分數(shù)的基本性質(zhì)數(shù)學(xué)教學(xué)設(shè)計(通用11篇)
作為一位杰出的教職工,很有必要精心設(shè)計一份教學(xué)設(shè)計,教學(xué)設(shè)計以計劃和布局安排的形式,對怎樣才能達到教學(xué)目標進行創(chuàng)造性的決策,以解決怎樣教的問題。那么什么樣的教學(xué)設(shè)計才是好的呢?下面是小編收集整理的分數(shù)的基本性質(zhì)數(shù)學(xué)教學(xué)設(shè)計,希望能夠幫助到大家。
分數(shù)的基本性質(zhì)數(shù)學(xué)教學(xué)設(shè)計 1
教學(xué)目標:
情感態(tài)度:培養(yǎng)學(xué)生觀察、比較、抽象、概括的邏輯思維能力,并且滲透事物間相互聯(lián)系,發(fā)展變化的辯證唯物主義觀點。
知識技能:理解分數(shù)的基本性質(zhì),并且能夠靈活應(yīng)用。
過程方法:動手操作、觀察、討論
教學(xué)重、難點:理解并掌握分數(shù)的基本性質(zhì)并靈活應(yīng)用。
教具準備:自制多媒體課件、圖(2組)、拼圖畫一幅、實物投影儀。
學(xué)具準備:拼圖12組。
教學(xué)設(shè)計理念:
《新課標》要求,讓學(xué)生在動手操作中觀察、思考,在生動具體的情境中學(xué)習數(shù)學(xué),參與知識的發(fā)現(xiàn)過程。在教學(xué)分數(shù)的基本性質(zhì)時,選擇了學(xué)生喜聞樂見的游戲形式,在學(xué)生人人參與的教學(xué)情境中,讓學(xué)生發(fā)現(xiàn)問題——討論問題——解決問題。力求通過學(xué)生動手實踐,自主探索和合作交流的學(xué)習方式,新知識的教學(xué),訓(xùn)練學(xué)生思維,引導(dǎo)學(xué)生把所學(xué)數(shù)學(xué)知識應(yīng)用于實際中。感受數(shù)學(xué)的價值,本課設(shè)計完全從學(xué)生發(fā)展為本,在教學(xué)中大膽的把課堂還給學(xué)生,讓學(xué)生成為課堂真正的主人。
教學(xué)過程:
一、創(chuàng)設(shè)情境,激趣導(dǎo)入。
設(shè)計意圖:讓學(xué)生在喜聞樂見的游戲情境中,以濃厚的興趣參與學(xué)習,激發(fā)學(xué)生探索數(shù)學(xué)問題欲望,并訓(xùn)練學(xué)生小組合作學(xué)習的方法和習慣。
師:請看這幅拼圖漂亮嗎?老師這還有三幅漂亮的圖片(投影展示)可愛的青蛙,朝氣彭勃的太陽,誘人的蘋果,用你們靈巧的雙手能不能把他們拼出來?請小組合作完成。同學(xué)們,準備好了嗎?我宣布:拼圖比賽現(xiàn)在開始。
請看拼圖要求:
1、用所給材料拼成三個完全一樣圖形。
2、用分數(shù)表示陰影部分占整幅圖的幾分之幾,并寫出來。
二、合作交流,探究規(guī)律。
設(shè)計意圖:讓學(xué)生在具體的情境中充分利用現(xiàn)有資源,增強學(xué)生的學(xué)習興趣,既有張揚個性的獨立思考,又有發(fā)揮集體力量的小組合作學(xué)習,培養(yǎng)學(xué)生敢于探索的精神與大膽嘗試的能力,同時讓學(xué)生選擇自己喜歡的方式,既尊重了學(xué)生,又激發(fā)了學(xué)生的學(xué)習興趣,體現(xiàn)了主體性。
(一)拼圖,寫分數(shù)。
(1)教師組織小組活動,并巡視,參與,指導(dǎo)小組活動。學(xué)生拼好圖后寫出分數(shù)。
。2)匯報優(yōu)勝組介紹經(jīng)驗,并展示作品。(體會小組合作的有效性)教師貼圖并板書分數(shù)。
(二)找分數(shù)間的大小關(guān)系。
。1)師:請同學(xué)們用自己喜歡的方法找一找每組中三個分數(shù)的`大小關(guān)系,學(xué)生獨立思考后與同桌交流方法。
(2)匯報:每組中三個分數(shù)大小相等。
比較方法。
。1)看圖比較
(2)化小數(shù)比較
。3)利用商不變的性質(zhì)比較
。4)……
(三)探究規(guī)律
。1)每組中三個分數(shù)看似不同,實質(zhì)大小相等,它們之間到底有什么聯(lián)系?小組討論探究規(guī)律。
。2)交流自己的發(fā)現(xiàn)。
①每組中三個分數(shù)平均分的份數(shù)不同取的分數(shù)也不同?
、诜肿,分母都擴大了2倍(3倍)
、邸
。3)師:分數(shù)的分子和分母怎樣變化時,分數(shù)的大小才會不變,學(xué)生自由發(fā)言,教師給予肯定和鼓勵。
。4)師結(jié)合圖依據(jù)分數(shù)的意義講解變化規(guī)律。
。5)小結(jié)分數(shù)的基本性質(zhì):強調(diào)“相同”“同時”組織討論:“相同的數(shù)”可以是哪些數(shù)?
。ㄋ模⿲Ρ确謹(shù)的基本性質(zhì)和商不變的性質(zhì)。
學(xué)生對比,說出兩個性質(zhì)間的區(qū)別與聯(lián)系。
三、應(yīng)用。
設(shè)計意圖:本環(huán)節(jié)所設(shè)計是由易到難,緊扣本課的重難點,練習具有針對性、實用性、開放性。通過變式練習讓學(xué)生的思維得到訓(xùn)練,激發(fā)探究熱情,培養(yǎng)創(chuàng)新能力。
1、填空
(1)學(xué)生獨立思考。
。2)交流口答,并說明依據(jù),同時訓(xùn)練學(xué)生應(yīng)用所學(xué)知識解決實際問題的能力。
2、比較 和 的大小。
四、游戲"找朋友”。
設(shè)計意圖:游戲的情境,形式活潑,讓學(xué)生通過大小相等的分數(shù)找到自己的朋友。游戲規(guī)則新穎而恰當,既鞏固新知又體會到數(shù)學(xué)與生活的密切聯(lián)系。
同學(xué)們拿出課前老師發(fā)給你的紙,紙上所寫分數(shù)大小相等的同學(xué),你們是“好朋友”。請學(xué)生讀自己的分數(shù),與他所讀分數(shù)大小相等的同學(xué)舉起來確定后手拉手離場。
分數(shù)的基本性質(zhì)數(shù)學(xué)教學(xué)設(shè)計 2
一、教學(xué)目標
1、使學(xué)生理解和掌握分數(shù)的基本性質(zhì),能應(yīng)用分數(shù)的基本性質(zhì)把一個分數(shù)化成指定分母而大小不變的分數(shù)。
2、學(xué)生通過觀察、比較、發(fā)現(xiàn)、歸納、應(yīng)用等過程,經(jīng)歷探究分數(shù)的基本性質(zhì)的過程,初步學(xué)習歸納概括的方法。
3、激發(fā)學(xué)生積極主動的情感狀態(tài),體驗互相合作的樂趣。
二、教學(xué)重點
1、理解、掌握分數(shù)的基本性質(zhì),能正確應(yīng)用分數(shù)的基本性質(zhì)。
2、自主探究出分數(shù)的基本性質(zhì)。
三、教學(xué)準備
課件、正方形的紙
四、教學(xué)設(shè)計過程
。ㄒ唬┻w移舊知.提出猜想
1、回憶舊知
根據(jù)“288÷24=12”填空
28.8÷2.4=
2880÷240=
2.88÷0.24=
0.288÷()=12
被除數(shù)÷除數(shù)=()
說一說你是根據(jù)什么算的?引導(dǎo)學(xué)生回憶商不變的性質(zhì)?媒體出示:商不變的性質(zhì):
被除數(shù)和除數(shù)同時乘或除以相同的數(shù)(零除外),商不變。
2、提出猜想
既然分數(shù)與除法的關(guān)系這么緊密.除法有商不變性質(zhì),那分數(shù)是否也會有這樣的性質(zhì),請大家大膽猜想一下。(學(xué)生可能根據(jù)商不變性質(zhì)推導(dǎo)出分數(shù)的基本性質(zhì),學(xué)生匯報后投影出示:分數(shù)的分子和分母同時乘或除以相同的數(shù)(零除外),分數(shù)的大小不變。)
(二)驗證猜想,建構(gòu)新知
1、你有什么辦法來驗證自己的猜想?(折一折、分一分、涂一涂等方法。)
2、出示學(xué)習提示。
學(xué)習提示
A、同桌合作,借助手中的學(xué)具,選擇喜歡的方法,驗證自己的猜想。
B、驗證結(jié)束后,把你的驗證方法和結(jié)論與小組同學(xué)交流。
3、匯報交流
指名3到4名同學(xué)到講臺前與全班同學(xué)交流自己的驗證方法和過程,教師相機板書。
C、總結(jié)規(guī)律
1、師:請同學(xué)們看黑板上的兩組分數(shù),說說它們的`分子和分母分別是按什么規(guī)律變化的。指名回答,教師板書。
2、總結(jié):對于任何一個分數(shù),只要滿足:分數(shù)的分子和分母同時乘或除以相同的數(shù),分數(shù)的大小就不會發(fā)生變化。
3、強調(diào)0除外。哪位同學(xué)將分數(shù)的分子和分母同時乘或除以0進行驗證的?
