣,∠1+∠2+∠3+∠4+∠5=360°
問題引申:
1.如果廣場的形狀是六邊形那么還有類似的結論嗎?
2.如果廣場的形狀是八邊形呢?
第三環(huán)節(jié) 探索多邊形的外角與外角和(10分鐘,全班交流,學生理解識記)
1.多邊形內角的一邊與另一邊的反向延長線所組成的角叫做這個多邊形的'外角。
2.在每個頂點處取這個多邊形的一個外角,它們的和叫做這個多邊形的外角和。
探究多邊形的外角和,提出一般性的問題:一個任意的凸n邊形,它的外角和是多少?
鼓勵學生用多種方法解決這個問題,可以參考第二環(huán)節(jié)解決特殊問題的方法去解決這個一般性的問題。
方法Ⅰ:類似探究多邊形的內角和的方法,由三角形、四邊形、五邊形…的外角和開始探究;
方法Ⅱ:由n邊形的內角和等于(n-2)180°出發(fā),探究問題。
結論:多邊形的外角和等于360°
(1)還有什么方法可以推導出多邊形外角和公式?
(2)利用多邊形外角和的結論,能否推導出多邊形內角和的結論?
第四環(huán)節(jié) 鞏固練習(10分鐘,學生利用知識獨立解決問題)
例1一個多邊形的內角和等于它的外角和的3倍,它是幾邊形?
隨堂練習
1.一個多邊形的外角都等于60°,這個多邊形是幾邊形?
2.右圖是三個不完全相同的正多邊形拼成的無縫隙、不重疊的圖形的一部分,這種多邊形是幾邊形?為什么?
挑戰(zhàn)自我:
1.在四邊形的四個內角中,最多能有幾個鈍角?最多能有幾個銳角?
2.在n邊形的n個內角中,最多能有幾個鈍角?最多能有幾個銳角?
挑戰(zhàn)自我的2個問題,對于新授課上的學生而言,難度是比較大的。因為之前不管是多邊形的內角和還是外角和,基本上都是利用等式,從“正向”解決的。而這里要解決的問題,在解決的過程中,需要用到簡單的不等式知識和“反證”的思想,對于初次接觸這些的學生而言,難度是比較大的。教師要注意講解的方式方法。
第五環(huán)節(jié) 課時小結(3分鐘,學生加深記憶)
多邊形的外角及外角和的定義;
多邊形的外角和等于360°;
在探求過程中我們使用了觀察、歸納的數(shù)學方法,并且運用了類比、轉化等數(shù)學思想.
第六環(huán)節(jié) 布置作業(yè):
習題4.11
A組(優(yōu)等生)第1,2,3題
B組(中等生)1、2
C組(后三分之一生)1
多邊形的內角和與外角和教案3
教學目的
使學生能熟練靈活地利用三角形內角和,外角和以及外角的兩條性質進行有關計算。
重點:利用三角形的內角和與外角的兩條性質來求三角形的內角或外角。
難點:比較復雜圖形,靈活應用三角形外角的性質。
教學過程
一、復習提問
1.三角形的內角和與外角和各是多少?
2.三角形的外角有哪些性質?
二、新授
例1.在△ABC中,∠A=12∠B=13∠C,求△ABC各內角的度數(shù)。
分析:由已知條件可得∠B=2∠A,∠C=3∠A所以可以根據(jù)三角形的內角和等于180°來解決。
做一做:如圖,在△ABC中,AD⊥BC,AE平分∠BAC,∠B=80°,∠C=46°
A
BDEA
(1)你會求∠DAE的度數(shù)嗎?與你的同伴交流。
(2)你能發(fā)現(xiàn)∠DAE與∠B、∠C之間的關系嗎?
(2)若只知道∠B-∠C=20°,你能求出∠DAE的度數(shù)嗎?
分析:(1)∠DAE是哪個三角形的內角或外角?
(2)在△ADE中,已知什么?要求∠DAE,必需先求什么?
(3)∠AED是哪個三角形的.外角?
(4)在△AEC中已知什么?要求∠AEB,只需求什么?
(5)怎樣求∠EAC的度數(shù)?
三、鞏固練習
1.如圖,△ABC中,∠BAC=50°,∠B=60°,AD是△ABC的角平分線,求∠ADC,∠ADB的度數(shù)。
2.已知在△ABC中,∠A=2∠B-10°,∠B=∠C+20°。求三角形的各內角的度數(shù)。
四、小結
三角形的內角和,外角的性質反映了三角形的三個內角外角是互相聯(lián)系與制約的,我們可以用它來求三角形的內角或外角,解題時,有時還需添加輔助線,有時結合代數(shù),用方程來解比較方便。
多邊形的內角和與外角和教案4
1
目標
知識與技能:掌握多邊形內角和定理,進一步了解轉化的數(shù)學思想
過程與方法:經(jīng)歷質疑、猜想、歸納等活動,發(fā)展學生的合情推理能力,積累數(shù)學活動的經(jīng)驗,在探索中學會與人合作,學會交流自己的思想和方法.
