男人天堂日韩,中文字幕18页,天天伊人网,成人性生交大片免费视频

高中必修一數(shù)學教學計劃

時間:2021-06-13 13:43:33 教學計劃 我要投稿

高中必修一數(shù)學教學計劃模板

  講授新課前,及時做好教學計劃安排,上課有利于調(diào)動學生的積極性,數(shù)學網(wǎng)為大家提供了必修一數(shù)學教學計劃模板,希望能幫助到大家。

高中必修一數(shù)學教學計劃模板

  教材分析

  集合概念的基本理論,稱為集合論.它是近、現(xiàn)代數(shù)學的一個重要基礎(chǔ).一方面,許多重要的數(shù)學分支,如數(shù)理邏輯、近世代數(shù)、實變函數(shù)、泛函分析、概率統(tǒng)計、拓撲等,都建立在集合理論的基礎(chǔ)上.另一方面,集合論及其反映的數(shù)學思想,在越來越廣泛的領(lǐng)域中得到應用.在小學和初中數(shù)學中,學生已經(jīng)接觸過集合,對于諸如數(shù)集(整數(shù)的集合、有理數(shù)的集合)、點集(直線、圓)等,有了一定的感性認識.這節(jié)內(nèi)容是初中有關(guān)內(nèi)容的深化和延伸.首先通過實例引出集合與集合元素的概念,然后通過實例加深對集合與集合元素的理解,最后介紹了集合的常用表示方法,包括列舉法,描述法,還給出了畫圖表示集合的例子.本節(jié)的重點是集合的基本概念與表示方法,難點是運用集合的兩種常用表示方法———列舉法與描述法正確表示一些簡單的集合.

  教學目標

  1. 初步理解集合的概念,了解有限集、無限集、空集的`意義,知道常用數(shù)集及其記法.

  2. 初步了解“屬于”關(guān)系的意義,理解集合中元素的性質(zhì).

  3. 掌握集合的表示法,通過把文字語言轉(zhuǎn)化為符號語言(集合語言),培養(yǎng)學生的理解、化歸、表達和處理問題的能力.

  任務分析

  這節(jié)內(nèi)容學生已在小學、初中有了一定的了解,這里主要根據(jù)實例引出概念.介紹集合的概念采用由具體到抽象,再由抽象到具體的思維方法,學生容易接受.在引出概念時,從實例入手,由具體到抽象,由淺入深,便于學生理解,緊接著再通過實例理解概念.集合的表示方法也是通過實例加以說明,化難為易,便于學生掌握.

  教學設(shè)計

  一、問題情境

  1. 在初中,我們學過哪些集合?

  2. 在初中,我們用集合描述過什么?

  學生討論得出:

  在初中代數(shù)里學習數(shù)的分類時,學過“正數(shù)的集合”,“負數(shù)的集合”;在學習一元一次不等式時,說它的所有解為不等式的解集.

  在初中幾何里學習圓時,說圓是到定點的距離等于定長的點的集合.幾何圖形都可以看成點的集合.

  3. “集合”一詞與我們?nèi)粘I钪械哪男┰~語的意義相近?

  學生討論得出:

  “全體”、“一類”、“一群”、“所有”、“整體”,……

  4. 請寫出“小于10”的所有自然數(shù).

  0,1,2,3,4,5,6,7,8,9.這些可以構(gòu)成一個集合.

  5. 什么是集合?

  二、建立模型

  1. 集合的概念(先具體舉例,然后進行描述性定義)

  (1)某種指定的對象集在一起就成為一個集合,簡稱集.

  (2)集合中的每個對象叫作這個集合的元素.

  (3)集合中的元素與集合的關(guān)系:

  a是集合A中的元素,稱a屬于集合A,記作a∈A;

  a不是集合A中的元素,稱a不屬于集合A,記作aA.

  例:設(shè)B={1,2,3},則1∈B,4

  2. 集合中的元素具備的性質(zhì) B.

