男人天堂日韩,中文字幕18页,天天伊人网,成人性生交大片免费视频

《正比例》教案

時間:2023-03-24 11:20:30 教案 我要投稿

《正比例》教案

  作為一名無私奉獻的老師,往往需要進行教案編寫工作,借助教案可以提高教學質(zhì)量,收到預期的教學效果。那么問題來了,教案應該怎么寫?下面是小編幫大家整理的《正比例》教案,歡迎大家借鑒與參考,希望對大家有所幫助。

《正比例》教案

《正比例》教案1

  本單元在學生具有比和比例的知識,認識常見數(shù)量關(guān)系的基礎上編排,通過對兩個數(shù)量保持商一定或積一定的變化,理解正比例關(guān)系和反比例關(guān)系,滲透初步的函數(shù)思想。正比例和反比例歷來是小學數(shù)學里的重要內(nèi)容之一,與過去的教材相比,本單元進一步加強正、反比例的概念教學,突出正比例關(guān)系的圖像及簡單應用,重視正、反比例與現(xiàn)實生活的聯(lián)系,淡化脫離現(xiàn)實背景判斷比例關(guān)系,不安排應用正、反比例關(guān)系解決實際問題。全單元編排三道例題和一個練習,前兩道例題都是關(guān)于正比例的,分別教學正比例的意義和圖像,后一道例題教學反比例的知識。

  1.抽象實際事例中的數(shù)量變化規(guī)律,形成正比例的概念。

  例1讓學生初步感知兩種相關(guān)聯(lián)的量以及成正比例的量的含義。列表呈現(xiàn)了一輛汽車行駛的路程和時間,通過寫出幾組對應的路程和時間的比并求比值,發(fā)現(xiàn)各個比的比值都是80,理解80是這輛汽車每小時行駛的千米數(shù),由此得出數(shù)量關(guān)系路程/時間=速度(一定)。在數(shù)量關(guān)系中,路程比時間等于速度是舊知識,速度一定是這個問題情境里的規(guī)律,是正比例概念的生長點。教材先指出路程和時間是兩種相關(guān)聯(lián)的量,用時間變化,路程也隨著變化具體解釋兩種量的相關(guān)聯(lián)。再指出這輛汽車行駛的路程和時間的比的比值總是一定,可以說路程和時間成正比例,它們是成正比例的量,學生在這里首次感知了正比例關(guān)系。

  試一試在另一組數(shù)量關(guān)系中繼續(xù)感知正比例關(guān)系,購買鉛筆數(shù)量和總價的表格里有三個空格,先計算買4枝、5枝、6枝這種鉛筆的總價,讓學生體會鉛筆的單價每枝0。3元是不變的,總價是隨著數(shù)量變化而變化的,總價與數(shù)量是兩種相關(guān)聯(lián)的量。然后依次回答其他三個問題,得出鉛筆總價和數(shù)量成正比例的結(jié)論,并用式子總價/數(shù)量=單價(一定)作出解釋。試一試的認知線索與例1相似,留給學生自主活動的空間比例1大,使學生對正比例關(guān)系的體驗更深刻。

  學生在上面兩個實例中感知了正比例的具體含義,教材第63頁要形成正比例的概念。抽象概括正比例的意義是概念形成的重要環(huán)節(jié),也是發(fā)展數(shù)學思考的極好機會。首先用字母表示數(shù)量,每個實例里都有兩個相關(guān)聯(lián)的量,分別是路程和時間或者總價與數(shù)量,兩個量的比的比值分別是速度和單價,因而用字母x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的比值;然后把路程/時間=速度(一定)、總價/數(shù)量=單價(一定)表示成y/x=k(一定),并指出正比例關(guān)系可以用這個字母式子表示。用抽象的字母組成的式子表示正比例關(guān)系是認知難點,教學要聯(lián)系兩個實例,引導學生經(jīng)歷字母表示具體的數(shù)量?字母式子表示常見數(shù)量關(guān)系?字母式子表示正比例關(guān)系的過程,加強對式子y/x=k(一定)的理解。

  練一練判斷生產(chǎn)零件的數(shù)量和時間成不成正比例,是把正比例概念具體化,利用概念進行演繹推理。具體地說,是分析這個情境里的生產(chǎn)零件數(shù)量和所用時間的比的比值是否始終保持一定,如果具備y/x=k(一定)這種關(guān)系,兩種相關(guān)聯(lián)的量成正比例,否則就不成正比例。學生在第62頁試一試里已經(jīng)進行過這樣的分析和判斷,那時是依據(jù)連續(xù)的四個問題進行的,現(xiàn)在要求他們獨立開展有條理的推理活動,進一步理解正比例的意義,掌握判斷兩種量成不成正比例的方法。練習十三第1~3題配合例1的教學,第3題判斷正方形的周長與邊長、面積與邊長成不成正比例?梢愿鶕(jù)表格里填的數(shù)據(jù)進行推理,因為周長與邊長的比4/1、8/2、12/3、16/4的比值都是4,面積與邊長的比1/1、4/2、9/3、16/4的比值不相等,所以正方形的周長與邊長成正比例,面積與邊長不成正比例。也可以根據(jù)正方形的周長公式和面積公式推理,從邊長4=周長可以得到周長與邊長的比的比值是確定的數(shù)4,即周長/邊長=4(一定),所以正方形的周長與邊長成正比例。從邊長邊長=面積可以知道,面積雖然隨著邊長的變化而變化,但是面積與邊長的比的比值是變化的量,即面積/邊長=邊長,所以正方形的面積與邊長不成正比例。前一種思考對問題進行具體的分析,適宜大多數(shù)學生的實際水平,也符合《標準》的要求。后一種思考沒有利用數(shù)據(jù)信息,推理的難度較大,不必對學生提出這樣的要求。教材設計這道題的意圖是進一步使學生理解正比例的意義,突出正比例概念的內(nèi)涵:兩種相關(guān)聯(lián)量的比的比值保持一定。

  2.用圖像直觀表達正比例關(guān)系。

  例2是按照《標準》的要求根據(jù)給出的有正比例關(guān)系的數(shù)據(jù)在有坐標系的方格紙上畫圖,并根據(jù)其中一個量的值估計另一個量的值編排的,設計的三個問題體現(xiàn)了教學正比例圖像的三個步驟。第一步認識圖像上的點,按照A點表示1小時行80千米B點表示5小時行400千米說出其他各點的具體含義,體會各個點都表示汽車在某段時間所行駛的路程,也體會這些點是根據(jù)對應的時間與路程的數(shù)據(jù)在方格紙上畫出來的。第二步認識圖像的形狀,從圖中描出的點在一條直線上,體會正比例關(guān)系的圖像是一條直線。了解正比例圖像是直線對以后畫圖能起兩點作用:一是畫正比例關(guān)系的圖像(如第64頁練一練),可以根據(jù)提供的各組數(shù)據(jù)描出圖像的許多個點,再依次連成直線;二是如果按正比例關(guān)系畫出的點不在同一條直線上,表明畫點出現(xiàn)了錯誤,應及時糾正。第三步應用圖像,估計行駛時間所對應的路程或者行駛路程所用的時間。要指導學生利用畫垂線或畫平行線的技能,盡量使得數(shù)準確些。如估計2。5小時行駛的千米數(shù),要在橫軸上找到表示2。5小時的點,過這點畫橫軸的垂線,得到垂線與圖像的交點,再過交點作縱軸的垂線,根據(jù)垂足在縱軸上的位置估計行駛的路程。

  練習十三第4、5題配合例2的教學。判斷實際問題里相關(guān)聯(lián)的兩種量成不成正比例有兩種思路,一種是看畫成的圖像,如果圖像是一條直線,那么兩種量成正比例;如果圖像不是一條直線,那么兩種量不成正比例。另一種是根據(jù)正比例的意義,利用各組對應的數(shù)據(jù)寫出比、求比值,從比值是否相等作出成不成正比例的判斷。教學時要引導學生應用后一種思路,在判斷活動中加強對概念的理解。

  3.調(diào)動學生的積極性與數(shù)學活動經(jīng)驗,教學成反比例的量。

  例3教學反比例的意義,安排的教學活動線索和例1十分相似。在表格里可以看到筆記本的單價在變化,購買的數(shù)量也在變化,而且每組相對應的單價和數(shù)量的乘積都是60,這不僅是算得的`,還和題目里的用60元買筆記本相一致,因此用數(shù)量關(guān)系式單價數(shù)量=總價(一定)表示這個問題情境里兩個變量的變化規(guī)律。在此基礎上指出單價和數(shù)量是兩種相關(guān)聯(lián)的量,它們成反比例,是兩個成反比例的量。試一試先把表格填寫完整,在填表時體會工地要運的72噸水泥是確定的。然后思考三個問題,抓住每天運的噸數(shù)與需要的天數(shù)的乘積是多少,乘積表示什么數(shù)量以及問題情境的數(shù)量關(guān)系式,從每天運的噸數(shù)天數(shù)=運水泥的總噸數(shù)(一定),理解每天運的噸數(shù)和需要的天數(shù)成反比例。通過上面四個實例的研究,學生初步感知了反比例的含義,于是用字母x、y表示兩種相關(guān)聯(lián)的量,用k表示兩個量的乘積,把反比例關(guān)系表示成xy=k(一定),形成反比例的概念。

