《概率論與數(shù)理統(tǒng)計(jì)》的課程學(xué)習(xí)心得
篇一:《概率論與數(shù)理統(tǒng)計(jì)》課程學(xué)習(xí)心得
有人說:“數(shù)學(xué)來源于生活,應(yīng)用于生活。數(shù)學(xué)是有信息的,信息是可以提取的,而信息又是為人們服務(wù)的!蹦敲锤怕士隙ㄊ瞧渲凶顬橹匾囊徊糠。巴特勒主教說,對我們未來說,可能性就是我們生活最好的指南,而概率即可能。
概率論與數(shù)理統(tǒng)計(jì)是現(xiàn)代數(shù)學(xué)的一個(gè)重要分支。近二十年來,隨著計(jì)算機(jī)的發(fā)展以及各種統(tǒng)計(jì)軟件的開發(fā),概率統(tǒng)計(jì)方法在金融、保險(xiǎn)、生物、醫(yī)學(xué)、經(jīng)濟(jì)、運(yùn)籌管理和工程技術(shù)等領(lǐng)域得到了廣泛應(yīng)用。主要包括:極限理論、隨機(jī)過程論、數(shù)理統(tǒng)計(jì)學(xué)、概率論方法應(yīng)用、應(yīng)用統(tǒng)計(jì)學(xué)等。極限理論包括強(qiáng)極限理論及弱極限理論;隨機(jī)過程論包括馬氏過程論、鞅論、隨機(jī)微積分、平穩(wěn)過程等有關(guān)理論。概率論方法應(yīng)用是一個(gè)涉及面十分廣泛的領(lǐng)域,包括隨機(jī)力學(xué)、統(tǒng)計(jì)物理學(xué)、保險(xiǎn)學(xué)、隨機(jī)網(wǎng)絡(luò)、排隊(duì)論、可靠性理論、隨機(jī)信號處理等有關(guān)方面。應(yīng)用統(tǒng)計(jì)學(xué)方法的產(chǎn)生主要來源于實(shí)質(zhì)性學(xué)科的研究活動中,例如,最小二乘法與正態(tài)分布理論源于天文觀察誤差分析,相關(guān)與回歸分析源于生物學(xué)研究,主成分分析與因子分析源于教育學(xué)與心理學(xué)的研究,抽樣調(diào)查方法源于政府統(tǒng)計(jì)調(diào)查資料的搜集等等。本研究方向在學(xué)習(xí)概率論、統(tǒng)計(jì)學(xué)、隨機(jī)過程論等基本理論的基礎(chǔ)上,致力于概率統(tǒng)計(jì)理論和方法同其它學(xué)科交叉領(lǐng)域的研究,以及統(tǒng)計(jì)學(xué)同計(jì)算機(jī)科學(xué)相結(jié)合而產(chǎn)生的數(shù)據(jù)挖掘的研究。此外,金融數(shù)學(xué)也是本專業(yè)的一個(gè)主要研究方向。它主要是通過數(shù)學(xué)建模,理論分析、推導(dǎo),數(shù)值計(jì)算以及計(jì)算機(jī)模擬等理論分析、統(tǒng)計(jì)分析和模擬分析,以求研究和分析所涉及的理論問題和實(shí)際問題。
生活中會遇到這樣的事例:有四張彩 票供三個(gè)人抽取,其中只有一張彩 票有獎(jiǎng)。第一個(gè)人去抽,他的中獎(jiǎng)概率是25%,結(jié)果沒抽到。第二個(gè)人看了,心里有些踏實(shí)了,他中獎(jiǎng)的概率是33%,結(jié)果他也沒抽到。第三個(gè)人心里此時(shí)樂開了花,其他的人都失敗了,覺得自己很幸運(yùn),中獎(jiǎng)的機(jī)率高達(dá)50%,可結(jié)果他同樣沒中獎(jiǎng)。由此看來,概率的大小只是在效果上有所不同,很大的概率給人的安慰感更為強(qiáng)烈。但在實(shí)質(zhì)上卻沒有區(qū)別,每個(gè)人中獎(jiǎng)的概率都是50%,即中獎(jiǎng)與不中獎(jiǎng)。
同樣的道理,對于個(gè)人而言,在生活中要成功做好一件事的概率是沒有大小之分的,只有成功或失敗之分。但這概率的大小卻很能影響人做事的心態(tài)。
