【精華】函數(shù)知識點總結15篇
總結是在某一特定時間段對學習和工作生活或其完成情況,包括取得的成績、存在的問題及得到的經驗和教訓加以回顧和分析的書面材料,它可以提升我們發(fā)現(xiàn)問題的能力,為此我們要做好回顧,寫好總結。我們該怎么寫總結呢?以下是小編幫大家整理的函數(shù)知識點總結,僅供參考,希望能夠幫助到大家。
函數(shù)知識點總結1
教學目標:
(1)能夠根據(jù)實際問題,熟練地列出二次函數(shù)關系式,并求出函數(shù)的自變量的取值范圍。
(2)注重學生參與,聯(lián)系實際,豐富學生的感性認識,培養(yǎng)學生的良好的學習習慣
教學重點:能夠根據(jù)實際問題,熟練地列出二次函數(shù)關系式,并求出函數(shù)的自變量的取值范圍。
教學難點:求出函數(shù)的自變量的取值范圍。
教學過程:
一、問題引新
1.設矩形花圃的垂直于墻(墻長18)的一邊AB的長為_m,先取_的一些值,算出矩形的另一邊BC的長,進而得出矩形的面積ym2.試將計算結果填寫在下表的空格中,
AB長_(m) 1 2 3 4 5 6 7 8 9
BC長(m) 12
面積y(m2) 48
2._的值是否可以任意取?有限定范圍嗎?
3.我們發(fā)現(xiàn),當AB的長(_)確定后,矩形的面積(y)也隨之確定,y是_的函數(shù),試寫出這個函數(shù)的關系式,教師可提出問題,(1)當AB=_m時,BC長等于多少m?(2)面積y等于多少? y=_(20-2_)
二、提出問題,解決問題
1、引導學生看書第二頁問題一、二
2、觀察概括
y=6_2 d= n /2 (n-3) y= 20 (1-_)2
以上函數(shù)關系式有什么共同特點? (都是含有二次項)
3、二次函數(shù)定義:形如y=a_2+b_+c(a、b、、c是常數(shù),a≠0)的'函數(shù)叫做_的二次函數(shù),a叫做二次函數(shù)的系數(shù),b叫做一次項的系數(shù),c叫作常數(shù)項.
4、課堂練習
(1) (口答)下列函數(shù)中,哪些是二次函數(shù)?
(1)y=5_+1 (2)y=4_2-1
(3)y=2_3-3_2 (4)y=5_4-3_+1
(2).P3練習第1,2題。
五、小結敘述二次函數(shù)的定義.
第二課時:26.1二次函數(shù)(2)
教學目標:
1、使學生會用描點法畫出y=a_2的圖象,理解拋物線的有關概念。
2、使學生經歷、探索二次函數(shù)y=a_2圖象性質的過程,培養(yǎng)學生觀察、思考、歸納的良好思維習慣。
教學重點:使學生理解拋物線的有關概念,會用描點法畫出二次函數(shù)y=a_2的圖象
教學難點:用描點法畫出二次函數(shù)y=a_2的圖象以及探索二次函數(shù)性質。
函數(shù)知識點總結2
1.常量和變量
在某變化過程中可以取不同數(shù)值的量,叫做變量.在某變化過程中保持同一數(shù)值的量或數(shù),叫常量或常數(shù).
2.函數(shù)
設在一個變化過程中有兩個變量x與y,如果對于x在某一范圍的每一個值,y都有唯一的值與它對應,那么就說x是自變量,y是x的函數(shù).
3.自變量的取值范圍
(1)整式:自變量取一切實數(shù).(2)分式:分母不為零.
(3)偶次方根:被開方數(shù)為非負數(shù).
(4)零指數(shù)與負整數(shù)指數(shù)冪:底數(shù)不為零.
4.函數(shù)值
對于自變量在取值范圍內的一個確定的值,如當x=a時,函數(shù)有唯一確定的對應值,這個對應值,叫做x=a時的函數(shù)值.
5.函數(shù)的表示法
(1)解析法;(2)列表法;(3)圖象法.