如果有,問他是否驗證出猜想,驗證過程中出現(xiàn)了什么問題,如果沒有,肯定他們的做法是對的,從而出示完整的規(guī)律:分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。
師:為什么要0除外?
師:對于這句話,你是怎么理解的?(讓學(xué)生互相討論,并進行說明。)
教師以3/4為例說明分數(shù)的分子和分母同時乘或除以0是沒有意義的。
師:再次出示分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。這叫做分數(shù)的基本性質(zhì)。(板書課題)
D教學(xué)例2
把2/3和10/24都化為分母為12而大小不變的分數(shù)。
學(xué)生獨立完成,集體訂正。
。ㄈ┚毩暽A
1、填空
2、下面算式對嗎?如果有錯,錯在哪里?
3、把相等的分數(shù)寫在同一個圈里。
4、老師給出一個分數(shù),同學(xué)們迅速說出和它相等的分數(shù)。
。ㄋ模┳鳂I(yè)
教材59頁第9題。
。ㄎ澹┧季S拓展
。┛偨Y(jié)延伸
師:這節(jié)課你有什么收獲?
六、板書設(shè)計
分數(shù)基本性質(zhì)
分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。
分數(shù)的基本性質(zhì)數(shù)學(xué)教學(xué)設(shè)計 3
教學(xué)目標:
1、通過教學(xué)使學(xué)生理解和掌握分數(shù)的基本性質(zhì),能利用它改變分數(shù)的分子和分母,而使分數(shù)的大小不變。
2、培養(yǎng)學(xué)生的觀察能力、動手操作能力和分析概括能力等。
3、讓學(xué)生在學(xué)習過程中養(yǎng)成互相幫助、團結(jié)協(xié)作的良好品德。
重點難點:
從相等的分數(shù)中看出變與不變,觀察、發(fā)現(xiàn)、概括其中的規(guī)律。理解分數(shù)的基本性質(zhì)。
教具學(xué)具: 課件,每人一張白紙,一張圓紙片,彩筆
教學(xué)時間:1課時
教學(xué)流程:
一、復(fù)習引入
1、120÷30的商是多少?被除數(shù)和除數(shù)同時擴大3倍,商是多少?被除數(shù)和除數(shù)同時縮小10倍,商是多少?
120÷30=4
。120×3)÷(30×3)
=360÷90
=4
120÷30=4
(120÷10)÷(30÷10)
=12÷3
=4
在除法中,被除數(shù)和除數(shù)同時擴大(或縮。┫嗤谋稊(shù)(零除外),商不變。
除法與分數(shù)之間有什么聯(lián)系?
被除數(shù)÷ 除數(shù)=被除數(shù)/除數(shù)
教師板書:分數(shù)的基本性質(zhì)
二、動手操作
(1)用分數(shù)表示涂色部分。
( )
。 )
。 )
、僬埓蠹夷贸1張長方形紙片,現(xiàn)在我們把它對折平均分成4份,涂出其中的3份,寫上分數(shù)。
、诎阉^續(xù)對折平均分成8份,看看原來的3/4現(xiàn)在成了?(6/8)
③繼續(xù)折成16份,看看原來的3/4現(xiàn)在又成了?(12/16)
(2)小結(jié):原來,這張紙的3/4 、6/8、 和它的12/16同樣大!看來不管選擇哪種折法,分到的數(shù)都一樣多!
。ń處熾S機板書 )3/4=3×2/4×2=6/8=6×2/8×2=12/16
。2)用分數(shù)表示涂色部分。
( ) )
( ) )
( ) )
根據(jù)上面的過程,你能得到一組相等的分數(shù)嗎?
8/12= 8÷2/12÷2= 4÷2/6÷2=2/3
三、發(fā)現(xiàn)規(guī)律
1、請大家觀察每個等式中的兩個分數(shù),它們的分子。分母是怎樣變化的?
學(xué)生觀察、思考,完成上面的圖形,再在小組內(nèi)交流。
學(xué)生交流后,教師集中指導(dǎo)觀察,板書這組數(shù)字,說出其中的規(guī)律。
3/4=6/8=12/16 8/12=4/6=2/3
從這些數(shù)字中可以得出:
分數(shù)的分子和分母同時乘或者除以相同的數(shù),分數(shù)的大小不變。(相同的數(shù),這個數(shù)能不能是0 ?)
教師舉例說明:3/4,8/12分子和分母分別乘以零,分數(shù)大小怎么樣?
得出分數(shù)基本性質(zhì): 分數(shù)的分子和分母同時乘或者除以相同的數(shù)(零除外),分數(shù)的大小不變。這叫做分數(shù)基本性質(zhì)。
在除法中,被除數(shù)和除數(shù)同時擴大(或縮。┫嗤谋稊(shù)(零除外),商不變。這叫做商不變性質(zhì)。
3、課件出一組分數(shù)讓學(xué)生練習填
2/3=()/12 6/21=()/7 3/5=21/() 27/39=9/() 5/8=20/() 24/42=()/7 2/5=()/25 4/6=()/()
四、練一練(課件出示)
1、判斷.(手勢表示。)
(1)分數(shù)的分子、分母都乘或除以相同的'數(shù),分數(shù)的大小不變。() (2)把 15 /20 的分子縮小5倍,分母也同時縮小5倍,分數(shù)的大小不變。()
(3) 3 /4 的分子乘3,分母除以3,分數(shù)的大小不變。 ( )
( 4)把3/5的分子加上4,要使分數(shù)的大小不變,分母加4。 ( )
2、把5 /6和1/4都化成分母是12大小不變的分數(shù)。(課件出示 )
3、數(shù)學(xué)游戲(課件出示)
說出相等的分數(shù) 1/4和2/8
。1)你能根據(jù)分數(shù)的基本性質(zhì),再寫出一組相等的分數(shù)?
所寫的分數(shù)是否相等?你是怎樣想的?
。2)根據(jù)分數(shù)與除法的關(guān)系,你能用商不變的規(guī)律來說明分數(shù)的基本性質(zhì)嗎?
五、課本練習中的第1,2題。
六、課堂總結(jié)
這節(jié)課你學(xué)到了什么?什么是分數(shù)的基本性質(zhì)?你是怎樣理解的分數(shù)的基本性質(zhì)要注意什么?我們以前學(xué)過的什么性質(zhì)跟分數(shù)的基本性質(zhì)類似?誰能用整數(shù)除法中商不變的性質(zhì)來說明分數(shù)的基本性質(zhì)?
七、板書設(shè)計:
3/4=3×2/4×2=6/8=6×2/8×2=12/16
8/12= 8÷2/12÷2= 4÷2/6÷2=2/3
分數(shù)的分子和分母同時乘或者除以相同的數(shù)(零除外),分數(shù)的大小不變。這叫做分數(shù)基本性質(zhì)。
分數(shù)的基本性質(zhì)數(shù)學(xué)教學(xué)設(shè)計 4
教學(xué)目標
1.讓學(xué)生通過經(jīng)歷預(yù)測猜想——實驗分析——合情推理——探究創(chuàng)造的過程,理解和掌握分數(shù)的基本性質(zhì),知道它與整數(shù)除法中商不變性質(zhì)之間的聯(lián)系。
2.根據(jù)分數(shù)的基本性質(zhì),學(xué)會把一個分數(shù)化成用指定的分母做分母或指定的分子做分子而大小不變的分數(shù),為學(xué)習約分和通分打下基礎(chǔ)。
3.培養(yǎng)學(xué)生觀察、分析和抽象概括的能力,滲透事物是互相聯(lián)系、發(fā)展變化的辯證唯物主義觀點。體驗到數(shù)學(xué)驗證的思想,培養(yǎng)敢于質(zhì)疑、學(xué)會分析的能力。
教學(xué)重點使學(xué)生理解分數(shù)的基本性質(zhì)。
教學(xué)難點讓學(xué)生自主探索,發(fā)現(xiàn)和歸納分數(shù)的基本性質(zhì),以及應(yīng)用它解決相關(guān)的問題。
教學(xué)過程
一、故事情景引入
同學(xué)們,每年的中秋節(jié)你們都會吃什么呢?對了,月餅。中秋吃月餅是我們中國傳統(tǒng)風俗。去年的中秋節(jié),易老師的鄰居李奶奶家里,發(fā)生了一件有趣的事情,大家想不想知道?
好,既然大家都這么好奇,就張開小耳朵認真聽。去年的中秋節(jié)呀,李奶奶家的孫兒小紅、小明、小兵都來了,家里可熱鬧了。李奶奶笑得合不攏嘴,她拿出一個又大又圓的月餅,對孫兒們說:“孩子們,奶奶給你們分月餅了。老大小紅,奶奶分這塊月餅的1/3給你,老二小明,奶奶分這塊月餅的2/6給你,老三小兵,奶奶分這塊月餅的3/9給你,(邊講邊貼出名字和三個分數(shù))你們同意嗎?”奶奶的話剛講完,小紅就嘟著嘴叫了起來:“奶奶你不公平!分給小兵的多,分給我的少!”小明連忙叫著:“奶奶不公平,奶奶偏心!”只有小兵在偷著樂。
同學(xué)們,你們覺得奶奶公平嗎?現(xiàn)在同桌之間討論一下。
討論完了請舉手。
生甲:“我覺得不公平,小紅分得多!
