- 相關(guān)推薦
初一數(shù)學(xué)下學(xué)期知識(shí)點(diǎn)總結(jié)
總結(jié)是對(duì)過去一定時(shí)期的工作、學(xué)習(xí)或思想情況進(jìn)行回顧、分析,并做出客觀評(píng)價(jià)的書面材料,它能使我們及時(shí)找出錯(cuò)誤并改正,為此我們要做好回顧,寫好總結(jié)。但是總結(jié)有什么要求呢?以下是小編為大家收集的初一數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié),歡迎大家借鑒與參考,希望對(duì)大家有所幫助。
初一數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié) 1
第七章 平面圖形的認(rèn)識(shí)(二) 1
第八章 冪的運(yùn)算 2
第九章 整式的乘法與因式分解 3
第十章 二元一次方程組 4
第十一章 一元一次不等式 4
第十二章 證明 9
第七章 平面圖形的認(rèn)識(shí)(二)
一、知識(shí)點(diǎn):
1、“三線八角”
① 如何由線找角:一看線,二看型。
同位角是“F”型;
內(nèi)錯(cuò)角是“Z”型;
同旁內(nèi)角是“U”型。
、 如何由角找線:組成角的三條線中的公共直線就是截線。
2、平行公理:
如果兩條直線都和第三條直線平行,那么這兩條直線也平行。
簡(jiǎn)述:平行于同一條直線的兩條直線平行。
補(bǔ)充定理:
如果兩條直線都和第三條直線垂直,那么這兩條直線也平行。
簡(jiǎn)述:垂直于同一條直線的`兩條直線平行。
3、平行線的判定和性質(zhì):
判定定理 性質(zhì)定理
條件 結(jié)論 條件 結(jié)論
同位角相等 兩直線平行 兩直線平行 同位角相等
內(nèi)錯(cuò)角相等 兩直線平行 兩直線平行 內(nèi)錯(cuò)角相等
同旁內(nèi)角互補(bǔ) 兩直線平行 兩直線平行 同旁內(nèi)角互補(bǔ)
4、圖形平移的性質(zhì):
圖形經(jīng)過平移,連接各組對(duì)應(yīng)點(diǎn)所得的線段互相平行(或在同一直線上)并且相等。
5、三角形三邊之間的關(guān)系:
三角形的任意兩邊之和大于第三邊;
三角形的任意兩邊之差小于第三邊。
若三角形的三邊分別為a、b、c,
則
6、三角形中的主要線段:
三角形的高、角平分線、中線。
注意:①三角形的高、角平分線、中線都是線段。
、诟、角平分線、中線的應(yīng)用。
7、三角形的內(nèi)角和:
三角形的3個(gè)內(nèi)角的和等于180°;
直角三角形的兩個(gè)銳角互余;
三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和;
三角形的一個(gè)外角大于與它不相鄰的任意一個(gè)內(nèi)角。
8、多邊形的內(nèi)角和:
n邊形的內(nèi)角和等于(n-2)180°;
任意多邊形的外角和等于360°。
第八章 冪的運(yùn)算
冪(p5
初一數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié) 2
知識(shí)點(diǎn)、概念總結(jié)
1.不等式:用符號(hào)"<",">","≤","≥"表示大小關(guān)系的式子叫做不等式。
2.不等式分類:不等式分為嚴(yán)格不等式與非嚴(yán)格不等式。
一般地,用純粹的大于號(hào)、小于號(hào)">","<"連接的不等式稱為嚴(yán)格不等式,用不小于號(hào)(大于或等于號(hào))、不大于號(hào)(小于或等于號(hào))"≥","≤"連接的不等式稱為非嚴(yán)格不等式,或稱廣義不等式。
3.不等式的解:使不等式成立的未知數(shù)的值,叫做不等式的解。