6.函數(shù)的圖象
把自變量x的一個值和函數(shù)y的對應值分別作為點的橫坐標和縱坐標,可以在平面直角坐標系內描出一個點,所有這些點的集合,叫做這個函數(shù)的圖象.由函數(shù)解析式畫函數(shù)圖象的步驟:
(1)寫出函數(shù)解析式及自變量的取值范圍;
(2)列表:列表給出自變量與函數(shù)的一些對應值;
(3)描點:以表中對應值為坐標,在坐標平面內描出相應的點;
(4)連線:用平滑曲線,按照自變量由小到大的順序,把所描各點連接起來.
7.一次函數(shù)
(1)一次函數(shù)
如果y=kx+b(k、b是常數(shù),k≠0),那么y叫做x的一次函數(shù).
特別地,當b=0時,一次函數(shù)y=kx+b成為y=kx(k是常數(shù),k≠0),這時,y叫做x的正比例函數(shù).
(2)一次函數(shù)的圖象
一次函數(shù)y=kx+b的圖象是一條經過(0,b)點和點的直線.特別地,正比例函數(shù)圖象是一條經過原點的直線.需要說明的是,在平面直角坐標系中,“直線”并不等價于“一次函數(shù)y=kx+b(k≠0)的圖象”,因為還有直線y=m(此時k=0)和直線x=n(此時k不存在),它們不是一次函數(shù)圖象.
(3)一次函數(shù)的性質
當k>0時,y隨x的增大而增大;當k<0時,y隨x的增大而減。本y=kx+b與y軸的交點坐標為(0,b),與x軸的交點坐標為.
(4)用函數(shù)觀點看方程(組)與不等式
、偃魏我辉淮畏匠潭伎梢赞D化為ax+b=0(a,b為常數(shù),a≠0)的形式,所以解一元一次方程可以轉化為:一次函數(shù)y=kx+b(k,b為常數(shù),k≠0),當y=0時,求相應的自變量的值,從圖象上看,相當于已知直線y=kx+b,確定它與x軸交點的橫坐標.
、诙淮畏匠探M對應兩個一次函數(shù),于是也對應兩條直線,從“數(shù)”的角度看,解方程組相當于考慮自變量為何值時兩個函數(shù)值相等,以及這兩個函數(shù)值是何值;從“形”的角度看,解方程組相當于確定兩條直線的交點的坐標.
③任何一元一次不等式都可以轉化ax+b>0或ax+b<0(a、b為常數(shù),a≠0)的形式,解一元一次不等式可以看做:當一次函數(shù)值大于0或小于0時,求自變量相應的取值范圍.
8.反比例函數(shù)(1)反比例函數(shù)
。1)如果(k是常數(shù),k≠0),那么y叫做x的反比例函數(shù).
(2)反比例函數(shù)的圖象反比例函數(shù)的圖象是雙曲線.
(3)反比例函數(shù)的性質
、佼攌>0時,圖象的兩個分支分別在第一、三象限內,在各自的象限內,y隨x的增大而減。
、诋攌<0時,圖象的兩個分支分別在第二、四象限內,在各自的象限內,y隨x的增大而增大.
③反比例函數(shù)圖象關于直線y=±x對稱,關于原點對稱.
(4)k的兩種求法
、偃酎c(x0,y0)在雙曲線上,則k=x0y0.②k的幾何意義:
若雙曲線上任一點A(x,y),AB⊥x軸于B,則S△AOB
(5)正比例函數(shù)和反比例函數(shù)的交點問題
若正比例函數(shù)y=k1x(k1≠0),反比例函數(shù),則當k1k2<0時,兩函數(shù)圖象無交點;
當k1k2>0時,兩函數(shù)圖象有兩個交點,坐標分別為由此可知,正反比例函數(shù)的圖象若有交點,兩交點一定關于原點對稱.
1.二次函數(shù)
如果y=ax2+bx+c(a,b,c為常數(shù),a≠0),那么y叫做x的.二次函數(shù).
幾種特殊的二次函數(shù):y=ax2(a≠0);y=ax2+c(ac≠0);y=ax2+bx(ab≠0);y=a(x-h(huán))2(a≠0).
2.二次函數(shù)的圖象
二次函數(shù)y=ax2+bx+c的圖象是對稱軸平行于y軸的一條拋物線.由y=ax2(a≠0)的圖象,通過平移可得到y(tǒng)=a(x-h(huán))2+k(a≠0)的圖象.