  學生認識正比例意義時的數(shù)學活動經(jīng)驗可以遷移到反比例意義的學習中來,教學時要給學生多提供一些獨立思考和合作交流的機會。如讓學生觀察例3的表格、填寫試一試的表格,發(fā)現(xiàn)表格里的變量,解釋兩個變量的相關(guān)聯(lián);讓學生聯(lián)系已有的數(shù)量關(guān)系,研究總價與數(shù)量、每天運的噸數(shù)與需要的天數(shù)的變化,通過計算發(fā)現(xiàn)總價總是60元,一共運水泥的噸數(shù)總是72;讓學生寫出單價、數(shù)量和總價,每天運的噸數(shù)、需要的天數(shù)和運水泥總數(shù)的數(shù)量關(guān)系式,說說總價一定、運水泥的總噸數(shù)一定的理由;讓學生閱讀教材第65頁關(guān)于單價和數(shù)量成反比例的那段話,交流自己的理解和體會;讓學生試著用字母x、y、k表示反比例關(guān)系

  練習十三第6~8題配合例3的教學,重溫認識反比例的過程,應用概念進行判斷,從而加強對反比例的理解。第8題在方格紙上分別呈現(xiàn)了三個面積都是12平方厘米的長方形、三個周長都是14厘米的長方形,看圖在表格里填出各個長方形的長與寬。前三個長方形的長乘寬分別是121=12、62=12、43=12,即長寬=面積(一定),得到的結(jié)論是長方形的面積一定,長與寬成反比例。后三個長方形的長乘寬分別是61=6、52=10、43=12,這些周長相等的長方形,長與寬的乘積不相等,所以長方形的周長一定,長與寬不成反比例。教學這道題要讓學生經(jīng)歷得出結(jié)論的過程,強化對反比例概念的理解。第9~13題是綜合練習,練習內(nèi)容包括成正比例的量與成反比例的量的比較,成比例的量與不成比例的量的比較,比例尺與正比例關(guān)系,還要尋找生活中成正比例的量或成反比例的量的實例。編排這些練習,要通過比較與判斷進一步使學生清晰地理解概念,掌握成正、反比例的量的變化規(guī)律;要聯(lián)系正比例的概念體會比例尺的意義,形成新的認知結(jié)構(gòu);要體驗生活中經(jīng)常看到成正比例的量與成反比例的量,培養(yǎng)數(shù)學意識。

《正比例》教案2

  教學目標:

  1、掌握用正比例的方法解答相關(guān)應用題;

  2、通過解答應用題使學生熟練地判斷兩種相關(guān)聯(lián)的量是否成正比例,從而加深對正比例意義的理解;

  3、培養(yǎng)學生分析問題、解決問題的能力;

  4、發(fā)展學生綜合運用知識解決簡單實際問題的能力。

  教學重點:掌握用正比例的方法解答應用題

  教學難點:能正確判斷兩種相關(guān)聯(lián)的量成什么比例,正確列出比例式。

  教學過程:

  一、復習:出示課件

  二、談話導入:

  1、在上新課之前,先考考大家我們的樓房有多么高?

  2、怎樣測量它大概的高度呢?

  剛才同學們想出了很多的方法去測量大概高度。今天我們學習一種新的方法──正比例應用題,學完后,我們試著用這種方法去計算樓房的大概高度?凑l學得最棒。

  三、新課教學:

  先來研究這樣一個問題。

  1、出示例1課件

  一輛汽車2小時行駛140千米,照這樣的速度,從甲地到乙地共行駛5小時。甲乙兩地之間的公路長多少千米?

  2、分析解答應用題

  (1) 請一位同學讀一讀題目

  (2) 這道題要求什么?已知什么條件?

  (3) 能不能用以前學過的方法解答?

  (4) 讓學生自己解答,邊訂正邊板書:

  140÷2×5

  =70×5

  =350(千米)

  答:________________。

  3、激勵引新

  這兩種方法都合理,還可以有什么方法解答呢?

  學生互議,師引導,我們已經(jīng)學習了比例的知識,能不能用比例解答呢?

  四、探討新知

  1、提出問題

  師:請同學們結(jié)合課本上的例題,討論以下問題。

  (1) 題目中相關(guān)聯(lián)的兩種量是________和________。

  (2) ________一定,_________和_________成_______比例關(guān)系。

  (3) ______行駛的_____ 和 _____的 ________相等。

  2、學生自學例題后小組討論。

  3、組間交流:小組代表把討論結(jié)果在班內(nèi)交流

  4、學生嘗試解答后評價(指名學生板演)

  5、怎樣檢驗?把檢驗過程寫出來。

  6、概括總結(jié)

  (1) 用比例解答應用題與用算術(shù)方法解答應用題教師這道題的解法,如果題目中沒有要求的,我們采取任何一種方法都可以,但如果題目要求用比例解的,就一定要用

  比例的方法解。

  (2) 明確解題步驟。(板)

  用比例方法解答應用題,具體步驟是怎樣的呢?請根據(jù)我們所做的'例題歸納解題步驟。

  1.分析判斷

  2.找出列比例式所需的相等關(guān)系

  3.設未知數(shù)列等式

  4.求解

  5.檢驗寫答語

  五、練習提高

  1、 變式練習,出示課件

  (1)例題改編

 、 如果把這道題的第三個和問題改成:“已知公路長350千米,需要行駛多少小時?”該怎樣解答?

 、 讓學生解答改編后的應用題,集體訂正。

 、 小結(jié) :比較一下改編后的題和例1有什么聯(lián)系和區(qū)別?

  例1的條件和問題以后,題中成正比例的關(guān)系仍沒變,解答的方法出沒有改變,只是要設需要行駛的小時數(shù)為x,列出的等式是:

  140/2=350/x

  (2)24頁做一做:讓學生直接用比例知識解答。做完后,請幾個同學說一說:你為什么這樣列式?

  2、基本練習,出示課件

  3、實踐運用

  (1)匯報數(shù)據(jù):剛才我們上課時提到怎樣測量和計算樓房的大概高度,課前我請幾位同學去測得一些數(shù)據(jù),F(xiàn)在請這些同學跟我們匯報一下。

  (2)能用這些數(shù)據(jù)編一道正比例應用題嗎?

  (3)小組合作編題

  六、總結(jié)

  今天我們學習的是如何用正比例的方法解答以前學過的應用題。解答的步驟怎樣的呢?

  七、課后反思

  1、還有部分學生不理解正比例的意義

  2、不會判斷是不是成正比例的關(guān)系

  3、列出的比例式不是正比例的形式

《正比例》教案3

  教學要求:

  1.使學生認識正比例關(guān)系的意義,理解、掌握成正比例量的變化規(guī)律及其特征,能依據(jù)正比例的意義判斷兩種相關(guān)聯(lián)的量成不成正比例關(guān)系。

  2.進一步培養(yǎng)學生觀察、分析、綜合和概括等能力,讓學生掌握判斷兩種相關(guān)聯(lián)量成不成正比例關(guān)系的方法,培養(yǎng)學生判斷、推理的能力。

  教學重點:

  認識正比例關(guān)系的意義。

  教學難點:

  掌握成正比例量的變化規(guī)律及其特征。

  教學過程:

  一、復習鋪墊

  1.說出下列每組數(shù)量之間的關(guān)系。

  (1)速度時間路程

  (2)單價數(shù)量總價

  (3)工作效率工作時間工作總量

  2.引入新課。

  上面是已經(jīng)學過的一些常見數(shù)量關(guān)系,每組數(shù)量中,數(shù)量之間是有聯(lián)系的,存在著相依關(guān)系。當其中有一個量變化時,另一個量也隨著變化,而且這種變化是有規(guī)律的,這節(jié)課開始,我們就來研究和認識這種變化規(guī)律。今天,先認識正比例關(guān)系的意義。(板書課題)

  二、自主探究:

  1.教學例1。

  出示例l。讓學生計算,在課本上填表,并思考能發(fā)現(xiàn)什么。指名口答,老師板書填表。讓學生觀察表里兩種量變化的數(shù)據(jù),思考:

  (1)表里有哪兩種數(shù)量,這兩種數(shù)量是怎樣變化?

  (2)長方形的面積隨著那種量的變化而變化的?你能看出它們變化的特點嗎?

 。3)分別找出面積與款項對應的數(shù),面積與寬的比各是幾比幾?比值各是多少?