4.不等式的解集:一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。
5.不等式解集的表示方法:
(1)用不等式表示:一般的,一個(gè)含未知數(shù)的不等式有無(wú)數(shù)個(gè)解,其解集是一個(gè)范圍,這個(gè)范圍可用最簡(jiǎn)單的不等式表達(dá)出來,例如:x-1≤2的解集是x≤3
(2)用數(shù)軸表示:不等式的解集可以在數(shù)軸上直觀地表示出來,形象地說明不等式有無(wú)限多個(gè)解,用數(shù)軸表示不等式的解集要注意兩點(diǎn):一是定邊界線;二是定方向。
6.解不等式可遵循的一些同解原理
(1)不等式F(x)F(x)同解。
(2)如果不等式F(x)
(3)如果不等式F(x)0,那么不等式F(x)
7.不等式的性質(zhì):
(1)如果x>y,那么yy;(對(duì)稱性)
(2)如果x>y,y>z;那么x>z;(傳遞性)
(3)如果x>y,而z為任意實(shí)數(shù)或整式,那么x+z>y+z;(加法則)
(4)如果x>y,z>0,那么xz>yz;如果x>y,z<0,那么xz
(5)如果x>y,z>0,那么x÷z>y÷z;如果x>y,z<0,那么x÷z
(6)如果x>y,m>n,那么x+m>y+n(充分不必要條件)
(7)如果x>y>0,m>n>0,那么xm>yn
(8)如果x>y>0,那么x的n次冪>y的`n次冪(n為正數(shù))
8.一元一次不等式:不等式的左、右兩邊都是整式,只有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是1,像這樣的不等式,叫做一元一次不等式。
9.解一元一次不等式的一般順序:
(1)去分母(運(yùn)用不等式性質(zhì)2、3)
(2)去括號(hào)
(3)移項(xiàng)(運(yùn)用不等式性質(zhì)1)
(4)合并同類項(xiàng)
(5)將未知數(shù)的系數(shù)化為1(運(yùn)用不等式性質(zhì)2、3)
(6)有些時(shí)候需要在數(shù)軸上表示不等式的解集
10.一元一次不等式與一次函數(shù)的綜合運(yùn)用:
一般先求出函數(shù)表達(dá)式,再化簡(jiǎn)不等式求解。
11.一元一次不等式組:一般地,關(guān)于同一未知數(shù)的幾個(gè)一元一次不等式合在一起,就組成
了一個(gè)一元一次不等式組。
12.解一元一次不等式組的步驟:
(1)求出每個(gè)不等式的解集;
(2)求出每個(gè)不等式的解集的公共部分;(一般利用數(shù)軸)
(3)用代數(shù)符號(hào)語(yǔ)言來表示公共部分。(也可以說成是下結(jié)論)
13.解不等式的訣竅
(1)大于大于取大的(大大大);
例如:X>-1,X>2,不等式組的解集是X>2
(2)小于小于取小的(小小小);
例如:X<-4,X<-6,不等式組的解集是X<-6
(3)大于小于交叉取中間;
(4)無(wú)公共部分分開無(wú)解了;
14.解不等式組的口訣
(1)同大取大
例如,x>2,x>3,不等式組的解集是X>3
(2)同小取小
例如,x<2,x<3,不等式組的解集是X<2
(3)大小小大中間找
例如,x<2,x>1,不等式組的解集是1
(4)大大小小不用找
例如,x<2,x>3,不等式組無(wú)解
15.應(yīng)用不等式組解決實(shí)際問題的步驟
(1)審清題意
(2)設(shè)未知數(shù),根據(jù)所設(shè)未知數(shù)列出不等式組
(3)解不等式組
(4)由不等式組的解確立實(shí)際問題的解
(5)作答
16.用不等式組解決實(shí)際問題:其公共解不一定就為實(shí)際問題的解,所以需結(jié)合生活實(shí)際具體分析,最后確定結(jié)果。
初一數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié) 3
初一下冊(cè)知識(shí)點(diǎn)總結(jié)