如果說概率有大小之分,那應(yīng)該不是針對個(gè)體而言,而是從一個(gè)群體出發(fā),因?yàn)椴煌娜擞胁煌男拍睿胁煌淖鍪路椒。把地球給撬起來,這在大多數(shù)人眼里是絕對不可能的。但在牛人亞里士多德眼里,他覺得成功做這事的概率那是100%——絕對沒問題,只要你給他一個(gè)支點(diǎn)和足夠長的杠桿。就像前面提到的抽獎(jiǎng)一樣,25%、33%和50%這些概率只不過是外界針對這個(gè)群體給出的。25%的機(jī)率同樣能中獎(jiǎng),50%的機(jī)率也會不中獎(jiǎng),對于抽獎(jiǎng)?wù)邆(gè)人而言,沒有概率大小之分,只有中與不中之分。別人說做這件事相當(dāng)容易,切莫掉以輕心,也許你做這件事會相當(dāng)困難。大家都說做這件事相當(dāng)困難,切莫心灰意冷,也許你做這件事能如魚得水。成功與否,不在概率大小,而在于自己能否清楚地認(rèn)識自己:容易的事自己是否具有做這件事必備的素質(zhì),困難的事自己是否有克服這個(gè)困難的潛質(zhì)。
人們常說:“希望越大,失望越大”,此話并不無道理。希望越大,成功的概率就越大,由此而麻痹了人的心態(tài)——以為如此大的概率也是自己能夠成功的籌碼,這樣在思想和行為上就會有所懈怠。自以為十拿九穩(wěn)的事,到頭來卻把事情弄砸了。這并不奇怪,因?yàn)樗^的“概率大”已逐漸由“希望”轉(zhuǎn)移到“失望”上面了。一說到把這件事做好的概率微乎其微,做事的人難免心灰意冷,因?yàn)橛X得機(jī)會渺茫。因此而喪失了克服困難的意志,覺得事情做不好那是理所當(dāng)然。
學(xué)好《概率論與數(shù)理統(tǒng)計(jì)》這門課程,其實(shí)有很大的作用,它會對你日常生活中一些涉及概率方面的問題有更加深刻的體會,其他方面也有很多應(yīng)用,比如現(xiàn)實(shí)生活中的彩 票問題,可以利用概率的知識來建立數(shù)學(xué)模型,通過現(xiàn)在電腦的仿真來模擬實(shí)際的抽獎(jiǎng),當(dāng)然這方面需要更加專業(yè)的知識了,如果要想得到更加精確的結(jié)果,建立的模型就會更加復(fù)雜!
篇二:學(xué)習(xí)概率論心得體會
在大二剛開學(xué)我接觸到了概率論與數(shù)理統(tǒng)計(jì)這門課程,雖然在高中時(shí)已經(jīng)接觸到了許多跟概率相關(guān)的東西,比如隨機(jī)事件、古典概型以及一系列的計(jì)算方法但是在接觸到更加高深的層次后還是有許多不一樣的感受。
在課程開始之初老師就告訴我們這門課不是很難,關(guān)鍵還在于上課認(rèn)真聽講。通過老師的簡單介紹,我了解到概率論與數(shù)理統(tǒng)計(jì)是研究隨機(jī)現(xiàn)象統(tǒng)計(jì)規(guī)律性的一門數(shù)學(xué)學(xué)科,其理論與方法的應(yīng)用非常廣泛,幾乎遍及所有科學(xué)技術(shù)領(lǐng)域、工農(nóng)業(yè)生產(chǎn)、國民經(jīng)濟(jì)以及我們的日常生活。對于作為信息管理與信息系統(tǒng)專業(yè)的我,其日后的幫助也是很大的,尤其是對于日后電腦方面的操作有著至關(guān)重要的'輔助作用。
在這門課程中我們首先研究的是隨機(jī)事件及一維隨機(jī)變量二維隨機(jī)變量的分布和特點(diǎn)。而在第二部分的數(shù)理統(tǒng)計(jì)中,它是以概率論為理論基礎(chǔ),根據(jù)試驗(yàn)或者觀察得到的數(shù)據(jù)來研究隨機(jī)現(xiàn)象,對研究對象的客觀規(guī)律性做出種種估計(jì)和判斷。整本書就是重點(diǎn)圍繞這兩個(gè)部分來講述的。初學(xué)時(shí),就算覺得理解了老師的講課內(nèi)容,但是一聯(lián)系實(shí)際也會很難以應(yīng)用上,簡化不出有關(guān)所學(xué)知識的模型。在期末復(fù)習(xí)中,自己重新對于整個(gè)書本的流程安排還有每個(gè)章節(jié)的重點(diǎn)重新復(fù)習(xí)一遍,才覺得有了點(diǎn)頭緒。