情感態(tài)度與價值觀:讓學生體驗猜想得到證實的成功喜悅和成就感,在解題中感受生活中數(shù)學的存在,體驗數(shù)學充滿著探索和創(chuàng)造.
重點:多邊形內角和定理的探索和應用
教學難點:邊形定義的理解;多邊形內 角和公式的推導;轉化的數(shù)學思維方法的滲透.
教學過程
第一環(huán)節(jié) 創(chuàng)設現(xiàn)實情境,提出問題,引 入新(3分鐘,學生思考問題,入)
1.多媒 體展示蜂窩,教師結合圖片讓學生發(fā)現(xiàn)生活中無處不在的多 邊形.
2.工人師傅鋸桌面:一個四邊形的桌面,用鋸子鋸掉一個角,還剩幾個角?
第二環(huán)節(jié) 概念形成(5分鐘,學生理解定義)
1.借助多媒體顯示一多邊形,學生類比三角形的有關知識對多邊形定義、并表示出相應的元素.
2.教師再給出嚴格規(guī)范的定義,特別借助學具說明“在平面內” 的必要性.此外,說明正多邊形的定義以及多邊形可分為凸多邊形和凹多邊形.
第三環(huán)節(jié) 實驗探究(12分鐘,學生動手操作,探究內角和)
(以四人小組為單位展開探究活動)
提出問題:三角形的內角和為180°,那么多邊形的內角和是多少度呢?從四邊形開始研究. 1 . c o m
活動一:利用四邊形探索四邊形內角和
要求:先獨立思考再小組合作交流完成.)
。◣熝惨暎私鈱W生探索進程并適當點撥.)
。ㄉ伎己蠼涣,把不同 的方案在紙上完成.)
……(組 間交流,教師展示幾種方法)
教師幫助學生反思:在剛才的探索活動中,大家有不同的方法求四邊形的內角和,這些看似不同的'方法有沒有相似之處?
進而引導 學生得出:我們是把四邊形的問題轉化成三角形,再由三角形內角和為 1 80°,求出四邊形內角和為360°,從而使問題得到解決!進一步提出新的探索活動。
活動二:探索五邊形內角和
。ㄒ螅邯毩⑺伎,自主完成.)
第四環(huán)節(jié) 思維升華(5分鐘,教師引導學生進行推算)
教學過程:
探索n邊形內角和,并試著說明理由
。ńY合出示的圖表從代數(shù)角度猜測公式,并從幾何意義加以解讀)
n邊形的內角和=(n—2)180°
正n邊形的一個內角= =
第五環(huán)節(jié) 能力 拓展(12分鐘,學生搶答)
搶答題:
1.正八邊形的內角和為_______ .
2.已知多邊形的內角和為900°,則這個多邊形的邊數(shù)為_______.
3.一個多邊形每個內角的度數(shù)是150°,則這個多邊形的邊數(shù)是_______.
應用發(fā)散:
4.如圖所示的模板,按規(guī)定,AB,CD的延長線相交成80°的角,因交點不在板上,不便測量,質檢員測得∠BAE=122°,∠DCF=155°.如果你是質檢員,如何知道模板是否合格?為什么?
5.小明有一個設想:2008年奧運會在北京召開,要是能設計一個內角和是2008°的多邊形花壇該多有意義!小明的這個想法能實現(xiàn)嗎?
第六環(huán)節(jié) 時小結:(3分鐘,學生填表)
教師和學生一起對本節(jié)內容和同學們的表現(xiàn)做一小結,然后每位學生利用活動評價表進行自我量化考核,并于下反饋給老師
第七環(huán)節(jié) 布置作業(yè): 習題4、10
A組(優(yōu)等生)1;思考題:一個多邊形去掉一個內角后形成的多邊形內角和為 1800°,你能求出原多邊形的邊數(shù)嗎?
B 組(中等生)1
C組(后三分之一生)1
教學反思:
【多邊形的內角和與外角和教案】相關文章:
教案:多邊形內角和與外角和05-25
多邊形內角和定理證明05-17
《電和磁》的教案03-04
《三角形內角和》教學反思(精選14篇)03-21
《開花和結果》教案02-02
關于《點和線》的教案03-20
小螞蟻和蒲公英教案04-19
《伯牙絕弦》教案和反思03-19
精彩極了和糟糕透了的教案03-20