二次函數(shù)圖象和性質的復習課教學反思
元月14日,高港區(qū)數(shù)學骨干教師培訓班成員在我校組織了一次集體備課。其中一組成員討論了由我主備的二次函數(shù)圖象和性質的復習課,他們提出了許多寶貴的建議,在經(jīng)過幾天的精心修改后,我于元月21日在我校多功能教室上了這堂公開課。本節(jié)課的復習目標是:①能根據(jù)已知條件確定二次函數(shù)的解析式、開口方向、頂點和對稱軸。②理解并能運用二次函數(shù)的圖象和性質解決有關問題。本節(jié)課的重、難點是:二次函數(shù)圖象和性質的綜合應用。我立足于學生自主復習,師生合作探究的形式完成本節(jié)課的教學任務。
首先我讓學生課前完成二次函數(shù)圖象和性質的基礎訓練,促使學生對二次函數(shù)圖象和性質的知識點全面梳理和掌握。課上我用投影儀檢查一名學生完成課前復習情況,其他學生交換批改,發(fā)現(xiàn)最后一小條有部分學生有問題,我及時評講分析,幫助學生解決。
接著,師生合作探究本節(jié)課的例題。本例是用已知拋物線解決7個問題,這7個問題是我從全國2009年中考試題中整理出來的,它代表了中考的方面。問題1是用頂點式求出拋物線的解析式再通過解析式求與坐標軸的`交點,通過觀察圖象我又提出了x為何值時,y>0,y<0?以及圖中△AOC與△DCB有何關系,進一步培養(yǎng)學生發(fā)現(xiàn)問題解決問題的能力。問題2、問題3、問題4是拋物線的平移、軸對稱和旋轉的題目。主要是讓學生抓住拋物線的頂點和開口方向來完成。這種類型的題目也有少數(shù)同學從坐標點的對稱角度來解決也是可行的,并且方便記憶,對于這兩種方法我讓學生作了及時的歸納小結。問題5和問題6是關于拋物線的最值問題。問題5是利用拋物線的對稱性解決三角形的周長最小的題目。學生通過作圖能獨立解決并求出點的坐標。問題6是本節(jié)課的重點,它通過建立目標函數(shù)解決四邊形面積的極值。本題目關鍵是引導學生如何設點的坐標,將四邊形的面積轉化成我們熟悉的三角形(或直角梯形)來建立函數(shù)關系式。通過這條題進一步培養(yǎng)學生建立函數(shù)模型的思想。本題讓學生充分合作交流,最后,讓學生在自主探索中獲取新的知識。通過觀察圖象求出了四邊形的面積后,我又提出如何求△BCF的面積的最大值的問題,讓本題得到進一步的升華,培養(yǎng)學生的創(chuàng)新思維。問題7是在拋物線上探求點存在性問題,引導學生先作出符合條件的平行四邊形,再判斷點是否在拋物線上,本題著重培養(yǎng)了學生數(shù)形結合的思想方法。
這7個問題由淺入深,循序漸進推出,符合學生的認知規(guī)律,使學生對二次函數(shù)圖象和性質有了進一步的理解和提高。
本節(jié)課完成后,我感到也有不足的地方:課堂容量稍有點偏大,學生沒有時間獨立完成作業(yè)。雖然我對每個問題及時小結、歸納,但沒有留一定時間讓學生整理消化。通過這堂公開課,我受益匪淺,感受頗多,讓我在如何備復習課,準確把握重點,突破難點方面有了很大的提高,同時在駕馭課堂能力方面有了很大的進步。今后我將在如何提高有效課堂效率方面多下功夫,使自己教育教學(此文來自)水平更上一個臺階。
【二次函數(shù)圖象和性質的復習課教學反思】相關文章:
二次函數(shù)的圖象性質教學反思例文08-11
二次函數(shù)的圖象和性質教學設計05-17
正弦函數(shù)的圖象及性質教學反思04-05
二次函數(shù)及其圖象和性質(學案)11-30
二次函數(shù)圖象教學反思01-03
二次函數(shù)圖象的教學反思07-17