男人天堂日韩,中文字幕18页,天天伊人网,成人性生交大片免费视频

《全等三角形的判定》教案設計

時間:2023-02-28 10:05:40 教案 我要投稿
  • 相關推薦

《全等三角形的判定》教案設計

  【教學目標】

《全等三角形的判定》教案設計

  1.使學生理 解邊邊邊公理的 內(nèi)容,能運用邊邊邊公理證明三角形全等,為證明線段相等或角相等創(chuàng)造條件;

  2.繼續(xù)培養(yǎng)學生畫圖、實 驗,發(fā)現(xiàn)新知識的能力.

  【重點難點】

  1.難點:讓學生掌握邊邊邊 公理的內(nèi)容和運用公理 的自覺性;

  2.重點:靈活運用SSS判定兩個三角形是否全等.

  【教學過程 】

  一、創(chuàng)設問題情境,引入新課

  請問同學,老師在黑板上畫得兩個三角形,△ ABC與△ 全等嗎? 你是如何判定的.

 。ㄍ瑢W們各抒己見,如:動手用紙剪下一個三角形,剪下疊到另一個三角形上,是否完全重合;測量兩個三角形的所有邊與角,觀 察是否有三條邊對應相等,三個角對應相等.)

  上一節(jié)課我們已經(jīng)探討了兩個三角形只滿足一個或兩個邊、角對應相等條件時,兩個三角形不一定全

  等.滿足三個條件時,兩個三 角形是否全等呢?現(xiàn)在,我們就一起來探討研究.

  二、實踐探索,總結規(guī)律

  1、問題1:如果兩個三角形的三條邊分別相等,那么這兩個三角形會全等嗎?做一做:給你三條線段 、 、 ,分別為 、 、 ,你能畫出這個三角形嗎?

  先請幾位同學說說畫圖思路后,教師指導,同學們動手畫,教師演示并敘述書寫出步驟.

  步驟:

 。1)畫一線段AB使 它的長度等于c(4.8cm).

 。2)以點A為圓心,以線段b(3cm)的長為半徑畫圓;以點B為圓心,以線段a(4cm)的長為半徑畫圓;兩弧交于點C.

 。3)連結AC、BC.

  △ABC即為所求

  把你畫的三角形與其他同學的圖形疊合在一起,你們會發(fā)現(xiàn)什么?

  換三條線段,再試試看,是否有同樣的 結論

  請你結合畫圖、對比,說說你發(fā)現(xiàn)了什么?

  同學們各抒己見,教師總結:給定三條線段,如果它們能組 成三角形,那么所畫的三角形都是全等的. 這樣我們就得到判定三角形全等的一種簡便 的方法: 如果兩個三角形的 三 條邊分別對應相等,那么這兩個三角形全等.簡寫為“邊邊邊”,或簡記為(S.S.S.).

  2、問題2:你能用 相似三角形的判定法解釋這個(SSS)三角形全等的判定法嗎?

 。ㄎ覀円呀(jīng)知道,三條邊對應成比例的兩個三角形相似,而相似比為1時,三條邊就分別對應相等了,這兩個三角形不但形狀相同,而且大小都一樣,即為全等三角形.)

  3、問題3、你用這個“SSS”三角形全等的判定法解釋三角形具有穩(wěn)定性嗎?

 。ㄖ灰切稳叺拈L度確定了,這個三角形的形狀和大小就完全確定了)

  4、范例:

  例1 如圖19.2.2,四邊形ABCD中,AD=BC,AB=DC,試說明△ABC≌△CDA. 解:已知 AD=BC,AB=DC , 又因為AC是公共邊,由(S.S.S.)全等判定法,可知 △ABC≌△CDA

  5、練習:

  6、試一試:已知一個三角形的三個內(nèi) 角分別為 、 、 ,你能畫出這個三角形嗎?把你畫的三角形與同伴畫的進行比較,你發(fā)現(xiàn)了什么?

 。ㄋ嫵龅娜切味际窍嗨频 ,但大小不一定相 同).

  三個對應角相等的兩個三角形不一定全等.

  三、加強練習,鞏固知識

  1、如圖, , ,△ABC≌△DCB全等嗎?為什么?

  2、如圖,AD是△ABC的中線, . 與 相等嗎?請說明理由.

  四、小結

  本節(jié)課探討出可用(SSS)來判定兩個三角形全等,并能靈活運用( SSS )來判定三角形全等.三個角對應相等的兩個三角不一定會全等.

  五、作業(yè)

【《全等三角形的判定》教案設計】相關文章:

《全等三角形的判定》教案09-05

三角形全等的判定教案02-23

三角形全等的判定教學反思04-26

三角形全等的判定說課稿05-22

《三角形全等判定(二)》說課稿02-10

全等三角形的判定教學反思03-03

數(shù)學教案:三角形全等的判定11-16

三角形全等的判定說課稿(通用12篇)10-26

三角形全等的判定評課稿(精選15篇)03-26

初中數(shù)學 數(shù)學教案-三角形全等的判定1 教案12-28