生乙:“我覺得小明分得多!
生丙:“我覺得公平,他們?nèi)齻分得一樣多。”
師:“看樣子我們班的同學(xué)也爭論起來了,到底李奶奶的月餅分得公不公平,上完這一節(jié)課同學(xué)們就會明白了!
二、新授
師:“下面我們來做個實驗。同學(xué)們請你們拿出老師為你們準備的學(xué)具袋,看看袋子里有些什么呢?(圓片)有幾張?(三張)”
請你們把這三張圓片疊起來,比一比大小,看看怎么樣?
生:“三張圓片一樣大!
1.師: “ 下面我們就用三張一樣大的圓片代替月餅,象李奶奶一樣來分月餅了!
首先,請在第一張圓片上表示出它的1/3;
再在第二張圓片上表示出它的2/6;
然后在第三張圓片上表示出它的3/9。
好了,大家動手分一分。(教師巡視指導(dǎo))
2.師:“分完了的請舉手?
老師跟你們一樣,也準備了三張同樣大小的圓片。(邊說邊操作,同樣大)
下面請哪位同學(xué)說一說,你是怎么分的?”
生:“把第一個圓片平均分成三份,取其中的一份,就是它的三分之一!
生:“把第二個圓片平均分成六份,取其中的兩份,就是它的六分之二。”
師:“那九分之三又是怎么得到的'呢?大家一起說!
生:“把這塊圓片平均分成九份,取其中的三份,就是它的九分之三。 ”
。▽W(xué)生說的同時,教師操作,分完后把圓片貼在黑板上。)
3.師:“同學(xué)們,觀察這些圓的陰影部分,你有什么發(fā)現(xiàn)?”
小結(jié):原來三個圓的陰影部分是同樣大的。
師:“ 現(xiàn)在再來評判一下,奶奶分月餅公平嗎?為什么?”(請幾名學(xué)生回答)
生:“奶奶分月餅是公平的,因為他們?nèi)齻分得的月餅一樣多!
師:“現(xiàn)在我們的意見都統(tǒng)一了,奶奶是非常公平的,他們?nèi)齻人分的月餅一樣多。那你覺得1/3、2/6、3/9這三個分數(shù)的大小怎么樣呢?”
生甲:“通過圖上看起來,這三個分數(shù)應(yīng)該是一樣大的!
生乙:“這三個分數(shù)是相等的!
師:“剛才的試驗證明,它們的大小是相等的。”(板書,打上等號)
4.研究分數(shù)的基本規(guī)律。
師:“我們仔細觀察這一組分數(shù),它的什么變了,什么沒變?”
生甲:“三個分數(shù)的分子分母都變了,大小沒變。”
師:“那它的分子分母發(fā)生了怎樣的變化呢?讓我們從左往右看。
第一個分數(shù)從左往右看,跟第二個分數(shù)比,發(fā)生了什么變化?”
生乙:“它的分子分母都同時擴大了兩倍!
師:“跟第三個分數(shù)比,它又發(fā)生了什么變化?”(生回答)對了,它的分子分母都同時擴大了三倍。
再引導(dǎo)學(xué)生反過來看,讓學(xué)生自己說出其中的規(guī)律。(邊講邊板書)
教師小結(jié):“剛才大家都觀察得很仔細,這組分數(shù)的分子分母都不同,它們的大小卻一樣,那么,分子分母發(fā)生怎樣變化的時候,它的大小不變呢?同桌之間互相說一說,總結(jié)一下,好嗎?”
學(xué)生發(fā)言
小結(jié):像分數(shù)的分子分母發(fā)生的這種有規(guī)律的變化,就是我們這節(jié)課學(xué)習的新知識。分數(shù)的基本性質(zhì)。
5.深入理解分數(shù)的基本性質(zhì)。
師:“什么叫做分數(shù)的基本性質(zhì)呢?就你的理解,用自己的語言說一說!保▽W(xué)生討論后發(fā)言)
師:剛才同學(xué)們都用自己的語言說了分數(shù)的基本性質(zhì),我們的書上也總結(jié)了分數(shù)的基本性質(zhì),現(xiàn)在請打開書看到108頁?纯磿鲜窃趺凑f的,是你說得好,還是書上說得好,為什么?
齊讀分數(shù)的基本性質(zhì),并用波浪線表出關(guān)鍵的詞。
生甲:我覺得“零除外”這個詞很重要。
生乙:我覺得“同時”“相同”這兩個詞很重要。
師:想一想為什么要加上“零除外”?不加行不行?
讓學(xué)生結(jié)合以前學(xué)過的商不變的性質(zhì)討論,為什么加“零除外”。
教師小結(jié):“以三分之一這個分數(shù)為例,它的分子分母同時除以零,行嗎?不行,除數(shù)為零沒意義。所以零要除外。同時乘以零呢?我們就會發(fā)現(xiàn),分子分母都為零了,而分數(shù)與除法的關(guān)系里,分母又相當于除數(shù),這樣的話,除數(shù)又為零了,無意義。所以一定要加上零除外!保ㄟ呏v邊板書。)
三、應(yīng)用
1.學(xué)了分數(shù)的基本性質(zhì)到底又什么用呢?老師告訴你們,根據(jù)分數(shù)的基本性質(zhì),我們就能變魔術(shù)一樣,把一個分數(shù)變成多個跟它大小一樣,分子分母卻不同的新分數(shù)。下面就讓我們來變個魔術(shù)。
2.學(xué)生練習課本例題2,兩名學(xué)生在黑板上做。
3.學(xué)生自己小結(jié)方法。
4.按規(guī)律寫出一組相等的分數(shù)。
分數(shù)的基本性質(zhì)數(shù)學(xué)教學(xué)設(shè)計 5
教材分析
1.分數(shù)基本性質(zhì)是約分和通分的基礎(chǔ),而約分、通分又是分數(shù)四則運算的重要基礎(chǔ),因此,理解分數(shù)基本性質(zhì)顯得尤為重要。而分數(shù)與除法的關(guān)系以及除法中的商不變規(guī)律,與這部分知識緊密聯(lián)系,是學(xué)習這部分內(nèi)容的基礎(chǔ)。
2.教材安排了兩個學(xué)習活動,讓學(xué)生尋找相等的分數(shù),通過活動使學(xué)生初步體驗分數(shù)的大小相等關(guān)系,為觀察發(fā)現(xiàn)分數(shù)的基本性質(zhì)提供的豐富的學(xué)習資料,然后引導(dǎo)學(xué)生分別觀察這兩組相等的分數(shù),尋找每組分數(shù)的分子、分母的變化規(guī)律,并展開充分的交流討論,在此基礎(chǔ)上歸納出:分數(shù)的分子和分母都乘或除以相同的數(shù)(零除外),分數(shù)的大小不變。
學(xué)情分析
學(xué)生已明確商不變規(guī)律,分數(shù)與除法的關(guān)系等知識,這些都為本課學(xué)習做了知識上的鋪墊。五年級學(xué)生已經(jīng)初步養(yǎng)成了合作學(xué)習的習慣,并具有了一定的分析和解決問題的能力,因此能夠在教師的引導(dǎo)下完成“質(zhì)疑—探索——釋疑——應(yīng)用”這一完整的學(xué)習過程。
因此在教學(xué)中,我主要采用引導(dǎo)學(xué)生探索以及小組合作學(xué)習相結(jié)合的方法,讓學(xué)生探索出分數(shù)的基本性質(zhì),并會運用分數(shù)的基本性質(zhì)把一個分數(shù)化成分母不同但大小相等的分數(shù),能有效地提高教學(xué)效率。
教學(xué)目標
經(jīng)歷探索分數(shù)基本性質(zhì)的過程,理解分數(shù)基本性質(zhì)。
能運用分數(shù)基本性質(zhì),把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)。
經(jīng)歷觀察、操作和討論等學(xué)習活動,體驗數(shù)學(xué)學(xué)習的樂趣。
教學(xué)重點和難點
理解分數(shù)基本性質(zhì),能運用分數(shù)基本性質(zhì)轉(zhuǎn)化分數(shù)。
教學(xué)過程
一、復(fù)習導(dǎo)入
二、探究新知
實踐操作,探究規(guī)律
觀察發(fā)現(xiàn):初步概括分數(shù)基本性質(zhì)
括歸納分數(shù)基本性質(zhì)
三、課堂練習
四、課堂小結(jié)
出示復(fù)習題口答卡片, 復(fù)習商不變的規(guī)律、分數(shù)與除法的關(guān)系。
講述唐僧分餅的故事:“……貪吃的豬八戒搶著說要吃這個餅的9/12,孫悟空說要吃這個餅的6/8,沙僧說要吃這個餅的3/4。同學(xué)們可知道誰吃的餅最多?”
提出問題: 這些分數(shù)都相等嗎?
觀察這組相等的分數(shù),你發(fā)現(xiàn)了什么?把你的發(fā)現(xiàn)說給同伴聽。
分子、分母都乘或除以一個數(shù),這個數(shù)可以是0嗎?為什么?