  (1)確定性:集合中的元素是確定的,即給定一個集合,任何一個對象是否屬于這個集合的元素也就確定了.如上例,給出集合B,4不是集合的元素是可以確定的.

  (2)互異性:集合中的元素是互異的,即集合中的元素是沒有重復的.

  例:若集合A={a,b},則a與b是不同的兩個元素.

  (3)無序性:集合中的元素無順序.

  例:集合{1,2}與集合{2,1}表示同一集合.

  3. 常用的數(shù)集及其記法

  全體非負整數(shù)的集合簡稱非負整數(shù)集(或自然數(shù)集),記作N.

  非負整數(shù)集內(nèi)排除0的集合簡稱正整數(shù)集,記作N*或N+;

  全體整數(shù)的集合簡稱整數(shù)集,記作Z;

  全體有理數(shù)的集合簡稱有理數(shù)集,記作Q;

  全體實數(shù)的集合簡稱實數(shù)集,記作R.

  4. 集合的表示方法

  [問 題]

  如何表示方程x2-3x+2=0的所有解?

  (1)列舉法

  列舉法是把集合中的元素一一列舉出來的方法.

  例:x2-3x+2=0的解集可表示為{1,2}.

  (2)描述法

  描述法是用確定的條件表示某些對象是否屬于這個集合的方法.

  例:①x2-3x+2=0的解集可表示為{x|x2-3x+2=0}.

  ②不等式x-3>2的解集可表示為{x|x-3>2}.

 、踁enn圖法

  例:x2-3x+2=0的解集可以表示為(1,2).

  5. 集合的分類

  (1)有限集:含有有限個元素的集合.例如,A={1,2}.

  (2)無限集:含有無限個元素的集合.例如,N.

  (3)空集:不含任何元素的集合,記作.例如,{x|x2+1=0,x∈R}=.

  注:對于無限集,不宜采用列舉法.

  三、解釋應用

  [例 題]

  1. 用適當?shù)姆椒ū硎鞠铝屑?

  (1)由1,2,3這三個數(shù)字抽出一部分或全部數(shù)字(沒有重復)所組成的一切自然數(shù).

  (2)平面內(nèi)到一個定點O的距離等于定長l(l>0)的所有點P.

  (3)在平面a內(nèi),線段AB的垂直平分線.

  (4)不等式2x-8<2的解集.

  2. 用不同的方法表示下列集合.

  (1){2,4,6,8}.

  (2){x|x2+x-1=0}.

  (3){x∈N|3

  3. 已知A={x∈N|66-x∈N}.試用列舉法表示集合A.

  (A={0,3,5})

  4. 用描述法表示在平面直角坐標中第一象限內(nèi)的點的坐標的集合.

  [練 習]

  1. 用適當?shù)姆椒ū硎鞠铝屑?

  (1)構(gòu)成英語單詞mathematics(數(shù)字)的全體字母.

  (2)在自然集內(nèi),小于1000的奇數(shù)構(gòu)成的集合.

  (3)矩形構(gòu)成的集合.

  2. 用描述法表示下列集合.

  (1){3,9,27,81,…}.

  (2)

  四、拓展延伸

  把下列集合“翻譯”成數(shù)學文字語言來敘述.

  (1){(x,y)|y=x2+1,x∈R}.

  (2){y|y=x2+1,x∈R}.

  (3){(x,y)|y=x2+1,x∈R}.

  (4){x|y=x2+1,y∈N*}.

  上文為大家推薦必修一數(shù)學教學計劃模板,希望大家仔細閱讀,愿大家生活愉快。

【高中必修一數(shù)學教學計劃】相關(guān)文章:

高中數(shù)學必修一教案09-28

高中數(shù)學必修二教學計劃06-07

高一必修一數(shù)學教學計劃01-28

高一必修一數(shù)學教學計劃05-09

數(shù)學必修教學計劃03-30

數(shù)學必修教學計劃06-25

高一必修五數(shù)學教學計劃03-30

高中地理必修一教學計劃03-27

高中語文必修一教學計劃07-30