1.同底數(shù)冪的乘法:am?an=am+n ,底數(shù)不變,指數(shù)相加。
2.同底數(shù)冪的除法:am÷an=am-n ,底數(shù)不變,指數(shù)相減。
3.冪的乘方與積的乘方:(am)n=amn ,底數(shù)不變,指數(shù)相乘; (ab)n=anbn ,積的乘方等于各因式乘方的積。
4.零指數(shù)與負(fù)指數(shù)公式:
(1)a0=1 (a≠0); a-n= ,(a≠0)。 注意:00,0-2無(wú)意義。
(2)有了負(fù)指數(shù),可用科學(xué)記數(shù)法記錄小于1的數(shù),例如:0.0000201=2.01×10-5。
5.(1)平方差公式:(a+b)(a-b)= a2-b2,兩個(gè)數(shù)的和與這兩個(gè)數(shù)的差的積等于這兩個(gè)數(shù)的平方差;
(2)完全平方公式:
、 (a+b)2=a2+2ab+b2, 兩個(gè)數(shù)和的平方,等于它們的平方和,加上它們的積的2倍;
② (a-b)2=a2-2ab+b2 , 兩個(gè)數(shù)差的平方,等于它們的平方和,減去它們的積的2倍;
※ ③ (a+b-c)2=a2+b2+c2+2ab-2ac-2bc
6.配方:
(1)若二次三項(xiàng)式x2+px+q是完全平方式,則有關(guān)系式: ;
※ (2)二次三項(xiàng)式ax2+bx+c經(jīng)過配方,總可以變?yōu)閍(x-h)2+k的形式。
注意:當(dāng)x=h時(shí),可求出ax2+bx+c的最大(或最小)值k。
※(3)注意: 。
7.單項(xiàng)式的系數(shù)與次數(shù):單項(xiàng)式中不為零的數(shù)字因數(shù),叫單項(xiàng)式的數(shù)字系數(shù),簡(jiǎn)稱單項(xiàng)式的系數(shù);
系數(shù)不為零時(shí),單項(xiàng)式中所有字母指數(shù)的和,叫單項(xiàng)式的次數(shù)。
8.多項(xiàng)式的項(xiàng)數(shù)與次數(shù):多項(xiàng)式中所含單項(xiàng)式的個(gè)數(shù)就是多項(xiàng)式的項(xiàng)數(shù),每個(gè)單項(xiàng)式叫多項(xiàng)式的項(xiàng);
多項(xiàng)式里,次數(shù)最高項(xiàng)的次數(shù)叫多項(xiàng)式的次數(shù);
注意:(若a、b、c、p、q是常數(shù))ax2+bx+c和x2+px+q是常見的兩個(gè)二次三項(xiàng)式。
9.同類項(xiàng):所含字母相同,并且相同字母的指數(shù)也相同的單項(xiàng)式是同類項(xiàng)。
10.合并同類項(xiàng)法則:系數(shù)相加,字母與字母的.指數(shù)不變。
11.去(添)括號(hào)法則:去(添)括號(hào)時(shí),若括號(hào)前邊是“+”號(hào),括號(hào)里的各項(xiàng)都不變號(hào);若括號(hào)前邊是“-”號(hào),括號(hào)里的各項(xiàng)都要變號(hào)。
注意:多項(xiàng)式計(jì)算的最后結(jié)果一般應(yīng)該進(jìn)行升冪(或降冪)排列。
平面幾何部分
1、補(bǔ)角重要性質(zhì):同角或等角的補(bǔ)角相等.
余角重要性質(zhì):同角或等角的余角相等.
2、①直線公理:過兩點(diǎn)有且只有一條直線.
線段公理:兩點(diǎn)之間線段最短.
、谟嘘P(guān)垂線的定理:(1)過一點(diǎn)有且只有一條直線與已知直線垂直;
(2)直線外一點(diǎn)與直線上各點(diǎn)連結(jié)的所有線段中,垂線段最短.
比例尺:比例尺1:m中,1表示圖上距離,m表示實(shí)際距離,若圖上1厘米,表示實(shí)際距離m厘米.