  引導學生進行討論,得出:

  (1)表里的兩種量是長方形的寬與面積(長與面積)。寬與面積(長與面積)是兩種相關(guān)聯(lián)的量,(板書:兩種相關(guān)聯(lián)的量)面積隨著寬(長)的變化而變化。

  (2)寬(長)擴大,面積也擴大;寬(長)縮小,面積也縮小。

  (3)可以看出它們的變化規(guī)律是:面積與寬(面積與長)比的比值總是一定的。(板書:面積和寬比的比值一定)因為面積和寬(面積與長)對應數(shù)值比的比值都是5(2)。提問:這里比值5(2)是什么數(shù)量?誰能說出它的數(shù)量關(guān)系式?板書:面積/寬=長(一定)面積/長=寬(一定)想一想,這個式子表示的是什么意思?(把上面板書補充成:長一定時,面積和寬比的比值一定寬一定時,面積和長比的比值一定)

  2.教學例2。

  出示例2。要求學生按剛才學習例1的方法學習例2,然后把你學習中的發(fā)現(xiàn)綜合起來告訴大家。學生觀察思考后,指名回答。然后再提問:這兩種相關(guān)聯(lián)量的變化規(guī)律是什么?你是怎樣發(fā)現(xiàn)的?你能用數(shù)量關(guān)系式表示出來嗎?誰來說說這個式子表示的意思?(把板書補充成單價一定時,總價和數(shù)量比的比值一定)

  3.概括正比例的意義。

  (1)綜合例1、例2的共同點。

  提問:請大家比較例l和例2,你發(fā)現(xiàn)這兩個例題有什么共同的地方?(①都有兩種相關(guān)聯(lián)的量;②都是一種量隨著另一種量變化;③兩種量里對應數(shù)值的比的比值一定)

  (2)概括正比例關(guān)系的意義。

  像例l、例2里這樣的兩種相關(guān)聯(lián)的量是怎樣的關(guān)系呢,請同學們看課本第95頁最后連個自然段。說明:根據(jù)剛才學習例1、例2時發(fā)現(xiàn)的規(guī)律,這里有兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的.兩個數(shù)的比的比值一定,這兩種量就叫做成正比例的量,它們之間的關(guān)系叫做正比例關(guān)系。追問;兩種相關(guān)聯(lián)量成不成正比例的關(guān)鍵是什么?(比值是不是一定)提問:如果用x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的比值,那么上面這種數(shù)量關(guān)系式可以怎樣寫呢?指出:這個式子表示兩種相關(guān)聯(lián)的量x和y,y隨著x的變化而變化,它們的比值k是一定的。這時就說x和y成正比例關(guān)系。所以,兩個量成正比例關(guān)系,我們就用式子=k(一定)來表示。

  4.教學例3學生看書自學,小組討論,集體交流。

  (1)數(shù)量與時間是不是兩種相關(guān)聯(lián)的量?

  (2)數(shù)量與時間有什么關(guān)系?他們的比值是誰?比值是不是不變的?

 。3)判斷數(shù)量與時間是不是成正比例?

  5.完成97頁練一練。

  三、鞏固練習

  1.(1)提問:例l里有哪兩種相關(guān)聯(lián)的量?這兩種量成正比例關(guān)系嗎,為什么?例2里的兩種量是不是成正比例的量?為什么?提問:看兩種相關(guān)聯(lián)的量是不是成正比例,關(guān)鍵要看什么?

  2.做練習十一第1題。

  讓學生讀題思考。指名依次口答題里的問題。指出:根據(jù)上面所說的正比例的意義,要知道兩個量是不是成正比例關(guān)系,只要先看兩種量是不是相關(guān)聯(lián)的量,再看兩種量變化時比值是不是一定。如果兩種相關(guān)聯(lián)的量變化時比值一定,它們就是成正比例的量,相互之間成正比例關(guān)系。

  3.下列題里有哪兩種相關(guān)聯(lián)的量?這兩種量成不成正比例?為什么?

  一種蘋果,買5千克要10元。照這樣計算,買15千克要30元。

  四、課堂小結(jié)

  這節(jié)課學習了什么內(nèi)容?正比例關(guān)系的意義是什么?用怎樣的式子表示y和x這兩種相關(guān)聯(lián)的量成正比例?判斷兩種相關(guān)聯(lián)的量是不是成正比例,關(guān)鍵看什么?關(guān)鍵是列出關(guān)系式,看是不是比值一定。

  五、家庭作業(yè)

  練習十一第2~6題。

《正比例》教案4

  教學目的:通過混合練習,加深學生對正比例和反比例的意義的理解,提高判斷能力。

  教學過程:

  一、引入

  教師:前面我們學習了正比例和反比例的意義.上節(jié)課我們又把它們進行了比較,你們會根據(jù)正比例和反比例的意義,比較熟練地判斷兩種相關(guān)聯(lián)的.量是成正比例還是成反比例嗎?

  二、課堂練習

  1.分析、研究第3題。

  讓學生先說出長方形的長、寬、面積三個量中.其中一個量與另外兩個量的關(guān)系,教師板書出來:長寬=面積

  = 長 =寬

  提問:

  當面積一定時,長和寬成什么比例關(guān)系?

  當長一定時,面積和寬成什么比例關(guān)系?

  當寬一定時,面積和長成什么比例關(guān)系?

  教師:通過上面的分析,我們知道:要判斷三種相關(guān)聯(lián)的量在什么條件下組成哪種比例關(guān)系,我們可以先寫出它們中的一種量與另外兩種量的關(guān)系,再進行分析,。

  2.第4題,讓學生仿照第3題的方法做。訂正后,教師板書如下:

  每次運貨噸數(shù)運貨次數(shù)=運貨的總噸數(shù)(一定) 每次運貨噸數(shù) 與運貨次數(shù) =運貨次數(shù)(一定) 成反比例關(guān) 系。

  運貨的總噸 =每次運貨噸數(shù)(一定) 數(shù)與運貨次 數(shù)成正比例 關(guān)系

  3.第5題,讓學生獨立做,教師巡視,注意個別輔導。

  4.第6題,先讓學生自己判斷,然后指名回答,第(1)小題成反比例,第(2)、(4)、(6)小題成正比例,第(3)、(5)小題不成比例。

  5.第7題,學生獨立解答后,選一題說說是怎樣解的。

  6.學有余力的學生做第8題。

《正比例》教案5

  教學內(nèi)容:P50第3——8題,正反比例關(guān)系練習。

  教學目的:進一步認識正、反比例關(guān)系的意義,能根據(jù)正、反比例關(guān)系的意義正確判斷,培養(yǎng)學生分析推理和判斷能力。

  教學過程:

  一、揭示課題

  二、基本知識練習

  1、正、反比例意義

  提問:什么叫正比例關(guān)系,什么叫反比例關(guān)系?用字母式子怎樣表示正、反比例的關(guān)系?判斷成正比例或反比例關(guān)系的`關(guān)鍵是什么?

  2、練:950第4題。

  先說出數(shù)量關(guān)系式,再判斷成什么比例?

  三、綜合練習

  1、練習:P50第5題

  想一想:這三種數(shù)量之間有怎樣的關(guān)系式,你能找出哪幾種比例關(guān)系?

  口答并說說怎樣想的。

  2、做練習十二第6題、第7題

  第7題評講時追問:在一個乘法關(guān)系式里,什么情況下某兩個數(shù)成反比例:什么情況一某兩個數(shù)或正比例?

  3、做第8題

  提問:從直線上看,支數(shù)擴大或縮小時,錢數(shù)分別怎樣變化?

  四、延伸練習

  下面題里的數(shù)量成什么關(guān)系?你能列出式子表示數(shù)量之間的相等關(guān)系嗎?

  1、一輛汽車從甲地到乙地要行千米,每小時行50千米,4小時到達;如果每小時行80千米,2.5小時到達。

  2、某工廠3小時織布1800米,照這樣計算,8小時織布X米。

  五、課堂

  通過這節(jié)課的練習,你進一步認識和掌握了哪些知識?

  六、作業(yè)

  《練習與測試》P25第五、六題。

《正比例》教案6

  教學要求

  1.理解正比例的意義,能根據(jù)正比例的意義判斷是不是成正比例。

  2.培養(yǎng)同學們用發(fā)展變化的觀點來分析問題的能力。

  3.培養(yǎng)同學們概括能力和分析判斷能力。

  教學重點

  理解正比例的意義。

  教學難點

  引導同學們通過觀察、發(fā)現(xiàn)思考兩種相關(guān)聯(lián)的量的變化規(guī)律。

  教學過程

  一、復習

  1.已知路程和時間,求速度?

  2.已知總價和數(shù)量,求單價?

  3.已知工作總量和工作時間,求工作效率?

  二、新知

  1.教學例1

  投影出示:一列火車1小時行駛90千米,2小時行駛180千米3小時行駛270千米,4小時行駛360千米 ,5小時行駛450千米,6小時行駛540千米,7小時行駛630千米,8小時行駛720千米 6

 。1)出示下表,填表

  一列火車行駛的時間和路程:

  時間

  路程

  填表,思考:再填表中你發(fā)現(xiàn)了什么?

  點撥:時間變化,路程也隨著變化,我們就說時間和路程是兩個相關(guān)聯(lián)的量。(板書:兩種相關(guān)聯(lián)的量)

  根據(jù)計算,你發(fā)現(xiàn)了什么?