3.二次函數(shù)的性質
二次函數(shù)y=ax2+bx+c的性質對應在它的圖象上,有如下性質:
(1)拋物線y=ax2+bx+c的頂點是,對稱軸是直線,頂點必在對稱軸上;
(2)若a>0,拋物線y=ax2+bx+c的開口向上,因此,對于拋物線上的任意一點(x,y),當x<時,y隨x的增大而減;當x>時,y隨x的增大而增大;當x=,y有最小值;若a<0,拋物線y=ax2+bx+c的開口向下,因此,對于拋物線上的任意一點(x,y),當x<,y隨x的增大而增大;當時,y隨x的增大而減;當x=時,y有最大值;
(3)拋物線y=ax2+bx+c與y軸的交點為(0,c);
(4)在二次函數(shù)y=ax2+bx+c中,令y=0可得到拋物線y=ax2+bx+c與x軸交點的情況:
。0時,拋物線y=ax2+bx+c與x軸沒有公共點.=0時,拋物線y=ax2+bx+c與x軸只有一個公共點,即為此拋物線的頂點;當=b2-4ac>0,拋物線y=ax2+bx+c與x軸有兩個不同的公共點,它們的坐標分別是和,這兩點的距離為;當當4.拋物線的平移
拋物線y=a(x-h(huán))2+k與y=ax2形狀相同,位置不同.把拋物線y=ax2向上(下)、向左(右)平移,可以得到拋物線y=a(x-h(huán))2+k.平移的方向、距離要根據(jù)h、k的值來決定.
函數(shù)知識點總結3
1. 函數(shù)的奇偶性
(1)若f(x)是偶函數(shù),那么f(x)=f(-x) ;
(2)若f(x)是奇函數(shù),0在其定義域內,則 f(0)=0(可用于求參數(shù));
(3)判斷函數(shù)奇偶性可用定義的等價形式:f(x)±f(-x)=0或 (f(x)≠0);
(4)若所給函數(shù)的解析式較為復雜,應先化簡,再判斷其奇偶性;
(5)奇函數(shù)在對稱的單調區(qū)間內有相同的單調性;偶函數(shù)在對稱的單調區(qū)間內有相反的單調性;
2. 復合函數(shù)的有關問題
(1)復合函數(shù)定義域求法:若已知 的定義域為[a,b],其復合函數(shù)f[g(x)]的定義域由不等式a≤g(x)≤b解出即可;若已知f[g(x)]的定義域為[a,b],求 f(x)的定義域,相當于x∈[a,b]時,求g(x)的值域(即 f(x)的定義域);研究函數(shù)的問題一定要注意定義域優(yōu)先的原則。
(2)復合函數(shù)的單調性由“同增異減”判定;
3.函數(shù)圖像(或方程曲線的對稱性)
(1)證明函數(shù)圖像的對稱性,即證明圖像上任意點關于對稱中心(對稱軸)的對稱點仍在圖像上;
(2)證明圖像C1與C2的對稱性,即證明C1上任意點關于對稱中心(對稱軸)的對稱點仍在C2上,反之亦然;
(3)曲線C1:f(x,y)=0,關于y=x+a(y=-x+a)的對稱曲線C2的方程為f(y-a,x+a)=0(或f(-y+a,-x+a)=0);
(4)曲線C1:f(x,y)=0關于點(a,b)的對稱曲線C2方程為:f(2a-x,2b-y)=0;
(5)若函數(shù)y=f(x)對x∈R時,f(a+x)=f(a-x)恒成立,則y=f(x)圖像關于直線x=a對稱;
(6)函數(shù)y=f(x-a)與y=f(b-x)的圖像關于直線x= 對稱;
4.函數(shù)的周期性
(1)y=f(x)對x∈R時,f(x +a)=f(x-a) 或f(x-2a )=f(x) (a0)恒成立,則y=f(x)是周期為2a的周期函數(shù);
(2)若y=f(x)是偶函數(shù),其圖像又關于直線x=a對稱,則f(x)是周期為2︱a︱的周期函數(shù);
(3)若y=f(x)奇函數(shù),其圖像又關于直線x=a對稱,則f(x)是周期為4︱a︱的周期函數(shù);
(4)若y=f(x)關于點(a,0),(b,0)對稱,則f(x)是周期為2 的周期函數(shù);
(5)y=f(x)的圖象關于直線x=a,x=b(a≠b)對稱,則函數(shù)y=f(x)是周期為2 的周期函數(shù);
(6)y=f(x)對x∈R時,f(x+a)=-f(x)(或f(x+a)= ,則y=f(x)是周期為2 的周期函數(shù);
5.