3、三角形的內(nèi)角和等于180
三角形的一個(gè)外角等于與它不相鄰的兩個(gè)內(nèi)角的和
三角形的一個(gè)外角大于與它不相鄰的任何一個(gè)內(nèi)角
4、n邊形的對(duì)角線公式:
各個(gè)角都相等,各條邊都相等的多邊形叫做正多邊形
5、n邊形的內(nèi)角和公式:180(n-2); 多邊形的外角和等于360
6、判斷三條線段能否組成三角形:
、賏+b>c(a b為最短的兩條線段)②a-b
7、第三邊取值范圍:
a-b< c
8、對(duì)應(yīng)周長(zhǎng)取值范圍:
若兩邊分別為a,b則周長(zhǎng)的取值范圍是 2a
如兩邊分別為5和7則周長(zhǎng)的取值范圍是 14
9、相關(guān)命題:
(1) 三角形中最多有1個(gè)直角或鈍角,最多有3個(gè)銳角,最少有2個(gè)銳角。
(2) 銳角三角形中最大的銳角的取值范圍是60≤X<90 。最大銳角不小于60度。
(3)任意一個(gè)三角形兩角平分線的夾角=90+第三角的一半。
(4) 鈍角三角形有兩條高在外部。
(5) 全等圖形的大小(面積、周長(zhǎng))、形狀都相同。
(6) 面積相等的兩個(gè)三角形不一定是全等圖形。
(7) 三角形具有穩(wěn)定性。
(8) 角平分線到角的兩邊距離相等。
(9)有一個(gè)角是60的等腰三角形是等邊三角形。
初一數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié) 4
1、單項(xiàng)式:數(shù)字與字母的積,叫做單項(xiàng)式。
2、多項(xiàng)式:幾個(gè)單項(xiàng)式的和,叫做多項(xiàng)式。
3、整式:?jiǎn)雾?xiàng)式和多項(xiàng)式統(tǒng)稱整式。
4、單項(xiàng)式的次數(shù):?jiǎn)雾?xiàng)式中所有字母的指數(shù)的和叫單項(xiàng)式的次數(shù)。
5、多項(xiàng)式的次數(shù):多項(xiàng)式中次數(shù)的項(xiàng)的次數(shù),就是這個(gè)多項(xiàng)式的次數(shù)。
6、余角:兩個(gè)角的和為90度,這兩個(gè)角叫做互為余角。
7、補(bǔ)角:兩個(gè)角的和為180度,這兩個(gè)角叫做互為補(bǔ)角。
8、對(duì)頂角:兩個(gè)角有一個(gè)公共頂點(diǎn),其中一個(gè)角的兩邊是另一個(gè)角兩邊的反向延長(zhǎng)線。這兩個(gè)角就是對(duì)頂角。
9、同位角:在“三線八角”中,位置相同的角,就是同位角。
10、內(nèi)錯(cuò)角:在“三線八角”中,夾在兩直線內(nèi),位置錯(cuò)開的角,就是內(nèi)錯(cuò)角。
11、同旁內(nèi)角:在“三線八角”中,夾在兩直線內(nèi),在第三條直線同旁的'角,就是同旁內(nèi)角。
12、有效數(shù)字:一個(gè)近似數(shù),從左邊第一個(gè)不為0的數(shù)開始,到精確的那位止,所有的數(shù)字都是有效數(shù)字。
13、概率:一個(gè)事件發(fā)生的可能性的大小,就是這個(gè)事件發(fā)生的概率。
14、三角形:由不在同一直線上的三條線段首尾順次相接所組成的圖形叫做三角形。
15、三角形的角平分線:在三角形中,一個(gè)內(nèi)角的角平分線與它的對(duì)邊相交,這個(gè)角的頂點(diǎn)與交點(diǎn)之間的線段叫做三角形的角平分線。