  指出:相對應的兩個數(shù)的比的比值一樣或固定不變,在數(shù)學上叫做一定。

  用式子表示他們的`關(guān)系是:路程/時間=速度(一定)(板書)

 。2)教師小結(jié):

  同學們通過填表交流,知道時間和路程是。兩種相關(guān)聯(lián)的量,路程隨著時間的變化而變化。時間擴大,路程隨著擴大;時間縮小,路程也隨著縮小。即:路程/時間=速度(一定)

  2.教學例2

 。1)花布的米數(shù)和總價表:

  數(shù)量1234567

  總價8.216.424.632.841.049.257.4

 。2)觀察圖表,發(fā)現(xiàn)什么規(guī)律?

  用式子表示它們的關(guān)系:總價/米數(shù)=單價(一定)

 。3)抽象概括正比例的意義。

 、俦容^例1、例2,思考并討論:這兩個例題有什么共同點?

 、趦煞N相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的比值(也就是商)一定,這兩個量就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。

  ③看書,進一步理解正比例的意義。

  ④如果用x和y表示兩種相關(guān)聯(lián)的量,用k表示它們的比值(一定),正比例關(guān)系怎樣用字母表示出來?

  x/y=k(一定)

  ⑤根據(jù)正比例的意義以及表示正比例的式子想一想:構(gòu)成正比例關(guān)系的兩種量必須具備哪些條件?

  3.教學例3

 。1)出示例3:每袋面粉的重量一定,面粉的總重量和袋數(shù),是不是成正比例?

  (2)學生討論解答。

《正比例》教案7

  1、成正比例的量

  教學內(nèi)容:成正比例的量

  教學目標:

  1.使學生理解正比例的意義,會正確判斷成正比例的量。

  2.使學生了解表示成正比例的量的圖像特征,并能根據(jù)圖像解決有關(guān)簡單問題。

  教學重點:正比例的意義。

  教學難點:正確判斷兩個量是否成正比例的關(guān)系。

  教學過程:

  一揭示課題

  1.在現(xiàn)實生活中,我們常常遇到兩種相關(guān)聯(lián)的量的變化情況,其中一種量變化,另一種量也隨著變化,你以舉出一些這樣的例子嗎?

  在教師的此導下,學生會舉出一些簡單的例子,如:

 。1)班級人數(shù)多了,課桌椅的數(shù)量也變多了;人數(shù)少了,課桌椅也少了。

 。2)送來的牛奶包數(shù)多了,牛奶的總質(zhì)量也多了;包數(shù)少了,總質(zhì)量也少了。

  (3)上學時,去的速度快了,時間用少了;速度慢了,時間用多了。

  (4)排隊時,每行人數(shù)少了,行數(shù)就多了;每行人數(shù)多了。行數(shù)就少了。

  2.這種變化的量有什么規(guī)律?存在什么關(guān)系呢?今天,我們首先來學習成正比例的量。板書:成正比例的量

  二探索新知

  1.教學例1

 。1)出示例題情境圖。

  問:你看到了什么?

  生:杯子是相同的。杯中水的高度不同,水的體積也不同,高度越高體積越大;高度越低,體積越小。

  (2)出示表格。

  高度/㎝24681012

  體積/㎝350100150200250300

  底面積/㎝2

  問:你有什么發(fā)現(xiàn)?

  學生不難發(fā)現(xiàn):杯子的底面積不變,是25㎝2。

  板書:

  教師:體積與高度的比值一定。

 。2)說明正比例的意義。

 、僭谶@一基礎上,教師明確說明正比例的意義。

  因為杯子的底面積一定,所以水的體積隨著高度的變化而變化。水的高度增加,體積也相應增加,水的高度降低,體積也相應減少,而且水的體積和高度的比值一定。

  板書出示:像這樣,兩種相關(guān)聯(lián)的量,一種量變化,另一種子量也隨著變化,如果這兩種量中相對應的兩個數(shù)的比值一定,這兩種理就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。

 、趯W生讀一讀,說一說你是怎么理解正比例關(guān)系的。

  要求學生把握三個要素:

  第一,兩種相關(guān)聯(lián)的量;

  第二,其中一個量增加,另一個量也增加;一個量減少,另一個量也減少。

  第三,兩個量的比值一定。

  (3)用字母表示。

  如果用字母X和Y表示兩種相關(guān)聯(lián)的量,用K表示它們的`比值(一定),比例關(guān)系可以用正的式子表示:

  (4)想一想:

  師:生活中還有哪些成正比例的量?

  學生舉例說明。如:

  長方形的寬一定,面積和長成正比例。

  每袋牛奶質(zhì)量一定,牛奶袋數(shù)和總質(zhì)量成正比例。

  衣服的單價一不定期,購買衣服的數(shù)量和應付錢數(shù)成正比例。

  地磚的面積一定,教室地板面積和地磚塊數(shù)成正比例。

  2.教學例2。

 。1)出示表格(見書)

 。2)依據(jù)下表中的數(shù)據(jù)描點。(見書)

 。3)從圖中你發(fā)現(xiàn)了什么?

  這些點都在同一條直線上。

 。4)看圖回答問題。

 、偃绻兴母叨仁7㎝,那么水的體積是多少?

  生:175㎝3。

 、隗w積是225㎝3的水,杯里水面高度是多少?

  生:9㎝。

 、郾兴母叨仁14㎝,那么水的體積是多少?描出這一對應的點是否在直線上?

  生:水的體積是350㎝3,相對應的點一定在這條直線上。

 。5)你還能提出什么問題?有什么體會?

  通過交流使學生了解成正比例量的圖像特往。

  3.做一做。

  過程要求:

  (1)讀一讀表中的數(shù)據(jù),寫出幾組路程和時間的比,說一說比值表示什么?

  比值表示每小時行駛多少千米。

 。2)表中的路程和時間成正比例嗎?為什么?

  成正比例。理由:

 、俾烦屉S著時間的變化而變化;

 、跁r間增加,路程也增加,時間減少,路程也隨著減少;

 、鄯N程和時間的比值(速度)一定。

 。3)在圖中描出表示路程和時間的點,并連接起來。有什么發(fā)現(xiàn)?所描的點在一條直線上。

 。4)行駛120KM大約要用多少時間?

 。5)你還能提出什么問題?

  4.課堂小結(jié)

  說一說成正比例關(guān)系的量的變化特征。

  三鞏固練習

  完成課文練習七第1~5題。

  2、成反比例的量

  教學內(nèi)容:成反比例的量

  教學目標:

  1.經(jīng)歷探索兩種相關(guān)聯(lián)的量的變化情況過程,發(fā)現(xiàn)規(guī)律,理解反比例的意義。

  2.根據(jù)反比例的意義,正確判斷兩種量是否成反比例。

  教學重點:反比例的意義。

  教學難點:正確判斷兩種量是否成反比例。

  教學過程:

  一導入新課

  1.讓學生說一說成正比例的兩種量的變化規(guī)律。

  回答要點:

 。1)兩種相關(guān)聯(lián)的量;

 。2)一個量增加,另一個量也相應增加;一個量減少,另一個量也相應減少;

 。3)兩個量的比值一定。

  2.舉例說明。

  如:每袋大米質(zhì)量相同,大米的袋數(shù)與總質(zhì)量成正比例。

  理由:

 。1)每袋大米質(zhì)量一定,大米的總質(zhì)量隨著袋數(shù)的變化而變化;

 。2)大米的袋數(shù)增加,大米的總質(zhì)量也相應增加,大米的袋數(shù)

  減少,大米的總質(zhì)量也相應減少;

  (3)總質(zhì)量與袋數(shù)的比值一定。

  所以,大米的袋數(shù)與總質(zhì)量成正比例。

  板書:

  3.揭示課題。

  今天,我們一起來學習反比例。兩種量是什么樣的關(guān)系時,這兩種量成反比例呢?

  板書課題:成反比例的量[ 內(nèi) 容 結(jié) 束 ]

《正比例》教案8

  教學內(nèi)容:

  P47~48,例7、正、反比例的比較。

  教學目的:

  進一步理解正、反比例的意義,弄清它們的聯(lián)系和區(qū)別,掌握它們的變化規(guī)律,能正確運用。

  教學過程:

  一、復習

  判斷下面兩種理成不成比例,成什么比例,為什么?

  (1)單價一定,數(shù)量和總價。

 。2)路程一定,速度和時間。

  (3)正方形的邊長和它的面積。

  (4)工作時間一定,工作效率和工作總量。

  二、新授。

  1、揭示課題

  2、學習例7

 。1)認識:“千米/時”的讀法意義。

 。2)出示書中的問題要求學生逐一回答。

 。3)提問:誰能說一說路程、速度和時間這三個量可以寫成什么樣的關(guān)系式?

 。4)填空:用下面的形式分別表示兩個表的內(nèi)容。

  當()一定時,()和()成()比例關(guān)系。

  還有什么樣的依存關(guān)系?