1、課本P43的“試一試”
2、數(shù)學(xué)游戲:說出相等的分數(shù)
3、課本P44的“練一練”第1~2、4
通過這節(jié)課的學(xué)習、你學(xué)會了那些知識
口答
小組討論
拿出準備好的圓形紙片,折一折,畫一畫、涂一涂
小組討論、交流
小組討論、交流
做練習,完成后集體交流。
說說,讀分數(shù)基本性質(zhì)
復(fù)習舊知,為學(xué)習新知識作鋪墊。
將例1改編成故事 提出問題,讓學(xué)生對故事中的人物進行直觀評價,為后續(xù)探究營造良好氛圍。
讓學(xué)生通過實踐操作,激發(fā)學(xué)生參與學(xué)習探究的興趣,通過合作探究,初步感知有些分數(shù)的分子、分母不同,但分數(shù)的大小卻相等。
引導(dǎo)學(xué)生通過不同形式的觀察,逐步總結(jié)出存在的規(guī)律,這樣由淺入深,循序漸進,有利于學(xué)生探究學(xué)習知識。
在學(xué)生初步發(fā)現(xiàn)規(guī)律的基礎(chǔ)上,進一步理解分數(shù)的基本性質(zhì),并對分數(shù)的基本性質(zhì)進行全面概括。
讓學(xué)生利用分數(shù)的.基本性質(zhì)解決問題,使學(xué)生對分數(shù)的基本性質(zhì)理解的更深刻,同時體驗解決問題的樂趣。
對本節(jié)課的所學(xué)知識的回顧,及所學(xué)知識點的總結(jié)。
板書設(shè)計(需要一直留在黑板上主板書)分數(shù)基本性質(zhì)被除數(shù)和除數(shù)同時擴大或縮小相同的倍數(shù)(零除外),商不變,這就是商不變的規(guī)律分數(shù)的分子和分母都乘或除以相同的數(shù)(零除外),分數(shù)的大小不變,這叫做分數(shù)基本性質(zhì)。
教學(xué)反思:
分數(shù)的基本性質(zhì)在小學(xué)階段是數(shù)運算的又一次質(zhì)的飛躍與擴展,是重要的一個環(huán)節(jié)。我在引導(dǎo)學(xué)生觀察探究中,重視學(xué)生的主動參與,多次組織學(xué)生小組討論交流,讓每個小組成員都能充分的說說自己的看法,相互交流,相互啟迪,以感知分數(shù)的分子、分母是按一定的規(guī)律變化而分數(shù)大小不變。體現(xiàn)了理解與掌握數(shù)與數(shù)之間聯(lián)系、變化的觀點。
在本節(jié)課中,由于我對學(xué)困生關(guān)注度不高,使得他們在分數(shù)基本性質(zhì)應(yīng)用的過程中產(chǎn)生了困難。小組合作探究中的小組學(xué)習亦要不斷地完善。
分數(shù)的基本性質(zhì)數(shù)學(xué)教學(xué)設(shè)計 6
教學(xué)目標:
1、讓學(xué)生理解和掌握分數(shù)的基本性質(zhì),知道它與整數(shù)除法中商不變性質(zhì)之間的聯(lián)系。
2.根據(jù)分數(shù)的基本性質(zhì),學(xué)會把一個分數(shù)化成用指定的分母做分母或指定的分子做分子而大小不變的分數(shù),為學(xué)習約分和通分打下基礎(chǔ)。
學(xué)習目標:
1、理解和掌握分數(shù)的基本性質(zhì),知道它與整數(shù)除法中商不變性質(zhì)之間的聯(lián)系。
2、根據(jù)分數(shù)的基本性質(zhì),學(xué)會把一個分數(shù)化成用指定的分母做分母或指定的分子做分子而大小不變的分數(shù)
重點難點:
1、使學(xué)生理解分數(shù)的基本性質(zhì)。
2、讓學(xué)生自主探索,發(fā)現(xiàn)和歸納分數(shù)的基本性質(zhì),以及應(yīng)用它解決相關(guān)的問題。
過程設(shè)計:
一、激情導(dǎo)入
1、導(dǎo)入課題
生讀故事。
唐僧師徒四人在西天取經(jīng)的路上得到了一個大西瓜,他們知道豬八戒想多吃。師傅說:“分給他二分之一,他嫌少,分給他四分之二,他還嫌少,之后師傅說分給他八分之四,這次豬八戒覺得已經(jīng)很多了,高興得答應(yīng)了?墒俏蚩諈s在旁邊一個勁地笑,你知道孫悟空為什么笑嗎?
師:孫悟空為什么笑呢?二分之一、四分之二、八分之四這三個分數(shù)到底有什么關(guān)系呢?下面我們用折紙的方法來看一下它們之間有什么樣的關(guān)系?
2、明確目標
理解和掌握分數(shù)的基本性質(zhì),知道它與整數(shù)除法中商不變性質(zhì)之間的聯(lián)系;并會應(yīng)用分數(shù)的基本性質(zhì)。
3、預(yù)期效果
達到教學(xué)目標
二、民主導(dǎo)學(xué)
任務(wù)一
任務(wù)呈現(xiàn)
動手操作驗證性質(zhì)
自主學(xué)習
師:拿出準備好的三張正方形紙。按照下面的要求來進行操作。請一同學(xué)讀學(xué)習要求
1、把三張正方形紙平均對折一次、二次、三次,將紙平均分成2、4、8份,分別把2分之二、4分之二、8分之四涂上顏色,并標出二分之一、四分之二、8分之四。
2、仔細觀察三張紙的涂色部份,你們能發(fā)現(xiàn)什么?
師:同位分工合作完成,F(xiàn)在開始。
師選擇一份作品粘貼在黑板上,請一同學(xué)說一說你們有什么發(fā)現(xiàn)?
請二至三位同學(xué)說一說。
師:我們都發(fā)現(xiàn)了涂色部份的面積是相等的,那你們能不能把二分之一、四分之二、八分之四列成一個等式呢?
生回答。師:現(xiàn)在你們知道孫悟空為什么笑了嗎?請同學(xué)回答。
師:豬八戒每次分到的都是一樣多的。它還以為啊,開始分得少,后來分得多。不過豬八戒也許也正納悶?zāi)?這幾個分數(shù)的分子和分母各不一樣,那它們的大小怎么會一樣呢?你們想幫豬八戒解決這個問題嗎?(想)
下面請同學(xué)們把這個式子從左往右地觀察,看一下每個分數(shù)的分子分母怎樣變化?才得到下一個分數(shù)。
生:我發(fā)現(xiàn)了二分之一的分子與分母同時乘以2得到了四分之二、四分之二的分子和分母同時乘以2得到了八分之四。
請二名同學(xué)重復(fù)。
師:你們想得一樣嗎?我把二分之一的分子分母同時乘2得到了四分之二、四分之二的分子和分母同時乘2又得到了八分之四。那在這個式子中我們是把分子分母同時乘2,分數(shù)的大小不變,那如果我們把分數(shù)的分子分母同時乘5分數(shù)的大小變嗎?同時乘以10呢?那你們能不能根據(jù)這個式子來總結(jié)一個規(guī)律呢?
生回答:一個分數(shù)的分子分母同時擴大相同的倍數(shù),它們分數(shù)的大小不變。
請一至二名同學(xué)回答。
師板書:分數(shù)的分子分母同時乘相同的數(shù),分數(shù)的大小不變。
師:誰來舉一個例子。指名三位同學(xué)回答,師板書,并問:同時乘以了幾?
師:這樣的例子我們可以舉出很多很多,剛才我們是從左往右觀察的,如果把這個式子從右往右觀察,你們又會發(fā)現(xiàn)什么呢?
請一同學(xué)回答,
生:我們發(fā)現(xiàn)了8分之四的分子與分母同時除以2得了四分之二,四分之二的分子與分母同時除以2得到了二分之一。
師:嗯,分數(shù)的分子分母同時除以2分數(shù)的大小不變,如果同時除以4大小會變嗎?同時除以5呢?能不能根據(jù)這個式子再總結(jié)出一句話呢?
生:分數(shù)的分子分母同時除以相同的數(shù),分數(shù)的大小不變。 (二名學(xué)生重復(fù))
師板書:或者除以
師:你能根據(jù)剛才總結(jié)的規(guī)律舉一個例子嗎?
讓三名學(xué)生舉出例子,師板書。并問:分子分母同時除以了幾?
展示交流
師指著板書說明:我們說分子分母同時乘或除以相同的數(shù),分數(shù)的大小不變,那是不是包括所有的數(shù)呢?我們一起來看這樣一個分數(shù)。板書八分之四同時除以0,問:這個式子成立嗎?(打上問號)
生:不成立,
師:為什么
生:因為0不能作除數(shù),
師:0不能作除數(shù),所以這個式子是錯誤的。(畫叉)
師:我再說一個式子,我不除以0了,我乘以0,這個式子成立嗎?(板書:8分之四乘以0,打上問號)
生:不成立,因為在分數(shù)當中分母相當于除數(shù),除數(shù)不能為0。
師:對,大家都知道0不能作除數(shù),所以這兩個式子都是不成立的?(畫叉)我們剛才總結(jié)的分數(shù)的分子分母同時乘或者除以相同的數(shù),不是所有的數(shù)需要加上一句什么話
生:0除外
師板書0除外
師:到現(xiàn)在為止這個規(guī)律我們就總結(jié)完了,那在這個規(guī)律里你覺得什么地方需要我們注意一下呢?
