《正多邊形的有關(guān)計算》數(shù)學(xué)教案
在教學(xué)工作者開展教學(xué)活動前,很有必要精心設(shè)計一份教案,編寫教案有利于我們弄通教材內(nèi)容,進而選擇科學(xué)、恰當(dāng)?shù)慕虒W(xué)方法。那么大家知道正規(guī)的教案是怎么寫的嗎?以下是小編精心整理的《正多邊形的有關(guān)計算》數(shù)學(xué)教案,希望對大家有所幫助。
教學(xué)目標(biāo):
。1)會將正多邊形的邊長、半徑、邊心距和中心角、周長、面積等有關(guān)的計算問題轉(zhuǎn)化為解直角三角形的問題;
。2)鞏固學(xué)生解直角三角形的能力,培養(yǎng)學(xué)生正確迅速的運算能力;
。3)通過正多邊形有關(guān)計算公式的推導(dǎo),激發(fā)學(xué)生探索和創(chuàng)新.
教學(xué)重點:
把正多邊形的有關(guān)計算問題轉(zhuǎn)化為解直角三角形的問題.
教學(xué)難點:
正確地將正多邊形的有關(guān)計算問題轉(zhuǎn)化為解直角三角形的問題解決、綜合運用幾何知識準(zhǔn)確計算.
教學(xué)活動設(shè)計:
。ㄒ唬﹦(chuàng)設(shè)情境、觀察、分析、歸納結(jié)論
1、情境一:給出圖形.
問題1:正n邊形內(nèi)角的規(guī)律.
觀察:在圖形中,應(yīng)用以有的知識(多邊形內(nèi)角和定理,多邊形的每個內(nèi)角都相等)得出新結(jié)論.
教師組織學(xué)生自主觀察,學(xué)生回答.(正n邊形的每個內(nèi)角都等于)
2、情境二:給出圖形.
問題2:每個圖形的.半徑,分別將它們分割成什么樣的三角形?它們有什么規(guī)律?
教師引導(dǎo)學(xué)生觀察,學(xué)生回答.
觀察:三角形的形狀,三角形的個數(shù).
歸納:正n邊形的n條半徑分正n邊形為n個全等的等腰三角形.
3、情境三:給出圖形.
問題3:作每個正多邊形的邊心距,又有什么規(guī)律?
觀察、歸納:這些邊心距又把這n個等腰三角形分成了個直角三角形,這些直角三角形也是全等的.
。ǘ┒ɡ、理解、應(yīng)用:
1、定理:正n邊形的半徑和邊心距把正n邊形分成2n個全等的直角三角形.
2、理解:定理的實質(zhì)是把正多邊形的問題向直角三角形轉(zhuǎn)化.
由于這些直角三角形的斜邊都是正n邊形的半徑R,一條直角邊是正n邊形的邊心距rn,另一條直角邊是正n邊形邊長an的一半,一個銳角是正n邊形中心角的一半,即,所以,根據(jù)上面定理就可以把正n邊形的有關(guān)計算歸結(jié)為解直角三角形問題.
3、應(yīng)用:
例1、已知正六邊形ABCDEF的半徑為R,求這個正六邊形的邊長、周長P6和面積S6.
教師引導(dǎo)學(xué)生分析解題思路:
n=6 =30°,又半徑為R a6 、r6.P6、S6.
學(xué)生完成解題過程,并關(guān)注學(xué)生解直角三角形的能力.
解:作半徑OA、OB;作OG⊥AB,垂足為G,得Rt△OGB.
∵∠GOB=,
∴a6 =2·Rsin30°=R,
∴P6=6·a6=6R,
∵r6=Rcos30°=,
∴.
歸納:如果用Pn表示正n邊形的周長,由例1可知,正n邊形的面積S6=Pn rn.
4、研究:(應(yīng)用例1的方法進一步研究)
問題:已知圓的半徑為R,求它的內(nèi)接正三角形、正方形的邊長、邊心距及面積.
學(xué)生以小組進行研究,并初步歸納:
上述公式是運用解直角三角形的方法得到的.
通過上式六公式看出,只要給定兩個條件,則正多邊形就完全確定了.例如:(1)圓的半徑或邊數(shù);(2)圓的半徑和邊心距;(3)邊長及邊心距,就可以確定正多邊形的其它元素.
。ㄈ┬」(jié)
知識:定理、正三角形、正方形、正六邊形的元素的計算問題.
思想:轉(zhuǎn)化思想.
能力:解直角三角形的能力、計算能力;觀察、分析、研究、歸納能力.
。ㄋ模┳鳂I(yè)
歸納正三角形、正方形、正六邊形以及正n邊形的有關(guān)計算公式.
【《正多邊形的計算》數(shù)學(xué)教案】相關(guān)文章:
《正多邊形的有關(guān)計算》數(shù)學(xué)教案06-20
正多邊形的有關(guān)計算的教案08-30
正多邊形的有關(guān)計算的教案設(shè)計08-27
正多邊形的有關(guān)計算的教案設(shè)計08-29
初中數(shù)學(xué)正多邊形計算公式總結(jié)11-22
畫正多邊形教案11-26
正多邊形的優(yōu)秀教案09-13
正多邊形的優(yōu)秀教案08-25