 。5)教師作評講并。

 。6)用圖表示例7中的.兩種量的關(guān)系。

  指導學生描點、連線

  觀察:在表里路程和時間成什么比例?表示正比例關(guān)系的是一條什么線?A點表示什么?B點呢?

  在這條直線上,當時間的值擴大時,路程的對應值是怎樣變化的?時間的值縮小呢?

  用同樣的方法觀察右表。

  3、正、反比例的特點(異同點)

  由學生比、說

  三、鞏固練習

  1、練一練第1、2題

  2、P49第1題。

  四、課堂:

  正、反比例關(guān)系各有什么特點?怎樣判斷正比例或反比例關(guān)系?關(guān)鍵是什么?

  五、作業(yè)

  P49第2題(1)(4)(5)(6)(9)

  六、課后作業(yè)

  1、P49第2題(2)(3)(7)(8)(10)

  2、收集生活中正、反比例關(guān)系的量并分析。

《正比例》教案9

  【教學內(nèi)容】

  《義務教育課程標準實驗教科書·數(shù)學》六年級下冊39頁~40頁,練習七第1、2題。

  【教學目標】

  1、通過觀察、比較、判斷、歸納等方法,幫助學生理解正比例的意義。

  2、培養(yǎng)學生用事物相互聯(lián)系和發(fā)展變化的觀點來分析問題,使學生能夠根據(jù)正比例的意義判斷兩種量是不是成正比例。

  3、用表示變量之間的關(guān)系,初步滲透函數(shù)思想。

  【教學重點】

  理解正比例的意義。

  【教學難點】

  引導學生通過觀察、思考發(fā)現(xiàn)兩種相關(guān)聯(lián)的量的比值一定,概括出成正比例的`概念。

  【教具準備】

  學生實驗錄像課件

  一、觀察實驗,引入新課

  1、認識實驗器材

  (1)談話:同學們,你們喜歡做實驗嗎?我們一起去實驗室瞧瞧吧。ㄕn件出示:實驗桌和實驗器材。)

 。2)提問:實驗桌上有什么呢?

 。3)學生匯報:(6個大小相同的玻璃杯。1把尺子。1桶水。還有一張實驗報告單。)

 。4)出示實驗報告單:

《正比例》教案10

  教學目標:

  1、使學生進一步認識正、反比例的意義,了解正反比例的區(qū)別和聯(lián)系,更好的把握正、反比例概念的本質(zhì)。

  2、進一步加深學生對正、反比例意義的理解,使他們能夠從整體上把握各種量之間的比例關(guān)系,能根據(jù)相關(guān)條件直接判斷兩種量成什么比例,提高判斷成正比例、反比例量的能力。

  教學重難點:進一步認識正、反比例的意義,能根據(jù)相關(guān)條件直接判斷兩種量成什么比例,提高判斷成正比例、反比例量的能力。

  教學準備 :實物投影

  教學預設:

  一、概念復習:

  1、提問:怎樣的兩個量成正、反比例?

  根據(jù)學生回答板書字母關(guān)系式。

  二、書本練習:

  1、第9題。

 。1)觀察每個表中的數(shù)據(jù),討論前三個問題。

  要注意啟發(fā)學生根據(jù)表數(shù)據(jù)的變化規(guī)律,寫出相應的數(shù)量關(guān)系式,再進行判斷。

  (2)組織學生討論第四個問題。

  啟發(fā)學生根據(jù)條件直接寫出關(guān)系式,再根據(jù)關(guān)系式直接作出判斷。

  2、第10題。

 。1)看圖填寫表格。

  (2)求出這幅圖的比例尺,再根據(jù)圖像特點判斷圖上距離和實際距離成什么比例,也可以根據(jù)相關(guān)的計算結(jié)果作出判斷。

  要讓學生認識到:同一幅地圖的比例尺一定,所以這幅圖的圖上距離和實際距離成正比例。

 。3)啟發(fā)學生運用有關(guān)比例尺的知識進行解答。

  3、第11題。

  填寫表格,組織學生對兩個問題進行比較,進一步突出成反比例量的特點。

  4、第12題。

  引導學生說說每題中的哪兩種量是變化的,這兩種量中,一種量變化,另一種量也隨著變化,能不能用相應的.數(shù)量關(guān)系式表示這種變化的規(guī)律。

  5、第13題。

  讓學生小組進行討論,教師指導有困難的學生。

  三、補充練習

  1、對比練習:判斷下列說法是否正確。

  (1)圓的周長和圓的半徑成正比例。( )

 。2)圓的面積和圓的半徑成正比例。( )

 。3)圓的面積和圓的半徑的平方成正比例。( )

 。4)圓的面積和圓的周長的平方成正比例。( )

 。5)正方形的面積和邊長成正比例。( )

 。6)正方形的周長和邊長成正比例。( )

  (7)長方形的面積一定時,長和寬成反比例。( )

 。8)長方形的周長一定時,長和寬成反比例。( )

 。9)三角形的面積一定時,底和高成反比例。( )

 。10)梯形的面積一定時,上底和下底的和與高成反比例。( )

《正比例》教案11

  教學內(nèi)容:P62~P63頁的例1及相應的“試一試”“練一練”。完成練習十三第1~3題。

  教學目標:

  1.使學生經(jīng)歷從具體實例中認識成正比例的量的過程,初步理解正比例的意義,學會根據(jù)正比例的意義判斷兩種相關(guān)聯(lián)的量是不是成正比例。

  2.讓學生在認識成正比例的量的過程中,初步體會數(shù)量之間相依互變的關(guān)系,感受有效表示數(shù)量關(guān)系及其變化規(guī)律的不同數(shù)學模型,進一步培養(yǎng)觀察能力和發(fā)現(xiàn)規(guī)律的能力。

  3.讓學生進一步體會數(shù)學和日常生活的密切聯(lián)系,增強從生活現(xiàn)象中探索數(shù)學知識和規(guī)律的意識。

  教學重難點:

  重點:結(jié)合實際情境認識成正比例量的特點,加深對正比例量的理解。

  難點:能跟據(jù)正比例的意義判斷兩種相關(guān)聯(lián)的量是否成正比例。

  教學準備:課件

  課時安排:第一課時

  課前設計:

  一、導入。

  談話:通過將近六年的數(shù)學學習,我們已經(jīng)了解了一些數(shù)量之間的關(guān)系,例如行程問題中速度、時間、路程之間的關(guān)系,你知道這三個量之間的關(guān)系嗎?再如購物問題中單價、數(shù)量、總價之間的關(guān)系,你知道這三個量之間的關(guān)系嗎?這個單元我們要用一種新的觀點,更深入地研究數(shù)量之間的關(guān)系,什么觀點呢?事物變化的觀點,讓一些量變起來,從變化中發(fā)現(xiàn)規(guī)律。

  二、教學例1。

  1.出示例1的表格。提問:表中列出了哪兩種量?(板書:時間和路程)觀察表中的數(shù)據(jù),哪一種量的變化引起了另一種量的變化?你是怎么看出來的`?

  指名回答。

  談話:時間變化,路程也隨著變化,我們就說,路程和時間是兩種相關(guān)聯(lián)的量。(板書:路程和時間是兩種相關(guān)聯(lián)的量。)“關(guān)聯(lián)”是什么意思?為什么說路程和時間是兩種相關(guān)聯(lián)的量?

  2.我們已經(jīng)知道路程和時間是兩種相關(guān)聯(lián)的量。還要進一步研究,這兩種量的變化有什么規(guī)律?

  3.仔細觀察表中的數(shù)據(jù),這兩種量在變化中有沒有什么不變的規(guī)律呢?現(xiàn)在小組內(nèi)討論,再在班內(nèi)交流。(有的學生可能會發(fā)現(xiàn)兩種量中所對應的兩個數(shù)的比值不變)

  提問:觀察這些比值,你發(fā)現(xiàn)了什么?這個比值80表示什么?(速度)你能用一個式子來表示上面的規(guī)律嗎?根據(jù)學生回答,板書:=速度(一定)

  4.講述:通過觀察和計算,我們對路程和時間的關(guān)系有兩點發(fā)現(xiàn):第一點路程和時間是兩種相關(guān)聯(lián)的量,也就是時間變化,路程也隨著變化;第二點路程和對應的時間的比的比值一定(也就是速度一定)。具備了這兩個條件,我們就可以得到結(jié)論:行駛的路程和時間成正比例;行駛的路程和時間成正比例的量。(板書:路程和時間成正比例,路程和時間是成正比例的量)

  5.談話:這就是這節(jié)課我們所學習的正比例。(板書課題)請閱讀課本第62頁的一段文字,各自默讀,邊讀邊畫。

  再指名讀。提問:你能讀懂嗎?