16、三角形的中線:在三角形中連接一個(gè)頂點(diǎn)與它的對(duì)邊中點(diǎn)的線段,叫做這個(gè)三角形的中線。
17、三角形的高線:從一個(gè)三角形的一個(gè)頂點(diǎn)向它的對(duì)邊所在的直線作垂線,頂點(diǎn)和垂足之間的線段叫做三角形的高線(簡(jiǎn)稱三角形的高)。
18、全等圖形:兩個(gè)能夠重合的圖形稱為全等圖形。
19、變量:變化的數(shù)量,就叫變量。
20、自變量:在變化的量中主動(dòng)發(fā)生變化的,變叫自變量。
21、因變量:隨著自變量變化而被動(dòng)發(fā)生變化的量,叫因變量。
22、軸對(duì)稱圖形:如果一個(gè)圖形沿一條直線折疊后,直線兩旁的部分能夠互相重合,那么這個(gè)圖形叫做軸對(duì)稱圖形。
23、對(duì)稱軸:軸對(duì)稱圖形中對(duì)折的直線叫做對(duì)稱軸。
24、垂直平分線:線段是軸對(duì)稱圖形,它的一條對(duì)稱軸垂直于這條線段并且平分它,這樣的直線叫做這條線段的垂直平分線。(簡(jiǎn)稱中垂線)
初一數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié) 5
二元一次方程組
1、含有兩個(gè)未知數(shù),并且所含未知數(shù)的項(xiàng)的次數(shù)都是1的方程叫做二元一次方程(linearequationsoftwounknowns)。
2、含有兩個(gè)未知數(shù)的兩個(gè)一次方程所組成的方程組叫做二元一次方程組。
3、二元一次方程組中兩個(gè)方程的公共解叫做二元一次方程組的解。
4、代入消元法:把二元一次方程中一個(gè)方程的一個(gè)未知數(shù)用含另一個(gè)未知數(shù)的式子表示出來,再帶入另一個(gè)方程,實(shí)現(xiàn)消元,進(jìn)而求得這個(gè)二元一次方程組的解。這種方法叫做代入消元法,簡(jiǎn)稱代入法。
5、加減消元法:當(dāng)方程中兩個(gè)方程的某一未知數(shù)的系數(shù)相等或互為相反數(shù)時(shí),把這兩個(gè)方程的兩邊相加或相減來消去這個(gè)未知數(shù),從而將二元一次方程化為一元一次方程,最后求得方程組的解,這種解方程組的方法叫做加減消元法,簡(jiǎn)稱加減法.
6、二元一次方程組解應(yīng)用題的一般步驟可概括為“審、找、列、解、答”五步,即:
(1)審:通過審題,把實(shí)際問題抽象成數(shù)學(xué)問題,分析已知數(shù)和未知數(shù),并用字母表示其中的兩個(gè)未知數(shù);
(2)找:找出能夠表示題意兩個(gè)相等關(guān)系;
(3)列:根據(jù)這兩個(gè)相等關(guān)系列出必需的代數(shù)式,從而列出方程組;
(4)解:解這個(gè)方程組,求出兩個(gè)未知數(shù)的值;
(5)答:在對(duì)求出的方程的解做出是否合理判斷的基礎(chǔ)上,寫出答案.
一元一次不等式
重點(diǎn):不等式的性質(zhì)和一元一次不等式的解法。
難點(diǎn):一元一次不等式的解法和一元一次不等式解決在現(xiàn)實(shí)情景下的實(shí)際問題。
知識(shí)點(diǎn)一:不等式的概念
1.不等式:
用“<”(或“≤”),“>”(或“≥”)等不等號(hào)表示大小關(guān)系的式子,叫做不等式.用“≠”表示不等關(guān)系的式子也是不等式.