方程k=f(x)有解 k∈D(D為f(x)的值域);
6.
a≥f(x) 恒成立 a≥[f(x)]max,; a≤f(x) 恒成立 a≤[f(x)]min;
7.
(1) (a0,a≠1,b0,n∈R+);
(2) l og a N= ( a0,a≠1,b0,b≠1);
(3) l og a b的.符號由口訣“同正異負”記憶;
(4) a log a N= N ( a0,a≠1,N
8. 判斷對應是否為映射時,抓住兩點:
(1)A中元素必須都有象且唯一;
(2)B中元素不一定都有原象,并且A中不同元素在B中可以有相同的象;
9. 能熟練地用定義證明函數(shù)的單調性,求反函數(shù),判斷函數(shù)的奇偶性。
10.對于反函數(shù),應掌握以下一些結論:
(1)定義域上的單調函數(shù)必有反函數(shù);
(2)奇函數(shù)的反函數(shù)也是奇函數(shù);
(3)定義域為非單元素集的偶函數(shù)不存在反函數(shù);
(4)周期函數(shù)不存在反函數(shù);
(5)互為反函數(shù)的兩個函數(shù)具有相同的單調性;
(5) y=f(x)與y=f-1(x)互為反函數(shù),設f(x)的定義域為A,值域為B,則有f[f--1(x)]=x(x∈B),f--1[f(x)]=x(x∈A).
11.處理二次函數(shù)的問題勿忘數(shù)形結合;二次函數(shù)在閉區(qū)間上必有最值,求最值問題用“兩看法”:一看開口方向;二看對稱軸與所給區(qū)間的相對位置關系;
12. 依據(jù)單調性,利用一次函數(shù)在區(qū)間上的保號性可解決求一類參數(shù)的范圍問題
13. 恒成立問題的處理方法:(1)分離參數(shù)法;(2)轉化為一元二次方程的根的分布列不等式(組)求解;
函數(shù)知識點總結4
總體上必須清楚的:
1)程序結構是三種:順序結構、選擇結構(分支結構)、循環(huán)結構。
2)讀程序都要從main()入口,然后從最上面順序往下讀(碰到循環(huán)做循環(huán),碰到選擇做選擇),有且只有一個main函數(shù)。
3)計算機的數(shù)據(jù)在電腦中保存是以二進制的形式.數(shù)據(jù)存放的位置就是他的地址.
4)bit是位是指為0或者1。 byte是指字節(jié),一個字節(jié)=八個位.
概念常考到的:
1、編譯預處理不是C語言的一部分,不占運行時間,不要加分號。C語言編譯的程序稱為源程序,它以ASCII數(shù)值存放在文本文件中。
2、define PI 3.1415926;這個寫法是錯誤的,一定不能出現(xiàn)分號。 -
3、每個C語言程序中main函數(shù)是有且只有一個。
4、在函數(shù)中不可以再定義函數(shù)。
5、算法:可以沒有輸入,但是一定要有輸出。
6、break可用于循環(huán)結構和switch語句。
7、逗號運算符的級別最低,賦值的級別倒數(shù)第二。
第一章C語言的基礎知識
第一節(jié)、對C語言的基礎認識
1、C語言編寫的程序稱為源程序,又稱為編譯單位。
2、C語言書寫格式是自由的,每行可以寫多個語句,可以寫多行。
3、一個C語言程序有且只有一個main函數(shù),是程序運行的起點。
第二節(jié)、熟悉vc++
1、VC是軟件,用來運行寫的.C語言程序。
2、每個C語言程序寫完后,都是先編譯,后鏈接,最后運行。(.c—.obj—.exe)這個過程中注意.c和.obj文件時無法運行的,只有.exe文件才可以運行。(?迹。
第三節(jié)、標識符
1、標識符(必考內容):
合法的要求是由字母,數(shù)字,下劃線組成。有其它元素就錯了。
并且第一個必須為字母或則是下劃線。第一個為數(shù)字就錯了
2、標識符分為關鍵字、預定義標識符、用戶標識符。
關鍵字:不可以作為用戶標識符號。main define scanf printf都不是關鍵字。迷惑你的地方If是可以做為用戶標識符。因為If中的第一個字母大寫了,所以不是關鍵字。
預定義標識符:背誦define scanf printf include。記住預定義標識符可以做為用戶標識符。
用戶標識符:基本上每年都考,詳細請見書上習題。
第四節(jié):進制的轉換
十進制轉換成二進制、八進制、十六進制。
二進制、八進制、十六進制轉換成十進制。
第五節(jié):整數(shù)與實數(shù)
1)C語言只有八、十、十六進制,沒有二進制。但是運行時候,所有的進制都要轉換成二進制來進行處理。(考過兩次)
a、C語言中的八進制規(guī)定要以0開頭。018的數(shù)值是非法的,八進制是沒有8的,逢8進1。
b、C語言中的十六進制規(guī)定要以0x開頭。
2)小數(shù)的合法寫法:C語言小數(shù)點兩邊有一個是零的話,可以不用寫。
1.0在C語言中可寫成1.