在長達(dá)一個(gè)學(xué)期的學(xué)習(xí)中,我增長了不少課程知識,同時(shí)也獲得了好多關(guān)于這門課程的心得體會。整個(gè)學(xué)期下來這門課程給我最深刻的體會就是這門課程很抽象,很難以理解,但是這門課程給我?guī)砹艘环N新的思維方式。前幾章的知識好多都是高中講過的,接觸下來覺得挺簡單,但是后面從第五章的大數(shù)定理及中心極限定理就開始是新的內(nèi)容了。我覺得學(xué)習(xí)概率論與數(shù)理統(tǒng)計(jì)最重要的就是要學(xué)習(xí)書本中滲透的一種全新的思維方式。統(tǒng)計(jì)與概率的思維方式,和邏輯推理不一樣,它是不確定的,也就是隨機(jī)的思想。這也是一個(gè)人思維能力最主要的體現(xiàn),整個(gè)學(xué)習(xí)過程中要緊緊圍繞這個(gè)思維方式進(jìn)行。這些都為后面的數(shù)理統(tǒng)計(jì)還有參數(shù)估計(jì)、檢驗(yàn)假設(shè)打下了基礎(chǔ)。其次,在所有數(shù)學(xué)學(xué)科中,概率論是一門具有廣泛應(yīng)用的數(shù)學(xué)分支,是一門真正是把實(shí)際問題轉(zhuǎn)換成數(shù)學(xué)問題的學(xué)科。在最后一章中,假設(shè)檢驗(yàn)就是一個(gè)很好的例子。由前面所講的伯努利大數(shù)定律知,小概率事件在N次重復(fù)試驗(yàn)中出現(xiàn)的概率很小,因此我們認(rèn)為在一次試驗(yàn)中,小概率事件一般不會發(fā)生,如果發(fā)生了就該懷疑這件事件的真實(shí)性。正是根據(jù)這個(gè)思想去解決實(shí)際中的檢驗(yàn)問題,總之概率與數(shù)理統(tǒng)計(jì)就是一門將現(xiàn)實(shí)中的問題建立模型然后應(yīng)用理論知識解決掉的學(xué)科,具有很強(qiáng)的實(shí)際應(yīng)用性。
在整個(gè)學(xué)期學(xué)習(xí)過程中,老師生動的講解讓我一直對這門課程保持著濃厚的興趣,課上總是會講解一些實(shí)際中的問題,比如抽獎(jiǎng)先后中獎(jiǎng)概率都一樣,扔硬幣為什么正反面的概率都是二分之一……一些問題還會讓我們更理性的對待實(shí)際中的一些問題,比如賭博贏的概率很小,彩 票中獎(jiǎng)概率也是微乎其微,所以不能迷戀那些,不能期望用投機(jī)取巧來賺取錢財(cái)?傊,概率論與數(shù)理統(tǒng)計(jì)給予我的幫助是很大的。不僅拓展了我的數(shù)學(xué)思維,而且還幫助我把課堂上的知識與生活中的例子聯(lián)系了起來。當(dāng)然,這些與老師的辛勤勞動是分不開的,在此,十分感謝馬金鳳老師對我們一學(xué)期以來的諄諄教誨。
【《概率論與數(shù)理統(tǒng)計(jì)》的課程學(xué)習(xí)心得】相關(guān)文章:
概率論與數(shù)理統(tǒng)計(jì)課件03-18
概率論與數(shù)理統(tǒng)計(jì)練習(xí)題01-29
課程教學(xué)數(shù)理統(tǒng)計(jì)論文參考05-31
概率與數(shù)理統(tǒng)計(jì)課程教學(xué)改革的論文05-31
醫(yī)藥數(shù)理統(tǒng)計(jì)方法課程教學(xué)改革論文06-12
課程學(xué)習(xí)心得06-27
網(wǎng)絡(luò)課程學(xué)習(xí)心得05-10
課程學(xué)習(xí)心得感悟07-26