要點(diǎn)詮釋:
(1)不等號(hào)的類型:
、佟啊佟弊x作“不等于”,它說明兩個(gè)量之間的關(guān)系是不等的,但不能明確兩個(gè)量誰(shuí)大誰(shuí)小;
(2)要正確用不等式表示兩個(gè)量的不等關(guān)系,就要正確理解“非負(fù)數(shù)”、“非正數(shù)”、“不大于”、“不小于”等數(shù)學(xué)術(shù)語(yǔ)的'含義。
2.不等式的解:
能使不等式成立的未知數(shù)的值,叫做不等式的解。
要點(diǎn)詮釋:
由不等式的解的定義可以知道,當(dāng)對(duì)不等式中的未知數(shù)取一個(gè)數(shù),若該數(shù)使不等式成立,則這個(gè)數(shù)就是不等式的一個(gè)解,我們可以和方程的解進(jìn)行對(duì)比理解,一般地,要判斷一個(gè)數(shù)是否為不等式的解,可將此數(shù)代入不等式的左邊和右邊利用不等式的概念進(jìn)行判斷。
3.不等式的解集:
一般地,一個(gè)含有未知數(shù)的不等式的所有解,組成這個(gè)不等式的解集。求不等式的解集的過程叫做解不等式。如:不等式x-4<1的解集是x<5.不等式的解集與不等式的解的區(qū)別:解集是能使不等式成立的未知數(shù)的取值范圍,是所有解的集合,而不等式的解是使不等式成立的未知數(shù)的值.二者的關(guān)系是:解集包括解,所有的解組成了解集。
要點(diǎn)詮釋:
不等式的解集必須符合兩個(gè)條件:
(1)解集中的每一個(gè)數(shù)值都能使不等式成立;
(2)能夠使不等式成立的所有的數(shù)值都在解集中。
知識(shí)點(diǎn)二:不等式的基本性質(zhì)
基本性質(zhì)1:不等式的兩邊都加上(或減去)同一個(gè)整式,不等號(hào)的方向不變。
符號(hào)語(yǔ)言表示為:如果,那么。
基本性質(zhì)2:不等式的兩邊都乘上(或除以)同一個(gè)正數(shù),不等號(hào)的方向不變。
符號(hào)語(yǔ)言表示為:如果,并且,那么(或)。
基本性質(zhì)3:不等式的兩邊都乘上(或除以)同一個(gè)負(fù)數(shù),不等號(hào)的方向改變。
符號(hào)語(yǔ)言表示為:如果,并且,那么(或)
初一數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié) 6
基本平面圖形
1、直線的性質(zhì)
(1)直線公理:經(jīng)過兩個(gè)點(diǎn)有且只有一條直線。(兩點(diǎn)確定一條直線。)
(2)過一點(diǎn)的直線有無(wú)數(shù)條。
(3)直線是是向兩方面無(wú)限延伸的,無(wú)端點(diǎn),不可度量,不能比較大小。
2、線段的性質(zhì)
(1)線段公理:兩點(diǎn)之間的所有連線中,線段最短。(兩點(diǎn)之間線段最短。)
(2)兩點(diǎn)之間的距離:兩點(diǎn)之間線段的長(zhǎng)度,叫做這兩點(diǎn)之間的距離。
(3)線段的大小關(guān)系和它們的長(zhǎng)度的大小關(guān)系是一致的。
3、線段的中點(diǎn):點(diǎn)M把線段AB分成相等的兩條相等的線段AM與BM,點(diǎn)M叫做線段AB的中點(diǎn)。AM=BM=1/2AB(或AB=2AM=2BM)。
4、角:有公共端點(diǎn)的兩條射線組成的圖形叫做角,兩條射線的公共端點(diǎn)叫做這個(gè)角的頂點(diǎn),這兩條射線叫做這個(gè)角的邊;颍航且部梢钥闯墒且粭l射線繞著它的端點(diǎn)旋轉(zhuǎn)而成的。
5、角的表示
角的表示方法有以下四種:
、儆脭(shù)字表示單獨(dú)的角,如∠1,∠2,∠3等。
②用小寫的希臘字母表示單獨(dú)的一個(gè)角,如∠α,∠β,∠γ,∠θ等。
、塾靡粋(gè)大寫英文字母表示一個(gè)獨(dú)立(在一個(gè)頂點(diǎn)處只有一個(gè)角)的角,如∠B,∠C等。
④用三個(gè)大寫英文字母表示任一個(gè)角,如∠BAD,∠BAE,∠CAE等。