生:同時和相同的數(shù)
師:“同時”和“相同的數(shù)”(師將重點詞語打點),大家想得一樣嗎?這個就是我們今天這節(jié)課要學(xué)習的.分數(shù)的基本性質(zhì)。(師板書課題)
師:我相信如果當時豬八戒會這個分數(shù)的基本性質(zhì),那就不會出現(xiàn)這樣的笑話了,那咱們同學(xué)們千萬不要范它那樣的錯誤了。下面讓我們一起把分數(shù)的基本性質(zhì)邊讀邊記。
生齊讀二遍。
師:這個分數(shù)的基本性質(zhì)特別有用,我們可以根據(jù)分數(shù)的基本性質(zhì)把一個分數(shù)化成和它相等的另外一個分數(shù)。
任務(wù)二
任務(wù)呈現(xiàn)
課本76頁的例2,請一同學(xué)讀題。
自主學(xué)習
生獨立完成,完成后和同位的同學(xué)說一說你是怎樣想的。
展示交流
每題請二名同學(xué)回答,(集體訂正答案)
檢測導(dǎo)結(jié)
1、目標練習
76頁“做一做”
練習十四的1、2、6、7題
2、結(jié)果反饋
生做完后同桌交流,再指名說說結(jié)果。
3、反思總結(jié)
今天這節(jié)課你都學(xué)會了哪些知識?請大家談?wù)剬W(xué)習了分數(shù)的基本性質(zhì)的收獲。
三、輔助設(shè)計
教具課件設(shè)計
小黑板正方形紙數(shù)塊
板書設(shè)計
分數(shù)的基本性質(zhì)
練習和作業(yè)設(shè)計
1、完成課本76頁做一做中的1、2題。
生獨立完成,師指名回答。
2、完成練習十四中的1、2、5、6、7題。
師小結(jié):這節(jié)課我們學(xué)習了分數(shù)基本性質(zhì),而且我們還學(xué)會了根據(jù)分數(shù)的基本性質(zhì)把一個分數(shù)轉(zhuǎn)化成和它相等的另外一個分數(shù),其實生活當中還有許多的數(shù)學(xué)知識,如果你留心觀察,你就能夠發(fā)現(xiàn),我希望大家都能做一個在學(xué)習上面的有心人。
分數(shù)的基本性質(zhì)數(shù)學(xué)教學(xué)設(shè)計 7
教學(xué)目標
1、經(jīng)歷探索分數(shù)的基本性質(zhì)的過程,理解分數(shù)的基本性質(zhì)。
2、能運用分數(shù)的基本性質(zhì),把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)。
3、經(jīng)歷觀察、操作和討論等學(xué)習活動,體驗數(shù)學(xué)學(xué)習的樂趣。
教學(xué)重點:
理解掌握分數(shù)的'基本性質(zhì)。
教學(xué)難點:
歸納性質(zhì)
教學(xué)設(shè)計
(一)創(chuàng)設(shè)情境,引起學(xué)生參與興趣
1、猴王變戲法(學(xué)生模仿復(fù)習)
除法式子變形
分數(shù)與除法變形
2、教師出示三只可愛的小猴圖片,獎勵聽故事:
有一天,猴王做了三塊大小一樣的餅分給小猴們吃,它先把第一塊餅平均切成兩塊,分給第一只小猴一塊,第二只小猴見到說:“太小了,我要兩塊!焙锿蹙桶训诙䦃K餅平均切成四塊,分給第二只小猴兩塊。第三只小猴更貪,它搶著說:“我要三塊,我要三塊。”于是,猴王又把第三塊餅平均切6塊,分給第三只小猴三塊。
同學(xué)們,你知道哪只猴子分得的多嗎?(哪只猴子分得的多?讓學(xué)生發(fā)表自己的意見)
3、教師出示三塊大小一樣的餅,通過師生分餅,觀察驗收后得出結(jié)論:三只猴子分得的餅一樣多。聰明的猴王是用什么辦法來滿足小猴子們的要求,又分得那么公平的呢?同學(xué)們想知道有什么規(guī)律嗎?
。ǘ┨骄啃轮
1、動手操作、形象感知
請同學(xué)們拿出三張相同形狀同樣大的紙,把每張紙都看作一個整體。動手折出平均分的份數(shù)2份、4份、6份,動筆把其中的1份、2份、3份畫上陰影,再把陰影部分剪下來,將剪下的陰影部分重疊,比一比記錄下結(jié)論。
分數(shù)的基本性質(zhì)數(shù)學(xué)教學(xué)設(shè)計 8
教學(xué)要求
、偈箤W(xué)生理解分數(shù)的基本性質(zhì),并會應(yīng)用分數(shù)的基本性質(zhì)把不同分母的分數(shù)化成分母相同而大小不變的分數(shù)。
、谂囵B(yǎng)學(xué)生觀察、分析和抽象概括能力。
③滲透“事物之間是相互聯(lián)系”的辯證唯物主義觀點。
教學(xué)重點理解分數(shù)的基本性質(zhì)。
教學(xué)用具每位學(xué)生準備三張同樣的長方形紙條;教師:紙條、投影片等。
教學(xué)過程
一、創(chuàng)設(shè)情境
1、120÷30的商是多少?被除數(shù)和除數(shù)都擴大3倍,商是多少?被除數(shù)和除數(shù)都縮小10倍呢?
2、說一說:
(1)商不變的性質(zhì)是什么?
。2)分數(shù)與除法的關(guān)系是什么?
3、填空。
1÷2=(1×2)÷(2×2)==。
二、揭示課題
讓學(xué)生大膽猜測:在除法里有商不變的性質(zhì),在分數(shù)里會不會也有類似的性質(zhì)存在呢?這個性質(zhì)是什么呢?
隨著學(xué)生的回答,教師板書課題:分數(shù)的基本性質(zhì)。
三、探索研究
1、動手操作,驗證性質(zhì)。
。1)讓學(xué)生拿出三張同樣的`長方形紙條,分別平均分成2份、4份、6份,并分別把其中的1份、2份、3份涂上色,把涂色的部分用分數(shù)表示出來。
。2)觀察比較后引導(dǎo)學(xué)生得出:
。3)從左往右看:
由變成,平均分的份數(shù)和表示的份數(shù)有什么變化?
把平均分的份數(shù)和表示的份數(shù)都乘以2,就得到,即==(板書)。
把平均分的份數(shù)和表示的份數(shù)都乘以3,就得到,即:==(板書)。
引導(dǎo)學(xué)生初步小結(jié)得出:分數(shù)的分子、分母同時乘以相同的數(shù),分數(shù)的大小不變。
。4)從右往左看:
引導(dǎo)學(xué)生觀察明確:的分子、分母同時除以2,得到。同理,的分子、分母同時除以3,也可以得到。
板書:
讓學(xué)生再次歸納:分數(shù)的分子、分母同時除以相同的數(shù),分數(shù)的大小不變。
(5)引導(dǎo)學(xué)生概括出分數(shù)的基本性質(zhì),并與前面的猜想相回應(yīng)。
。6)提問:這里的“相同的數(shù)“,是不是任何數(shù)都可以呢?(補充板書:零除外)
2、分數(shù)的基本性質(zhì)與商不變的性質(zhì)的比較。
在除法里有商不變的性質(zhì),在分數(shù)里有分數(shù)的基本性質(zhì)。
想一想:根據(jù)分數(shù)與除法的關(guān)系以及整數(shù)除法中商不變的性質(zhì),你能說明分數(shù)的基本性質(zhì)嗎?
3、學(xué)習把分數(shù)化成指定分母而大小不變的分數(shù)。
。1)出示例2,幫助學(xué)生理解題意。
。2)啟發(fā):要把和化成分母是12而大小不變的分數(shù),分子應(yīng)該怎樣變化?變化的根據(jù)是什么?
。3)讓學(xué)生在書上填空,請一名學(xué)生口答。教師板書:
4、練習。教材第108頁的做一做。
四、課堂實踐。
練習二十三的1、3題。
五、課堂小結(jié)
1、這節(jié)課我們學(xué)習了什么內(nèi)容?
2、什么是分數(shù)的基本性質(zhì)?
六、課堂作業(yè)
練習二十三的第2題。
七、思考練習
練習二十三的第10題。
后記:
分數(shù)的基本性質(zhì)數(shù)學(xué)教學(xué)設(shè)計 9
教學(xué)內(nèi)容:
蘇教版數(shù)學(xué)五年級下冊第60~61頁例1、例2,試一試及練習十一1~3題。
預(yù)設(shè)目標:
1、使學(xué)生經(jīng)歷探索分數(shù)基本性質(zhì)的過程,初步理解和掌握分數(shù)的基本性質(zhì),知道它與商不變規(guī)律之間的聯(lián)系。
2、使學(xué)生能應(yīng)用分數(shù)的基本性質(zhì),把一個分數(shù)化成指定分母或分子而大小不變的分數(shù)。
3、使學(xué)生在觀察、操作、思考和交流等活動中,培養(yǎng)分析、綜合和抽象、概括能力,體驗數(shù)學(xué)學(xué)習的樂趣。
教學(xué)重點:
探索、發(fā)現(xiàn)、歸納和理解分數(shù)的基本性質(zhì)。
教學(xué)過程:
一、導(dǎo)入
猜謎:你有我有他也有,黑身子黑腿黑腦袋,燈前月下伴你走,就是從來不開口。
二、學(xué)習新知
1、提供例證
(1)觀察兩個算式:1÷32÷6,問這兩個算式的商相等嗎?你的依據(jù)是什么?你能接著往下再寫一個除法算式嗎?
板書:1/3=2/6=3/9(得出三個相等的分數(shù))
。2)學(xué)生折紙找與1/2相等的分數(shù)。
你能先對折,涂色表示它的1/2嗎?你能通過繼續(xù)對折,找出和1/2相等的其他分數(shù)嗎?