  在這題中,哪個量和哪個量是成正比例的量?同桌互相說一說為什么時間和路程是成正比例的量,并在全班交流。

  三、教學“試一試”

  1.出示“試一試”,學生自由讀題。

  2.要求學生根據(jù)已知條件把表格填寫完整。

  3.學生根據(jù)表中數(shù)據(jù),先嘗試獨立完成表格。下面的四個問題,然后和同桌交流。

  4.全班交流。板書:總價和數(shù)量是相關(guān)聯(lián)的量,=單價(一定),總價和數(shù)量成正比例。

  5.讓學生根據(jù)板書完整地說一說鉛筆的總價和數(shù)量成什么關(guān)系。

  四、用含有字母的式子表示正比例關(guān)系。

  1.比較例題和“試一試”的相同點。

  提問:觀察上面的兩個例子,它們有什么相同的地方呢?

  2.談話:如果用字母和分別表示兩種相關(guān)聯(lián)的量,用表示它們的比值,正比例關(guān)系可以用怎樣的式子來表示呢?

  談話:這是正比例關(guān)系式表達式,對這個式子要這樣理解:和表示兩種相關(guān)聯(lián)的量,比的比值一定,我們就說和成正比例。

  五、鞏固練習

  1.完成第63頁“練一練”。

  學生獨立思考并作出判斷,要用完整的語言說出判斷的理由。

  2.完成補充習題。

  一輛自行車在公路上行駛,行駛的時間和路程如下表。

  時間/時123456……

  路程/千米355060708590……

  這輛自行車行駛的時間和路程是相關(guān)聯(lián)的量嗎?成正比例嗎?為什么?

  先獨立思考,再和同桌說一說。

  全班交流,并討論:成正比例的量必須符合哪些條件?

  3.完成練習十三第1題。

 。1)學生按題目要求嘗試獨立完成。

 。2)全班交流,重點讓學生說說為什么碾米機的工作時間和碾米數(shù)量成正比例,引導學生完整地說出判斷的思考過程。

  4.完成練習十三第2題。

  (1)讓學生獨立判斷,并說明理由。

  (2)談話:如果去掉“同一時間”這個前提,物體的高度和影長還成正比例嗎?

  5.完成練習十三第3題。

 。1)說一說:將圖中的正方形按怎樣的比放大,放大后的正方形的邊長各是幾厘米?

 。2)畫一畫:在書上畫出放大后的圖形。

 。3)算一算:算出每個圖形的周長和面積,并填在表中。

 。4)討論表格下面的兩個問題。談話:兩種量若要成正比例必須是相關(guān)聯(lián)的量,但相關(guān)聯(lián)的量不一定成正比例,只有當兩種相關(guān)聯(lián)的量的比值一定時,它們才成正比例。

  六、全課。

  提問:通過這節(jié)課的學習,你有什么收獲?

  板書設計

  認識成正比例的量

  時間和路程路程和時間是兩種相關(guān)聯(lián)的量。

 。80=80=80……

  =速度(一定)

  路程和時間成正比例,路程和時間是成正比例的量。

  總價和數(shù)量是相關(guān)聯(lián)的量,=單價(一定),總價和數(shù)量成正比例

 。剑ㄒ欢ǎ

《正比例》教案12

  教學目標

  1.經(jīng)歷從具體實例中認識成正比例的量的過程,初步理解正比例的意義,學會根據(jù)正比例的意義判斷兩種相關(guān)聯(lián)的量是不是成正比例。

  2.在認識成正比例的量的過程中,初步體會數(shù)量之間相依互變的關(guān)系,感受有效表示數(shù)量關(guān)系及其變化規(guī)律的不同數(shù)學模型,進一步培養(yǎng)觀察能力和發(fā)現(xiàn)規(guī)律的能力。

  3.進一步體會數(shù)學與日常生活的密切聯(lián)系,增強從生活現(xiàn)象中探索數(shù)學知識和規(guī)律的意識。

  教學重點

  正確理解正比例的意義,并能準確判斷成正比例的量。

  教學難點

  引導學生通過觀察、思考發(fā)現(xiàn)兩種相關(guān)聯(lián)的量的變化規(guī)律,概括出正比例關(guān)系的概念。

  教學資源

  學生已學過一些常見的數(shù)量關(guān)系和計算公式,掌握比和比例的知識。

  預習菜單。

  預習作業(yè)設計

  1.填空

  ①已知路程和時間,怎樣求速度?()Ο()=速度

 、谝阎們r和數(shù)量,怎樣求單價?()Ο()=速度

 、垡阎ぷ骺偭亢凸ぷ鲿r間,怎樣求工作效率?()Ο()=速度

  2.預習例1觀察下表,思考下列問題:

  一輛汽車行駛的時間和路程如下:

  時間(時)

  1

  2

  3

  4

  5

  6

  ……

  路程

  (千米)

  80

  160

  240

  320

  4000

  480

  ……

 、俦碇杏心膬煞N量?

 、谶@兩種量的數(shù)值分別是怎樣變化的?

 、勰惆l(fā)現(xiàn)這兩種量變化有什么規(guī)律嗎?如果看不出規(guī)律的話,可以先寫出幾組相對應的路程和時間的比,求出比值,想想有什么規(guī)律。

  學程設計導航策略調(diào)整反思

  一、揭示題課,認定目標(預設2分鐘)我們學過一些常見的數(shù)量關(guān)系,這節(jié)課我們進一步來研究這些數(shù)量關(guān)系中的一些特征。通過學習我們要弄清什么樣的兩個量成正比例,怎樣判斷兩種量是否成正比例。

  二、交流合作,提煉建模(預設7分鐘)

  1.出示例1小組交流預習情況。

  2.全班交流匯報,探究新知:

 、倮斫狻跋嚓P(guān)聯(lián)的量”。

  ②用式子表示路程和時間的變化規(guī)律。

  ③學生看書、質(zhì)疑。揭示路程和時間是成正比例的量。

  3.根據(jù)板書完整地說一說表中路程和時間成什么關(guān)系。組織全班交流

  1.引導學生認識:時間變化,路程也隨著變化,這樣的兩種量,就叫做兩種相關(guān)聯(lián)的量。(板書:兩種相關(guān)聯(lián)的量)實際生活中,還有哪些相關(guān)聯(lián)的量呢?跟你的同桌說一說。結(jié)合舉例,抓住“隨著”一詞說明:一種量的變化,是因為由另一種量的變化引起的,這樣的兩種量才是相關(guān)聯(lián)的量。

  2.引導學生用式子表示路程和時間的變化規(guī)律,教師相機板書:路程/時間=速度(一定)

  3.象這樣的兩種量,它們的關(guān)系叫什么?請同學們打開課本,自己獲取有關(guān)概念。組織匯報:通過看書,你知道了些什么?還有什么疑問?(老師適時板書)

  4.教師指導學生完整地說一說表中路程和時間的正比例關(guān)系。

  三、抽象分析,掌握方法(預設10分鐘)1.圍繞學習菜單完成“試一試”。

 、侏毩⑺伎。

 、谛〗M交流。

  2.全班交流匯報。完整地說說表中總價和數(shù)量成什么關(guān)系。

  3.比較例1與試一試,思考并討論,這兩個題有什么共同點?

  4.如果用字母χ和У分別表示兩種相關(guān)聯(lián)的'量,用κ表示它們的比值,用式子怎樣表示正比例關(guān)系?

  5.成正比例的量具備哪兩個條件?1.引導學生完整地說說表中總價和數(shù)量成什么關(guān)系。

  2.教師相機板書正比例的關(guān)系式。

  3.引導學生提煉出成正比例的兩個條件。

  四、分層練習,內(nèi)化提升(預設11分鐘)

  1.完成第63頁“練一練”。學生先獨立思考并作出判斷,再說出判斷理由。

  2.做練習十三第1—3題。第1、2題,學生先算一算,想一想,再交流匯報。第3題學生先畫出放大后的圖形,計算它們的周長和面積,再思考題中的兩個問題。

  3.學生舉例并說明理由。

  先小組交流,然后全班交流。

  4.判斷并說理。“小張?zhí)叩母叨群退纳砀摺背烧壤?/p>

  1.引導學生有條理地說明判斷的思考過程。

  2.通過討論使學生進一步明白:只有當相關(guān)聯(lián)的量中每一組對應數(shù)的比值一定時,這兩種量才成正比例。

  3.生活中哪些量之間存在比例關(guān)系?我們學過的數(shù)量關(guān)系中,哪些是正比例關(guān)系?下面進行一個舉例和說理比賽,各小組至少舉一個正比例關(guān)系的例子,并說明理由。組織學生“舉例及說理”交流。

  4.老師也舉了一個正比例的例子,請大家和我作一辯論。

  小張?zhí)叩母叨群退纳砀。讓學生應用正比例的意義,嘗試著判斷數(shù)量之間的關(guān)系,是對正比例意義學習的強化,還培養(yǎng)了學生的應用意識。