0.1在C語言中可以寫成.1。
3)實型數(shù)據(jù)的合法形式:
a、2.333e-1就是合法的,且數(shù)據(jù)是2.333×10-1。
b、考試口訣:e前e后必有數(shù),e后必為整數(shù)。請結合書上的例子。
4)整型一般是4個字節(jié),字符型是1個字節(jié),雙精度一般是8個字節(jié):
long int x;表示x是長整型。
unsigned int x;表示x是無符號整型。
第六、七節(jié):算術表達式和賦值表達式
核心:表達式一定有數(shù)值!
1、算術表達式:+,-,*,/,%
考試一定要注意:“/”兩邊都是整型的話,結果就是一個整型。 3/2的結果就是1.
“/”如果有一邊是小數(shù),那么結果就是小數(shù)。 3/2.0的結果就是0.5
“%”符號請一定要注意是余數(shù),考試最容易算成了除號。)%符號兩邊要求是整數(shù)。不是整數(shù)就錯了。[注意!!!]
2、賦值表達式:表達式數(shù)值是最左邊的數(shù)值,a=b=5;該表達式為5,常量不可以賦值。
1、int x=y=10:錯啦,定義時,不可以連續(xù)賦值。
2、int x,y;
x=y=10;對滴,定義完成后,可以連續(xù)賦值。
3、賦值的左邊只能是一個變量。
4、int x=7.7;對滴,x就是7
5、float y=7;對滴,x就是7.0
3、復合的賦值表達式:
int a=2;
a*=2+3;運行完成后,a的值是12。
一定要注意,首先要在2+3的上面打上括號。變成(2+3)再運算。
4、自加表達式:
自加、自減表達式:假設a=5,++a(是為6),a++(為5);
運行的機理:++a是先把變量的數(shù)值加上1,然后把得到的數(shù)值放到變量a中,然后再用這個++a表達式的數(shù)值為6,而a++是先用該表達式的數(shù)值為5,然后再把a的數(shù)值加上1為6,
再放到變量a中。進行了++a和a++后在下面的程序中再用到a的話都是變量a中的6了。
考試口訣:++在前先加后用,++在后先用后加。
5、逗號表達式:
優(yōu)先級別最低。表達式的數(shù)值逗號最右邊的那個表達式的數(shù)值。
(2,3,4)的表達式的數(shù)值就是4。
z=(2,3,4)(整個是賦值表達式)這個時候z的值為4。(有點難度哦!)
z= 2,3,4(整個是逗號表達式)這個時候z的值為2。
補充:
1、空語句不可以隨意執(zhí)行,會導致邏輯錯誤。
2、注釋是最近幾年考試的重點,注釋不是C語言,不占運行時間,沒有分號。不可以嵌套!