展示與1/2相等的分數(shù),并逐步板書:1/2=2/4=4/8=8/16
2、誘導(dǎo)探索
提問:這些分數(shù)的分子、分母都不同,但是它們的大小都是一樣的,這里隱藏著什么規(guī)律呢?分數(shù)的分子、分母怎樣變化分數(shù)的大小不變呢?
3、探究新知
。1)獨立思考或小組交流。
。2)探究驗證。
你能從(1/2=2/4、1/2=4/8、1/2=8/16)這三組分數(shù)中任意選一組具體說說分數(shù)的分子、分母怎樣變化以后,分數(shù)的大小不變?
教師根據(jù)學(xué)生的回答進行板書。
4、揭示結(jié)論:出示分數(shù)的基本性質(zhì)的內(nèi)容,并揭示課題。
5、深究結(jié)論:
(1)在分數(shù)的基本性質(zhì)中,你認為哪些字詞比較重要,為什么?
(2)齊讀并理解記憶分數(shù)的基本性質(zhì)。
三、多層練習
1、填一填。(在○里填運算符號,在□里填數(shù)或字母)。
4/5=4×6/5○□=24/□20/70=20○□/70÷5=□/14
5/8=5○□/8○67/12=7○□/12○□
2、判斷。
3/4=3+4/4+4()12/15=12÷n/15÷n()
5/25=5×5/25÷5()5/6=25/30()
四、課堂作業(yè):
1、第62頁“練一練”2。
2、第63頁第3題。
3、每日一題:請判斷3/4和3+6/4+8是否相等,為什么?
反思
“分數(shù)的基本性質(zhì)”在分數(shù)教學(xué)中占有重要的地位,它是約分、通分的依據(jù),對于以后學(xué)習比的基本性質(zhì)也有很大的幫助,所以分數(shù)的基本性質(zhì)是本單元的教學(xué)重點。這節(jié)課我大膽利用“猜想和驗證”方法,留給學(xué)生足夠的探索時間和廣闊的思維空間,讓學(xué)生得到的不僅是數(shù)學(xué)知識,更主要的是數(shù)學(xué)學(xué)習的方法,從而激勵學(xué)生進一步地主動學(xué)習,產(chǎn)生我會學(xué)的成就感,讓學(xué)生學(xué)會學(xué)習,學(xué)會思考,學(xué)會創(chuàng)造,進而培養(yǎng)學(xué)生用數(shù)學(xué)的思想方法思考并解決在實際生活中所遇到的各種問題,這也是學(xué)生適應(yīng)未來生活必須的基本素質(zhì)。學(xué)生已掌握了商不變的性質(zhì)之后,并在已有應(yīng)用經(jīng)驗的`基礎(chǔ)上進行的,這節(jié)課我是這樣設(shè)計教學(xué)的:
1、通過商不變的性質(zhì)、除法與分數(shù)的關(guān)系的復(fù)習,幫助學(xué)生意識到商不變的變規(guī)律與新知識的聯(lián)系,為新知識的學(xué)習做好必要的準備。
2、學(xué)生在自主探索中科學(xué)驗證。
在學(xué)生大膽猜想的基礎(chǔ)上,教師適時揭示猜想內(nèi)容,并對學(xué)生的猜想提出質(zhì)疑,激發(fā)學(xué)生主動探究的欲望。在探索“分數(shù)的基本性質(zhì)”和驗證性質(zhì)時,通過創(chuàng)設(shè)自主探索、合作互助的學(xué)習方式,由學(xué)生自行選擇用以探究的學(xué)習材料和參與研究的學(xué)習伙伴,充分尊重學(xué)生個人的思維特性,在具有較為寬泛的時空的自主探索中,鼓勵學(xué)生用自己的方式來證明自己猜想結(jié)論的正確性,突現(xiàn)出課堂教學(xué)以學(xué)生為本的特性。每一步教學(xué),都強調(diào)學(xué)生自主參與,通過規(guī)律讓學(xué)生自主發(fā)現(xiàn)、方法讓學(xué)生自主尋找、問題讓學(xué)生自主解決,使學(xué)生獲得成功的體驗,增強學(xué)習的自信心。
3、讓學(xué)生在多層練習中鞏固深化。
在練習的設(shè)計上,力求緊扣重點,做到新穎、多樣、層次分明,有坡度。填空題第1、2題是基本練習,主要是幫助學(xué)生理解概念,并全面了解學(xué)生掌握新知識的情況。第3、4題是在第1、2題的基礎(chǔ)上,進一步讓學(xué)生進行鞏固練習,加深對所學(xué)知識的理解。第4題是開放題,加深學(xué)生對分數(shù)的基本性質(zhì)的認識,激發(fā)學(xué)生學(xué)習的興趣,活躍課堂氣氛。這樣不僅能照顧到學(xué)生思維發(fā)展的過程,而且有效拓寬了學(xué)生的思維空間,真正做到了學(xué)以致用。
反思教學(xué)的主要過程,覺得在讓學(xué)生用各種方法驗證結(jié)論的正確性的時候,拓展得不夠,要放開手讓學(xué)生尋找多種途徑去驗證。因為數(shù)學(xué)教學(xué)并不是要求教師教給學(xué)生問題的答案,而是教給學(xué)生思維的方法。
分數(shù)的基本性質(zhì)數(shù)學(xué)教學(xué)設(shè)計 10
一、教學(xué)內(nèi)容
分數(shù)的基本性質(zhì)。(課本第75-76頁的例1、例2及“做一做”、第77頁練習十四的第1-3題)
二、教材簡析
《分數(shù)的基本性質(zhì)》是人教版小學(xué)數(shù)學(xué)教材第十冊的內(nèi)容之一,在小學(xué)數(shù)學(xué)學(xué)習中起著承前啟后、舉足輕重的作用,它既與整數(shù)除法的商不變性質(zhì)有著內(nèi)在的聯(lián)系,也是后面進一步學(xué)習分數(shù)的計算、比的基本性質(zhì)的基礎(chǔ)。分數(shù)的基本性質(zhì)是一種規(guī)律性知識,分數(shù)的分子分母變了,分數(shù)的大小會變嗎?分數(shù)的分子分母如何變化,分數(shù)的大小不變呢?學(xué)生在這種“變”與“不變”中發(fā)現(xiàn)規(guī)律。
三、教材處理
以前,教師通常把《分數(shù)的基本性質(zhì)》看作一種靜態(tài)的數(shù)學(xué)知識,教學(xué)時先用幾個例子讓學(xué)生較快地概括出規(guī)律,然后更多地通過精心設(shè)計的練習鞏固應(yīng)用規(guī)律,著眼于規(guī)律的結(jié)論和應(yīng)用。隨著課程改革的深入,教師們越來越重視學(xué)生獲取知識的過程,但我們也看到這樣的現(xiàn)象:問題較碎,步子較小,放手不夠,探究的過程體現(xiàn)不夠充分!斗謹(shù)的基本性質(zhì)》可不可以有別的教學(xué)思路呢?新的課程標準提出:“教師應(yīng)向?qū)W生提供充分從事數(shù)學(xué)活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學(xué)知識與技能、數(shù)學(xué)思想和方法”。根據(jù)這一新的理念,我認為教師可以為學(xué)生創(chuàng)設(shè)一種大問題背景下的探索活動,使學(xué)生在一種動態(tài)的探索過程中自己發(fā)現(xiàn)分數(shù)的基本性質(zhì),從而體驗發(fā)現(xiàn)真理的曲折和快樂,感受數(shù)學(xué)的思想方法,體會科學(xué)的學(xué)習方法。所以,教師的著眼點,不能只是規(guī)律的結(jié)論和應(yīng)用,而應(yīng)有意識地突出思想和方法;谝陨纤伎,我以讓學(xué)生探究發(fā)現(xiàn)分數(shù)基本性質(zhì)的過程為教學(xué)重點,創(chuàng)設(shè)了一種“猜想——驗證——反思”的教學(xué)模式,以“猜想”貫穿全課,引導(dǎo)學(xué)生遷移舊知、大膽猜想——實驗操作、驗證猜想——質(zhì)疑討論、完善猜想等,把這一系列探究過程放大,把過程性目標”凸顯出來。
四、設(shè)計意圖:
本課主要本著遵循小學(xué)數(shù)學(xué)課程標準“創(chuàng)設(shè)問題情境提出問題解決問題建立數(shù)學(xué)模型解釋數(shù)學(xué)模型運用數(shù)學(xué)模型拓展數(shù)學(xué)模型”的指導(dǎo)思想而設(shè)計的。
1、通過故事創(chuàng)設(shè)問題情境,貼近學(xué)生生活,有利于激發(fā)學(xué)生學(xué)習興趣。
2、從故事情境中提出問題,體現(xiàn)數(shù)學(xué)來源于生活。
3、小組合作學(xué)習,共同探究解決問題,讓學(xué)生充分體驗知識產(chǎn)生的過程。
4、從幾組分數(shù)中分析,找到分數(shù)的.基本性質(zhì),從而初步建立數(shù)學(xué)模型。
5、設(shè)計有坡度的練習,穿插師生互動,生生互動,讓整個運用知識的形式活潑有趣。
6、在游戲活動中對數(shù)學(xué)知識進行拓展運用。
五、教學(xué)目標
1、知識與技能
(1)經(jīng)歷探索分數(shù)的基本性質(zhì)的過程,理解分數(shù)的基本性質(zhì)。
(2)能運用分數(shù)的基本性質(zhì),把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)。
2、情感態(tài)度與價值觀
(1)經(jīng)歷觀察、操作和討論等數(shù)學(xué)學(xué)習活動,使學(xué)生進一步體驗數(shù)學(xué)學(xué)習的樂趣。(2)體驗數(shù)學(xué)與日常生活密切相關(guān)。
3、過程與方法
(1) 經(jīng)歷觀察、操作和討論等學(xué)習活動,并在探索過程中,能進行有條理的思考,能對分
數(shù)的基本性質(zhì)作出簡要的、合理的說明。
(2) 培養(yǎng)學(xué)生的觀察、比較、歸納、總結(jié)概括能力。
(3)能根據(jù)解決問題的需要,收集有用的信息進行歸納,發(fā)展學(xué)生的歸納、推理能力。
六、教學(xué)重點
理解分數(shù)的基本性質(zhì)
七、教學(xué)難點
能運用分數(shù)的基本性質(zhì),把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)
八、教學(xué)準備
教師:電腦課件
學(xué)生:圓紙片 長方形紙
九、教學(xué)過程:
(一)回顧復(fù)習,舊知鋪墊。
課件出示復(fù)習題
1、商不變的性質(zhì)
12÷3=( )
(12×10)÷(3×10)=( )
。12÷3)÷(3÷3)=( )
利用什么知識填空的?