  1.學生獨立作業(yè),教師巡視,個別輔導差生。

  2.學生完成作業(yè)后,反饋矯正。

  3.引導學生自我評價課堂學習表現(xiàn)。

  教學反思

  我是這樣預設的,以例1為導路線,通過說、想、聽等環(huán)節(jié)刺激學生的感覺器官,“試一試”完全尊重學生的自主權(quán),根據(jù)學習菜單讓學生獨立完成,講練結(jié)合,盡量做到老師少講、精講,時間控制在(15分鐘)左右,學生主栽著整個課堂。蘇霍姆林斯基曾說過:“在人的內(nèi)心深處,都有一種根深蒂固的需要,就是希望感到自己是一個發(fā)現(xiàn)者、研究者、探索者,而在兒童的精神世界中這種需要特別強烈。”上完這節(jié)課,我更加深刻的體會到這一點:學習活動的主體是學生,開放型的數(shù)學教師不僅關(guān)注學生的智慧生命,還關(guān)注學生的情感價值生命。我深信本節(jié)課的后半部分,通過學生自己探索、研究、發(fā)現(xiàn)、人人練習的過程,體驗到成功的喜悅。

《正比例》教案13

  教學目標:

  1、學生根據(jù)具體情境教學,結(jié)合實例認識正比例,理解正比例的意義,正比例的意義教學設計。

  2、能根據(jù)正比例的意義,判斷兩個相關(guān)聯(lián)的量是不是成正比例。

  3、結(jié)合豐富的事例,認識正比例,體會數(shù)學源于生活,進一步提高學習興趣。教學重點:

  結(jié)合豐富的事例,認識正比例。能根據(jù)正比例的意義,判斷兩個相關(guān)聯(lián)的量是不是成正比例。

  教學難點:

  能根據(jù)正比例的意義,判斷兩個相關(guān)聯(lián)的量是不是成正比例。

  教學關(guān)鍵:

  理解成正比例的兩個量的意義。

  教學過程:

  一、復習準備:

  口答

  1、已知路程和時間,怎樣求速度?

  2、已知總價和數(shù)量,怎樣求單價?

  3、已知工作總量和工作時間,怎樣求工作效率?

  二、數(shù)學活動。在學活動的過程中,感受數(shù)學思考過程的條理性和數(shù)學結(jié)論的確定性,并樂于與人交流。

  活動一:在情境中感受兩種相關(guān)聯(lián)的量之間的變化規(guī)律。

  (一)情境一:

  課件出示:

  1、觀察圖,分別把正方形的周長與邊長,面積與邊長的變化情況填入表格中。請根據(jù)你的觀察,把數(shù)據(jù)填在表中。

  2、填完表以后思考討論,教案《正比例的意義教學設計》。正方形的面積與邊長的變化是否有關(guān)系?它們的變化分別有怎樣的規(guī)律?規(guī)律相同嗎?說說從數(shù)據(jù)中發(fā)現(xiàn)了什么?

  3、小結(jié):正方形的周長和面積都隨邊長的增加而增加,在變化過程中,正方形的周長與邊長的比值一定都是一定的。

  特點是:

 、賰煞N相關(guān)聯(lián)的量

 、谝环N量擴大(或縮小)另一種量也擴大(或縮小)

 、蹆煞N量中相對應的兩個量的比的比值是一定的。

  4、正方形的面積與邊長的比是邊長,是一個不確定的.值。

  學生在小組內(nèi)練說發(fā)現(xiàn)的規(guī)律,初步感知正比例的判定。

  (二)情境二:

  1、一種汽車行駛的速度為90千米/小時。汽車行駛的時間和路程如下:

  2、請把下表填寫完整。3、從表中你發(fā)現(xiàn)了什么規(guī)律?說說你發(fā)現(xiàn)的規(guī)律:路程與時間的比值(速度)相同。

  (三)情境三:1、一些人買一種蘋果,購買蘋果的質(zhì)量和應付的錢數(shù)如下。

  2、把表填寫完整。3、從表中發(fā)現(xiàn)了什么規(guī)律?應付的錢數(shù)與質(zhì)量的比值(也就是單價)相同。

  3、說說以上兩個例子有什么共同的特點。

  小結(jié):路程隨時間的變化而變化,路程與時間的比值相同;應付的錢數(shù)隨購買蘋果的質(zhì)量的變化而變化,應付的錢數(shù)與質(zhì)量的比值相同。

  4、正比例關(guān)系:觀察思考成正比例的量有什么特征?

  小結(jié):

  (1)兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。這就是我們今天要學習的內(nèi)容。

  追問:判斷兩種相關(guān)聯(lián)的量成不成正比例的關(guān)鍵是什么?(比值是不是一定)

  (2)字母表達關(guān)系式。

  如果字母y和x分別表示兩種相關(guān)聯(lián)的量,用k表示它們的比值,正比例關(guān)系怎樣用字母表示出來?=k(一定)

  (3)質(zhì)疑。

  師:根據(jù)正比例的意義以及表示正比例關(guān)系的式子想一想:構(gòu)成正比例關(guān)系的兩種量必須具備哪些條件?

  三、鞏固練習

  (一)想一想:請生用自己的語言說一說。與同桌交流,再集體匯報

  1、正方形的周長與邊長成正比例嗎?面積與邊長呢?為什么?

  2、根據(jù)小明和爸爸的年齡變化情況

  把表填寫完整。父子的年齡成正比例嗎?為什么?

  (二):練一練。教師適度點撥引導,強調(diào)正比例關(guān)系判斷的關(guān)鍵。先自己獨立完成,然后集體訂正,說理由。

  1、判斷下面各題中的兩個量,是否成正比例,并說明理由。

  (1)每袋大米的質(zhì)量一定,大米的總質(zhì)量和袋數(shù)。

  (2)一個人的身高和年齡。

  (3)寬不變,長方形的周長與長。

  2、根據(jù)下表中平行四邊形的面積與高相對應的數(shù)值,判斷當?shù)资?厘米的時候,它們是是成正比例,并說明理由。

  3、買郵票的枚數(shù)與應付的錢數(shù)成正比例嗎?填寫表格。先填寫表格,再說明理由

  4、畫一畫,你會有新的發(fā)現(xiàn)。

  彩帶每米4元,購買2米、3米…彩帶分別需要多少錢?

 、偬钜惶睿(長度:米,價格:元)

 、诋嬕划,把上表中長度和價錢對應的點描在坐標紙上,再順次連接起來?窗l(fā)現(xiàn)了什么?

  板書:

  正比例的意義

 、賰煞N相關(guān)聯(lián)的量

  ②一種量擴大(或縮小)另一種量也擴大(或縮小)

 、蹆煞N量中相對應的兩個量的比的比值是一定的

  路程÷時間=速度(一定)總價÷數(shù)量=單價(一定)

  =k(一定)

《正比例》教案14

  教學內(nèi)容:

  六年級下冊總復習83—85頁《正比例、反比例》。

  教學目標:

  (一)知識目標:

  (1)通過回顧與交流,鼓勵學生自己獨立整理知識,形成系統(tǒng)。

  (2)通過具體問題的認識進一步認識正比例、反比例的量。

 。ǘ 數(shù)學思考與解決問題

  通過復習與整理加深對正、反比例意義的理解。并運用正、反比例的知識解決一些實際問題,為以后學習函數(shù)打下基礎。

 。ㄈ┣楦袘B(tài)度

  培養(yǎng)學生認真思考的習慣,學會區(qū)分正反比例。

  教學重、難點:

 。1)進一步認識正、反比例的意義,并能運用正、反比例的意義解決實際問題。

  (2)培養(yǎng)學生的問題意識,不斷積累活動經(jīng)驗,體會重要的數(shù)學思想。

  教法學法

  自主復習、小組交流、全班交流、互幫互學

  教學準備

  表格、、小黑板

  教學過程

  一、情境創(chuàng)設,導入復習

  1、判斷下面每題中的兩種量成什么比例關(guān)系?

  ①速度一定,路程和時間( ) ②路程一定,速度和時間( )

 、蹎蝺r一定,總價和數(shù)量( ) ④全校學生做操,每行站的人數(shù)和站的行數(shù)( )

  2、根據(jù)條件說出數(shù)學關(guān)系式,再說出兩種相關(guān)聯(lián)的量成什么比例,并列出相應的等式。

 。1)一臺機床5小時加工40個零件,照這樣計算,8小時加工64個。

 。2)一列火車從甲地開往乙地,每小時行90千米,要行4小時;每小時行80千米,要行X小時。

  指名學生口答,老師板書。

  二、回顧整理,構(gòu)建網(wǎng)絡

 。ㄒ唬┍鹊闹R:

  1. 誰來舉個例子說說什么是比?什么是比例?什么是比的基本性質(zhì)?(引導學生列舉:“按比例分配”、“比例尺”、“圖形的放大與縮小”等例)

  2. 說一說用比的知識可以解決哪些實際問題。

  讓學生體會比在解決實際問題時的應用。

  3. 完成教科書p83“回顧與交流”的3題

  兩人一組,合作完成后,全班交流結(jié)果,讓學生比較后回答有什么發(fā)現(xiàn)。

 。ǘ┍群头謹(shù)、除法的聯(lián)系

  出示:a∶b=( )(( ))=( )÷( )(b≠0)教師問:

  1. 你會填寫這個的等式嗎?學生填好后,再問:

  2. 你的根據(jù)是什么?(比和分數(shù)、除法的聯(lián)系)

  3. 那么比和分數(shù)、除法的聯(lián)系是什么?它們的區(qū)別呢?