注意:用三個(gè)大寫字母表示角時(shí),一定要把頂點(diǎn)字母寫在中間,邊上的字母寫在兩側(cè)。
6、角的度量
角的度量有如下規(guī)定:把一個(gè)平角180等分,每一份就是1度的角,單位是度,用“°”表示,1度記作“1°”,n度記作“n°”。
把1°的角60等分,每一份叫做1分的'角,1分記作“1’”。
把1’的角60等分,每一份叫做1秒的角,1秒記作“1””。
1°=60’,1’=60”
7、角的平分線,從一個(gè)角的頂點(diǎn)引出的一條射線,把這個(gè)角分成兩個(gè)相等的角,這條射線叫做這個(gè)角的平分線。
8、角的性質(zhì)
(1)角的大小與邊的長(zhǎng)短無(wú)關(guān),只與構(gòu)成角的兩條射線的幅度大小有關(guān)。
(2)角的大小可以度量,可以比較,角可以參與運(yùn)算。
9、平角和周角:一條射線繞著它的端點(diǎn)旋轉(zhuǎn),當(dāng)終邊和始邊成一條直線時(shí),所形成的角叫做平角。終邊繼續(xù)旋轉(zhuǎn),當(dāng)它又和始邊重合時(shí),所形成的角叫做周角。
10、多邊形:由若干條不在同一條直線上的線段首尾順次相連組成的封閉平面圖形叫做多邊形。連接不相鄰兩個(gè)頂點(diǎn)的線段叫做多邊形的對(duì)角線。
從一個(gè)n邊形的同一個(gè)頂點(diǎn)出發(fā),分別連接這個(gè)頂點(diǎn)與其余各頂點(diǎn),可以畫(n-3)條對(duì)角線,把這個(gè)n邊形分割成(n-2)個(gè)三角形。
11、圓:平面上,一條線段繞著一個(gè)端點(diǎn)旋轉(zhuǎn)一周,另一個(gè)端點(diǎn)形成的圖形叫做圓。固定的端點(diǎn)O稱為圓心,線段OA的長(zhǎng)稱為半徑的長(zhǎng)(通常簡(jiǎn)稱為半徑)。
圓上任意兩點(diǎn)A、B間的部分叫做圓弧,簡(jiǎn)稱弧,讀作“圓弧AB”或“弧AB”;由一條弧AB和經(jīng)過這條弧的端點(diǎn)的兩條半徑OA、OB所組成的圖形叫做扇形。頂點(diǎn)在圓心的角叫做圓心角。
初一數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié) 7
本章重點(diǎn):一元一次不等式的解法,
本章難點(diǎn):了解不等式的解集和不等式組的解集的確定,正確運(yùn)用不等式基本性質(zhì)。
本章關(guān)鍵:徹底弄清不等式和等式的基本性質(zhì)的區(qū)別.
。1)不等式概念:用不等號(hào)(“≠”、“”)表示的不等關(guān)系的式子叫做不等式
(2)不等式的基本性質(zhì),它是解不等式的理論依據(jù).
。3)分清不等式的解集和解不等式是兩個(gè)完全不同的概念.
。4)不等式的解一般有無(wú)限多個(gè)數(shù)值,把它們表示在數(shù)軸上,
。5)一元一次不等式的概念、解法是本章的重點(diǎn)和核心
。6)一元一次不等式的解集,在數(shù)軸上表示一元一次不等式的解集
。7)由兩個(gè)一元一次不等式組成的一元一次不等式組.一元一次不等式組可以由幾個(gè)(同未知數(shù)的)一元一次不等式組成(8)利用數(shù)軸確定一元一次不等式組的解集
第六章:
1.二元一次方程,二元一次方程組以及它的解,明確二元一次方程組的解是一對(duì)未知數(shù)的值,會(huì)檢驗(yàn)一對(duì)數(shù)值是不是某一個(gè)二元一次方程組的解.
2.一次方程組的兩種基本解法,能靈活運(yùn)用代入法,加減法解二元一次方程組及簡(jiǎn)單的'三元一次方程組.
3.根據(jù)給出的應(yīng)用問題,列出相應(yīng)的二元一次方程組或三元一次方程組,從而求出問題的解,并能根據(jù)問題的實(shí)際意義,檢查結(jié)果是否合理.本章的重點(diǎn)是:二元一次方程組的解法代入法,加減法以及列一次方程組解簡(jiǎn)單的應(yīng)用問題.
本章的難點(diǎn)是:
1.會(huì)用適當(dāng)?shù)南椒ń舛淮畏匠探M及簡(jiǎn)單的三元一次方程組;
2.正確地找出應(yīng)用題中的相等關(guān)系,列出一次方程組.