2、除法與分數(shù)的關(guān)系
30 ÷ 120 =( )/( )
( )÷( ) =17/51
利用什么知識填空的?
。ǘ┕适乱,揭示課題。
課件出示故事(動畫):從前有座山,山上有座廟,廟里有個老和尚和一個小和尚,哦不對,是三個小和尚。小和尚最喜歡吃老和尚做的餅啦。有一天,老和尚做三塊大小一樣的餅,想給小和尚吃,還沒給,小和尚就叫開了,“我要一塊”,“我要兩塊”,“嘻嘻,我不要多,只要四塊。”老和尚二話沒說,把第一塊餅平均分成4塊,取出其中1塊給第一個和尚;把第二塊餅平均分成8塊,取其中2塊給高和尚。把第三塊餅平均分成16塊,取其中的4塊給了胖和尚。小朋友,你知道哪個和尚分得多嗎?
生1:胖和尚吃的多。 生2:矮和尚吃的多。 ……
師:到底誰回答得對呢?我們一起動手分餅來求證吧
1、合作探究
師:請同學(xué)們以兩人一組,拿出三個大小相等的圓,分別用陰影部分表示每個和尚分得的餅(教師觀察,學(xué)生小組合作,有平均分的,有涂色的,小組成員配合默契。)
師:比較一下陰影部分的大小,結(jié)果怎樣?
生:陰影部分的大小相等。
師:陰影部分相等說明每個和尚分的餅相等.
師:請同學(xué)們用分數(shù)表示陰影部分
師:陰影部分相等說明這三個分數(shù)怎樣?
生:三個分數(shù)相等。(隨著學(xué)生的回答,老師將板書的三個分數(shù)用“=”連接。)
2、組織討論。
師:仔細觀察這三個分數(shù)什么變了,什么沒有變?
讓學(xué)生小組討論后答出:它們分數(shù)的分子和分母變化了,但分數(shù)的大小不變。
師:它們各是按照什么規(guī)律變化的呢?我們今天就來共同研究這個變化規(guī)律。
3、比較歸納
同學(xué)們:從左往右觀察,這三個分數(shù)的分子和分母是按照什么規(guī)律變化的才保證了分數(shù)的大小不變的?
集體討論幾名學(xué)生回答后,要求學(xué)生試著歸納變化規(guī)律:分數(shù)的分子和分母都乘以相同的數(shù),分數(shù)的大小不變。(邊講邊板書)
師:從右往左看,分數(shù)的分子和分母又是按照什么規(guī)律變化的?通過分析比較每組分數(shù)的分子和分母,得出:分數(shù)的分子和分母都除以相同的數(shù),分數(shù)的大小不變。(邊講邊板書)
4、揭示規(guī)律
教師小結(jié):“剛才大家都觀察得很仔細,像分數(shù)的分子、分母發(fā)生的這種有規(guī)律的變化,它的大小不變。就是我們這節(jié)課學(xué)習的新知識。(板書課題:分數(shù)的基本性質(zhì))
師:“什么叫做分數(shù)的基本性質(zhì)呢?就你的理解,能把它歸納成一句話嗎?(小組討論發(fā)言)
師:剛才同學(xué)們都用自己的語言說了分數(shù)的基本性質(zhì),我們的書上也總結(jié)了分數(shù)的基本性質(zhì),現(xiàn)在請打開書看到75頁?纯春臀覀兛偨Y(jié)的有什么不同,并用波浪線表出關(guān)鍵的詞。(如:同時,相同,0除外等)
全班討論:為什么要規(guī)定0除外”?
引導(dǎo):現(xiàn)在同學(xué)們知道了聰明的老和尚是用運用什么規(guī)律來分餅,既滿足小和尚的要求,又分得那么公平?
。ㄈ┦崂頊贤,靈活運用。
1、分數(shù)的基本性質(zhì)與商不變的性質(zhì)的聯(lián)系。
想一想,根據(jù)分數(shù)與除法的關(guān)系,以及整數(shù)除法中商不變的規(guī)律,你能說明分數(shù)的基本性質(zhì)嗎?
啟發(fā)學(xué)生說出它們之間的聯(lián)系:
(1)分子相當于被除數(shù),分母相當于除數(shù);
。2)被除數(shù)和除數(shù)同時乘以或除以相同的數(shù)就相當于分子和分母同時乘以或除
以相同的數(shù);
(3)“相同的數(shù)”中要求“0除外”;
。4)商不變相當于分數(shù)的大小不變。
2、分數(shù)基本性質(zhì)的應(yīng)用
(1)出示課本第76頁例2,把2/3 和10/24 分別轉(zhuǎn)化成分母是12而大小不變的分數(shù)。
(2)認真審題,弄清題意。
要求學(xué)生讀題后歸納出題目的要求。
a.分母都變成12
b.分數(shù)的大小不變
。3)想一想:怎么化,根據(jù)什么?
過程要求:
a.學(xué)生獨立思考,完成題目要求;
b.全班反饋,教師課件顯示;
。ㄋ模┒鄬泳毩,鞏固深化。
1、完成教科書第77頁練習十四的第1-3題。
(1)第1題
此題著重練習分數(shù)的相等和不等。練習時,讓學(xué)生按照題目的要求涂色。
(2)第2題
此題是運用分數(shù)的基本性質(zhì)比較分數(shù)大小的實際問題,學(xué)生在練習中將2/5化成4/10,或者把4/10化成2/5,再作比較,都是可以的。
。3)第3題,說出相等的分數(shù)(對口令)
此題是運用分數(shù)基本性質(zhì)的游戲練習.游戲時,讓學(xué)生以同桌為單位.仿照第3題的樣子,一個人先說一個分數(shù),另一個人回答一個相等的分數(shù),然后交換先后順序。
2、教科書76頁 “做一做”
。1)由學(xué)生獨立完成,然后同學(xué)交流.
。2)全班反饋,說一說思維過程.
(五)小結(jié)
教師:同學(xué)們,通過今天的學(xué)習,你有什么收獲?
題界知家數(shù)同時乘以或除以相同的數(shù)就相當于分子和分母同時乘以或除
(六)動腦筋出教室游戲(機動)
讓學(xué)生拿出課前發(fā)的寫有分數(shù)的紙片,要求學(xué)生看清手中的分數(shù)。與 相等的,報出自己的分數(shù)后先離場,與相等的再離場,與相等的最后離場。
十、板書設(shè)計
商不變的性質(zhì)
被除數(shù)和除數(shù)同時乘或除以相同的數(shù)(0除外),商不變。
分數(shù)與除法的關(guān)系
a÷b =a/b(b≠0)
分數(shù)的基本性質(zhì)
分數(shù)的分子和分母同時乘或除以相同的數(shù)(0除外),分數(shù)的大小不變。
分數(shù)的基本性質(zhì)數(shù)學(xué)教學(xué)設(shè)計 11
一、教學(xué)目標
1.經(jīng)歷探索分數(shù)基本性質(zhì)的過程,理解分數(shù)的基本性質(zhì)。
2.能運用分數(shù)的基本性質(zhì),把一個分數(shù)化成指定分母(或分子)而大小不變的分數(shù)。
3.經(jīng)歷觀察、操作和討論等學(xué)習活動,體驗數(shù)學(xué)學(xué)習的樂趣。
二、教學(xué)重、難點
教學(xué)重點是:分數(shù)的基本性質(zhì)。
教學(xué)難點是:對分數(shù)的基本性質(zhì)的理解。
三、教學(xué)方法
采用了動手做一做、觀察、比較、歸納和直觀演示的方法
四、教學(xué)過程
。ㄒ唬、故事引入,揭示課題
1.教師講故事。
猴山上的猴子最喜歡吃猴王做的餅了。有一天,猴王做了三塊大小一樣的餅分給小猴們吃,它先把第一塊餅平均切成四塊,分給猴1一塊。猴2見到說:“太少了,我要兩塊!焙锿蹙桶训诙䦃K餅平均切成八塊,分給猴2兩塊。猴3更貪,它搶著說:“我要三塊,我要三塊!庇谑牵锿跤职训谌龎K餅平均切成十二塊,分給猴3三塊。小朋友,你知道哪只猴子分得多嗎?