  4. b為什么不能等于0?小組議一議,再交流。

  5. 誰來說說比的基本性質(zhì)與分數(shù)的基本性質(zhì)、商不變的規(guī)律?它們有什么聯(lián)系嗎,誰來說說?

  (1)判斷:比的前項和后項都乘或都除以相同的數(shù),比值不變。(讓學生說說為什么?)

  (2)填空:( )(( ))=( )÷( )=( )∶( )(填好后展示學生不同的結(jié)果。)

 。ㄈ┍壤叩闹R

  什么是比例尺?

  (四)正比例,反比例的知識:

 。1) 小組合作:把有關(guān)正比例反比例的知識在小組內(nèi)進行交流,整理成知識網(wǎng)絡圖。

 。2) 班內(nèi)交流,全班分享

 。3) 全班同學進行優(yōu)化, 形成知識網(wǎng)絡圖。

  變化的量---正比例(意義、圖象、應用)--反比例(意義、圖象、應用)---圖形的放縮---比例尺

  三:重點復習,強化提高:

  1. 一輛汽車在高速路上行駛,速度保持在100千米/時,說一說汽車行駛的路程隨時間變化的情況,并用多種方式表示這兩個量之間的關(guān)系。

 。1)學生獨立思考

  (2) 同桌交流

  3)全班交流

  a自然語言 b 列表 c 畫圖 d 關(guān)系式

  2. 舉出生活中正、反比例的'例子

  3. 完成課本84頁鞏固與應用

  獨立完成,班內(nèi)交流。

  四.自主檢測,完善提高:

  判斷并說明理由

 。1)出油率一定,香油的質(zhì)量與芝麻的質(zhì)量。

 。2) 一捆100米長的電線,用去的長度與剩下的長度。

  (3) 三角形的面積一定,它的底和高。

  (4) 一個數(shù)與它的倒數(shù)。

  五、完成后班內(nèi)交流,這節(jié)課你有什么收獲?

  板書設計

  正比例和反比例

  比 比例、應用

  分數(shù)、比、除法之間的關(guān)系

  課后反思

  本課時有以下特點:

1、抓住復習起點,以小組合作的形式自主討論復習,既增強了學生的主動性和自覺性,也面向全體學生進行查漏補缺。

2、借助表格的方式來整理復習,更直觀地體會比和比例、正比例和反比例的知識點和不同之處。

3、能整合所有的知識,運用多種方法解決簡單的實際問題,鞏固知識。

《正比例》教案15

  一、教學內(nèi)容:

  正比例函數(shù)的圖象和性質(zhì)

  二、教學目標

 。ㄒ唬┲R與能力

  1、進一步鞏固正比例函數(shù)的概念,會畫正比例函數(shù)的圖象,進一步熟悉函數(shù)圖象作圖步驟。

  2、能根據(jù)正比例函數(shù)圖象觀察、發(fā)現(xiàn)歸納出它的性質(zhì),并會簡單運用。

 。ǘ┻^程與方法

  1、通過實例函數(shù)圖象畫法的學習,發(fā)現(xiàn)并總結(jié)正比例函數(shù)圖象的常用畫法。

  2、通過觀察、探究、分析、引導學生發(fā)現(xiàn)正比例函數(shù)的性質(zhì)。

  3、培養(yǎng)學生善于觀察問題發(fā)現(xiàn)結(jié)論,了解數(shù)形結(jié)合及由一般到特殊的數(shù)學思想。

 。ㄈ┣楦袘B(tài)度及價值觀

  培養(yǎng)學生積極參與數(shù)學活動,勇于探究,發(fā)現(xiàn)數(shù)學的現(xiàn)象和規(guī)律,培養(yǎng)學生的數(shù)學交流能力和團隊協(xié)作精神。

  三、教學重點:

  正比例函數(shù)圖象的畫法及性質(zhì)的探索。

  四、教學難點:

  發(fā)現(xiàn)、歸納正比例函數(shù)的性質(zhì)。

  五、教法與學法

  教法:本節(jié)課選用引導學生觀察,發(fā)現(xiàn)法和探索實踐歸納法。本節(jié)課的難點是發(fā)現(xiàn)正比例函數(shù)性質(zhì),因此我通過教師引導,啟發(fā)調(diào)動學生的積極性,讓學生在課堂上多活動(畫、圖、交流、展示)、多觀察(圖象), 主動參與到整個教學活動中來,最后發(fā)現(xiàn)其性質(zhì)。

  學法指導:教師引導學生觀察、發(fā)現(xiàn)、歸納的學習方法。

  六、教具:三角板、多媒體。

  七、教學過程。 教學過程:

 。1) 溫故知新,引入課題。 1、下列函數(shù)哪些是正比例函數(shù)?

  (1)y=-3x (2)y= x + 3 (3) y= 4x (4)y= x2

  2、(學生回答完上述問題后提問概念)

  一般地,形如y= kx(K≠0)的函數(shù),叫正比例函數(shù),其中K叫做比例系數(shù)。

  3、畫函數(shù)圖象的'一般步驟

  (1)列表 (2)描點 (3)連線 學生回答后:

  教師引導:現(xiàn)在我們已經(jīng)知道正比例函數(shù)的意義及畫圖象的步驟,那么正比例函數(shù)的圖象有什么特征呢?

  出示課題

 。ǘ┨骄空壤瘮(shù)的圖象和性質(zhì) 例1、畫出下列正比例函數(shù)的圖象。 (1)y=2x(2)y=-2x

  解(1)函數(shù)y=2x中x 可取任意實數(shù),列表如下: 描點 連線

  (2)學生練習畫出函數(shù)y=-2x的圖象。

  (3)提出問題

  師:觀察上面的函數(shù)圖象,它們的形狀相同嗎?是什么?一定經(jīng)過哪些象限和特殊點?

  生甲:一條直線

  生乙:過原點的直線,y=2x的圖象過一、三象限,y=-2x的圖象過二、四象限。

  師:點評學生后

  正比例函數(shù)的圖是經(jīng)過原點(0,0)和(1、K)的一條直線。

  師:通過前面的探討,同學們發(fā)現(xiàn)畫正比例函數(shù)圖象有更簡單的方法嗎?為什么?

  生乙:過原點畫一條直線。

  生丙:過原點和(1、K)兩點畫一條直線。

  師:點評后師生共同歸納出一般規(guī)律:一般地,正比例函數(shù)y= kx (K≠0)的圖象過(0,0),(1、K)兩點的直線,我把函數(shù)y= kx 的圖象叫直線y= kx ,以后畫y= kx 圖像時通常選。0,0)和(1、K)兩點。

  (三)學生動手實踐“兩點法”畫正比例函數(shù)圖象。

  11

  (1)y= x (1)y= -x

  22

  1

  y= x

  2

  y= -

  師:比較以上函數(shù),觀察它們的圖象,思考回答下列問題:

  1、圖象的位置與K值有何聯(lián)系?

  2、正比例函數(shù)中y如何隨x的變化而變化?通過研討,觀察、討論、發(fā)現(xiàn)結(jié)論:K>0時,y=kx 圖象過一、三象限,y隨x的增大而增大,k<0時,圖象過二、

  1

  x 2

  四象限,y隨x的增大而減小。

  師:除了從圖上看出,還有別的方法得出y隨x的變化規(guī)律嗎? 生:列表過程中

  (四)鞏固練習

  1、用你認為最簡單的方法畫出下列函數(shù)圖象。

 。1)y=1.5x (2) y=-3x

  2、正比例函數(shù)y=-4x的圖象是過( )和( )兩點的一條直線,圖象過象限,y隨x的。

  3、正比例函數(shù)y=(m-1)x的圖象過一、三象限,則m的取值范圍是。 A.m=1 B.m>1C.m<1 D.m≥1

  11

  4、下列函數(shù)①y=5x ② y=-3x③y= x ④y= -x中,y隨x的增大而

  23

  減小的是 。

  5、正比例函數(shù)y=(1-2m)xm2-3圖象過第二、四限, 求m值。

 。ㄎ澹┬〗Y(jié):談一談,本節(jié)課你有什么收獲?(知識上,方法上)學生回答后,出示下列內(nèi)容。

 。┎贾米鳂I(yè)

  A:課本習題14.2第1題,練習冊33頁 第3、9 題。 B:課本習題14.2第1,2題。

 。ㄆ撸┌鍟O計:

  實踐操作正比例函數(shù) 分析、發(fā)現(xiàn)歸納正鞏固練習 圖象的畫法 比例函數(shù)的性質(zhì) 課堂小結(jié)

  (八)課后反思:另附

【《正比例》教案】相關(guān)文章:

《正比例》教案08-31

《正比例》教案11-07

《正比例函數(shù)》教案06-15

《正比例的意義》教案08-30

數(shù)學教案:正比例的意義12-10

《正比例反比例》教案03-07

數(shù)學教案正比例的意義06-13

《正比例反比例》教案07-03

數(shù)學教案:正比例的意義08-29