第七章
本章重點(diǎn)是:整式的乘除運(yùn)算,特別是對(duì)冪的運(yùn)算及乘法公式的應(yīng)用要達(dá)到熟練程度.本章難點(diǎn)是:對(duì)乘法公式結(jié)構(gòu)特征和公式中字母意義的理解及乘法公式的靈活應(yīng)用
1.冪的運(yùn)算性質(zhì),正確地表述這些性質(zhì),并能運(yùn)用它們熟練地進(jìn)行有關(guān)計(jì)算.
2.單項(xiàng)式乘以(或除以)單項(xiàng)式,多項(xiàng)式乘以(或除以)單項(xiàng)式,以及多項(xiàng)式乘以多項(xiàng)式的法則,熟練地運(yùn)用它們進(jìn)行計(jì)算.
3.乘法公式的推導(dǎo)過程,能靈活運(yùn)用乘法公式進(jìn)行計(jì)算.
4.熟練地運(yùn)用運(yùn)算律、運(yùn)算法則進(jìn)行運(yùn)算,
5.體會(huì)用字母表示數(shù)和用字母表示式子的意義.通過式的變形,深入理解轉(zhuǎn)化的思想方法.
第八章:
1、認(rèn)識(shí)事物的幾種方法:觀察與實(shí)驗(yàn)歸納與類比猜想與證明生活中的說理數(shù)學(xué)中的說理
2、定義、命題、公理、定理
3、簡(jiǎn)單幾何圖形中的推理
4、余角、補(bǔ)交、對(duì)頂角
5、平行線的判定判定:一個(gè)公理兩個(gè)定理。
公理:兩直線被第三條直線所截,如果同位角相等(數(shù)量關(guān)系)兩直線平行(位置關(guān)系)
定理:內(nèi)錯(cuò)角相等(數(shù)量關(guān)系)兩直線平行(位置關(guān)系)定理:同旁內(nèi)角互補(bǔ)(數(shù)量關(guān)系)兩直線平行(位置關(guān)系).
平行線的性質(zhì):
兩直線平行,同位角相等兩直線平行,內(nèi)錯(cuò)角相等兩直線平行,同旁內(nèi)角互補(bǔ)
由圖形的“位置關(guān)系”確定“數(shù)量關(guān)系”
第九章:
重點(diǎn):因式分解的方法,
難點(diǎn):分析多項(xiàng)式的特點(diǎn),選擇適合的分解方法
1.因式分解的概念;
2.因式分解的方法:提取公因式法、公式法、分組分解法(十字相乘法)
3.運(yùn)用因式分解解決一些實(shí)際問題.(包括圖形習(xí)題)
第十章:
重點(diǎn)是:用統(tǒng)計(jì)知識(shí)解決現(xiàn)實(shí)生活中的實(shí)際問題.難點(diǎn)是:用統(tǒng)計(jì)知識(shí)解決實(shí)際問題.
1.統(tǒng)計(jì)初步的基本知識(shí),平均數(shù)、中位數(shù)、眾數(shù)等的計(jì)算。
2.了解數(shù)據(jù)的收集與整理、繪畫三種統(tǒng)計(jì)圖.
3.應(yīng)用統(tǒng)計(jì)知識(shí)解決實(shí)際問題能解決與統(tǒng)計(jì)相關(guān)的綜合問題.
【初一數(shù)學(xué)下學(xué)期知識(shí)點(diǎn)總結(jié)】相關(guān)文章:
人教版數(shù)學(xué)初一知識(shí)點(diǎn)總結(jié)04-24
初一的數(shù)學(xué)知識(shí)點(diǎn)總結(jié)04-24
初一數(shù)學(xué)知識(shí)點(diǎn)總結(jié)04-18
初一數(shù)學(xué)全部知識(shí)點(diǎn)總結(jié)04-22
初一數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié)07-11
初一數(shù)學(xué)下冊(cè)的知識(shí)點(diǎn)總結(jié)07-25
初一數(shù)學(xué)下冊(cè)知識(shí)點(diǎn)總結(jié)11-22
初一數(shù)學(xué)下知識(shí)點(diǎn)總結(jié)12-06