討論:哪只猴子分得的多?讓學(xué)生發(fā)表自己的意見,教師出示三塊大小一樣的餅,通過師生分餅、觀察和驗證,得出結(jié)論:三只猴子分得的餅一樣多。
引導(dǎo):聰明的猴王是用什么辦法來滿足小猴子們的要求,又分得那么公平的呢?同學(xué)們想知道嗎?學(xué)習了“分數(shù)的基本性質(zhì)”就清楚了。(板書課題)
2.組織討論。
。1)既然三只猴子分得的餅同樣多,那么表示它們分得餅的分數(shù)是什么關(guān)系呢?這三個分數(shù)什么變了,什么沒有變?讓學(xué)生小組討論后答出:這三個分數(shù)是相等關(guān)系,14=28=312,它們平均分的份數(shù)和表示的份數(shù)也就是分數(shù)的分子和分母變化了,但分數(shù)的大小不變。
。2)猴王把三塊大小一樣的餅分給小猴子一部分后,剩下的部分大小相等嗎?你還能說出一組相等的分數(shù)嗎?通過觀察演示得出:34=68=912。
。3)我們班有40名同學(xué),分成了四組,每組10人。那么第一、二組學(xué)生的人數(shù)占全班學(xué)生人數(shù)的幾分之幾?引導(dǎo)學(xué)生用不同的分數(shù)表示,然后得出:12=24=2040。
3.引入新課:黑板上三組相等的分數(shù)有什么共同的特點?學(xué)生回答后板書:
分數(shù)的分子和分母變化了,
分數(shù)的大小不變。
它們各是按照什么規(guī)律變化的呢?我們今天就來共同研究這個變化規(guī)律。
。 二)、比較歸納,揭示規(guī)律
1.出示思考題。
比較每組分數(shù)的分子和分母:
。1)從左往右看,是按照什么規(guī)律變化的?
。2)從右往左看,又是按照什么規(guī)律變化的?
讓學(xué)生帶著上面的思考題,看一看,想一想,議一議,再翻開教科書看看書上是怎么說的。
2.集體討論,歸納性質(zhì)。
。1)從左往右看,由34到68,分子、分母是怎么變化的?引導(dǎo)學(xué)生回答出:把34的分子、分母都乘以2,就得到68。原來把單位“1”平均分成4份,表示這樣的3份,現(xiàn)在把分的份數(shù)和表示份數(shù)都擴大2倍,就得到68。
板書:
。2)34是怎樣變化成912的呢? 怎么填?學(xué)生回答后填空。
(3)引導(dǎo)口述:34的分子、分母都乘以2,得到68,分數(shù)的大小不變。
。4)在其它幾組分數(shù)中,分子、分母的變化規(guī)律怎樣?幾名學(xué)生回答后,要求學(xué)生試著歸納變化規(guī)律:分數(shù)的分子和分母都乘以相同的數(shù),分數(shù)的大小不變。
。ò鍟憾汲艘
相同的數(shù))
(5)從右往左看,分數(shù)的分子和分母又是按照什么規(guī)律變化的?通過分析比較每組分數(shù)的'分子和分母,得出:分數(shù)的分子和分母都除以相同的數(shù),分數(shù)的大小不變。
。ò鍟憾汲裕
。6)引導(dǎo)思考:都乘以、都除以兩個“都”字,去掉一個怎么改?(去掉第二個“都”字,換成“或者”)再對照教科書中的分數(shù)基本性質(zhì),讓學(xué)生說出少了什么?(少了“零除外”)討論:為什么性質(zhì)中要規(guī)定“零除外”?
。ò鍟毫愠猓
。7)齊讀分數(shù)的基本性質(zhì)。先讓學(xué)生找出性質(zhì)中關(guān)鍵的字、詞,如“都”、“相同的數(shù)”、“零除外”等。然后要求關(guān)鍵的字詞要重讀。師生共同讀出黑板上板書的分數(shù)基本性質(zhì)。
3.出示例2:把12和1024化成分母是12而大小不變的分數(shù)。
思考:要把12和1024化成分母是12而大小不變的分數(shù),分子、分母怎么變化?變化的依據(jù)是什么?
4.討論:猴王運用什么規(guī)律來分餅的?如果小猴子要四塊,猴王怎么分才公平呢?如果要五塊呢?
5.質(zhì)疑:讓學(xué)生看看課本和板書,回顧剛才學(xué)習的過程,提出疑問和見解,師生答疑。
。 三)、溝通說明,揭示聯(lián)系
通過舉例,溝通分數(shù)的基本性質(zhì)與商不變性質(zhì)之間的聯(lián)系。引導(dǎo)學(xué)生運用分數(shù)與除數(shù)的關(guān)系,以及整數(shù)除法中商不變的性質(zhì),說明分數(shù)的基本性質(zhì)。
如:34=3÷4=(3×3)÷(4×3)=9÷12=912
。 四)、多層練習,鞏固深化
1.口答。(學(xué)生口答后,要求說出是怎樣想的?)
2.判斷對錯,并說明理由。(運用反饋片判斷,錯的要求說明與分數(shù)的基本性質(zhì)中哪幾個字不相符。)
教學(xué)反思:
學(xué)生是學(xué)習的主人,教師是數(shù)學(xué)學(xué)習的組織者、引導(dǎo)者與合作者。因此數(shù)學(xué)課堂教學(xué)中必須把教師的教變成學(xué)生的學(xué),必須深入研究學(xué)法,建立探究式的學(xué)習模式。教師應(yīng)調(diào)動學(xué)生的學(xué)習積極性,向?qū)W生提供充分從事數(shù)學(xué)學(xué)習的機會,幫助他們在自主觀察、討論、合作、探究學(xué)習中真正理解和掌握基本的數(shù)學(xué)知識和技能,充分發(fā)揮學(xué)生的能動性和創(chuàng)造性!斗謹(shù)的基本性質(zhì)》的教學(xué)設(shè)計一個突出的特點就是學(xué)法的設(shè)計,從大膽猜想、實驗感知、觀察討論到概括總結(jié),完全是為學(xué)生自主探究、合作交流的學(xué)習而設(shè)計的。具體表現(xiàn)在:
1、學(xué)生在故事情境中大膽猜想。
通過創(chuàng)設(shè)“猴王分餅”的故事,讓學(xué)生猜測一組三個分數(shù)的大小關(guān)系,為自主探索研究“分數(shù)的基本性質(zhì)”作必要的鋪墊,同時又很好地激發(fā)了學(xué)生的學(xué)習熱情。
2、學(xué)生在自主探索中科學(xué)驗證。
在學(xué)生大膽猜想的基礎(chǔ)上,教師適時揭示猜想內(nèi)容,并對學(xué)生的猜想提出質(zhì)疑,激發(fā)學(xué)生主動探究的欲望。在探索“分數(shù)的基本性質(zhì)”和驗證性質(zhì)時,通過創(chuàng)設(shè)自主探索、合作互助的學(xué)習方式,由學(xué)生自行選擇用以探究的學(xué)習材料和參與研究的學(xué)習伙伴,充分尊重學(xué)生個人的思維特性,在具有較為寬泛的時空的自主探索中,鼓勵學(xué)生用自己的方式來證明自己猜想結(jié)論的正確性,突現(xiàn)出課堂教學(xué)以學(xué)生為本的特性。整個教學(xué)過程以“猜想——驗證——完善”為主線,每一步教學(xué),都強調(diào)學(xué)生自主參與,通過規(guī)律讓學(xué)生自主發(fā)現(xiàn)、方法讓學(xué)生自主尋找、思路讓學(xué)生自主探索,問題讓學(xué)生自主解決,使學(xué)生獲得成功的體驗,增強自信心。
3、讓學(xué)生在分層練習中鞏固深化。
在練習的設(shè)計上,力求緊扣重點,做到新穎、多樣、層次分明,有坡度。第1、2題是基本練習,主要是幫助學(xué)生理解概念,并全面了解學(xué)生掌握新知識的情況。第3題是在第1、2題的基礎(chǔ)上,進一步讓學(xué)生進行鞏固練習,加深對所學(xué)知識的理解。第4題通過游戲,加深學(xué)生對分數(shù)的基本性質(zhì)的認識,激發(fā)學(xué)生學(xué)習的興趣,活躍課堂氣氛。這樣不僅能照顧到學(xué)生思維發(fā)展的過程,而且有效拓寬了學(xué)生的思維空間,真正做到了學(xué)以致用。
反思教學(xué)的主要過程,覺得在讓學(xué)生用各種方法驗證結(jié)論的正確性的時候,拓展得不夠,要放開手讓學(xué)生尋找多種途徑去驗證,而不能局限于老師提供的幾種方法。因為數(shù)學(xué)教學(xué)并不是要求教師教給學(xué)生問題的答案,而是教給學(xué)生思維的方法。
【分數(shù)的基本性質(zhì)數(shù)學(xué)教學(xué)設(shè)計】相關(guān)文章:
分數(shù)基本性質(zhì)教學(xué)設(shè)計02-15
分數(shù)的基本性質(zhì)教學(xué)設(shè)計04-05
《分數(shù)基本性質(zhì)》教學(xué)設(shè)計07-01
《分數(shù)的基本性質(zhì)》教學(xué)設(shè)計05-24
分數(shù)的基本性質(zhì)教學(xué)設(shè)計09-15
《分數(shù)基本性質(zhì)》教學(xué)設(shè)計09-14
分數(shù)的基本性質(zhì)的教學(xué)設(shè)計07-02