3、強制類型轉換:
一定是(int)a不是int(a),注意類型上一定有括號的。
注意(int)(a+b)和(int)a+b的區(qū)別。前是把a+b轉型,后是把a轉型再加b。
4、三種取整丟小數(shù)的情況:
。薄nt a =1.6;
。、(int)a;
。、1/2;3/2;
第八節(jié)、字符
1)字符數(shù)據(jù)的合法形式::
‘1’是字符占一個字節(jié),”1”是字符串占兩個字節(jié)(含有一個結束符號)。
‘0’的ASCII數(shù)值表示為48,’a’的ASCII數(shù)值是97,’A’的ASCII數(shù)值是65。
一般考試表示單個字符錯誤的形式:’65’ “1”
字符是可以進行算術運算的,記。骸0’-0=48
大寫字母和小寫字母轉換的方法:‘A’+32=’a’相互之間一般是相差32。
2)轉義字符:
轉義字符分為一般轉義字符、八進制轉義字符、十六進制轉義字符。
一般轉義字符:背誦/0、、 ’、 ”、 。
八進制轉義字符:‘141’是合法的,前導的0是不能寫的。
十六進制轉義字符:’x6d’才是合法的,前導的0不能寫,并且x是小寫。
3、字符型和整數(shù)是近親:兩個具有很大的相似之處
char a = 65 ;
printf(“%c”, a);得到的輸出結果:a
printf(“%d”, a);得到的輸出結果:65
第九節(jié)、位運算
1)位運算的考查:會有一到二題考試題目。
總的處理方法:幾乎所有的位運算的題目都要按這個流程來處理(先把十進制變成二進制再變成十進制)。
例1:char a = 6, b;
b = a<<2;這種題目的計算是先要把a的十進制6化成二進制,再做位運算。
例2:一定要記住,異或的位運算符號” ^ ”。0異或1得到1。
0異或0得到0。兩個女的生不出來。
考試記憶方法:一男(1)一女(0)才可以生個小孩(1)。
例3:在沒有舍去數(shù)據(jù)的時候,<<左移一位表示乘以2;>>右移一位表示除以2。
函數(shù)知識點總結5
1.①與(0°≤<360°)終邊相同的角的集合(角與角的終邊重合):|k360,kZ
、诮K邊在x軸上的角的集合:|k180,kZ③終邊在y軸上的角的集合:|k18090,kZ
、芙K邊在坐標軸上的角的集合:|k90,kZ
、萁K邊在y=x軸上的角的集合:|k18045,kZ⑥終邊在yx軸上的角的集合:|k18045,kZ
、呷艚桥c角的終邊關于x軸對稱,則角與角的關系:360k
、嗳艚桥c角的終邊關于y軸對稱,則角與角的關系:360k180
、崛艚桥c角的終邊在一條直線上,則角與角的關系:180k
、饨桥c角的終邊互相垂直,則角與角的關系:360k902.角度與弧度的互換關系:360°=2180°=1°=0.017451=57.30°=57°18′3、弧長公式:l||r.扇形面積公式:s12扇形2lr12||r
2、三角函數(shù)在各象限的符號:(一全二正弦,三切四余弦)
yy+y+-+-+-o-x-o+x+o-x正弦、余割余弦、正割正切、余切
3.三角函數(shù)的定義域:
三角函數(shù)定義域f(x)sinxx|xRf(x)cosxx|xRf(x)tanxx|xR且xk1,kZ2
f(x)cotxx|xR且xk,kZ
4、同角三角函數(shù)的基本關系式:
sincostan
cossincot
tancot1sin2cos217、誘導公式:
把k2“奇變偶不變,符號看象限”的三角函數(shù)化為的三角函數(shù),概括為:三角函數(shù)的公式:
。ㄒ唬┗娟P系
公式組一sinxcscx=1tanx=sinx22
cosxsinx+cosx=1cosxsecx=1x=cosx2sinx1+tanx=sec2xtanxcotx=11+cot2x=csc2x
公式組二公式組三
sin(2kx)sinxsin(x)sinxcos(2kx)cosxcos(x)cosxtan(2kx)tanxtan(x)tanxcot(2kx)cotxcot(x)cotx
公式組四公式組五sin(x)sinxsin(2x)sinxcos(x)cosxcos(2x)cosxtan(x)tanxtan(2x)tanxcot(x)cotx
cot(2x)cotx(二)角與角之間的互換
cos()coscossinsincos()coscossinsin
公式組六
sin(x)sinxcos(x)cosxtan(x)tanx
cot(x)cotxsin22sincos-2-
cos2cos2sin2cos112sin
2tan1tan2222sin()sincoscossintan2sin()sincoscossintan()tantan1tantan
tantan1tantan
tan()
5.正弦、余弦、正切、余切函數(shù)的圖象的性質:
ysinxycosxytanxycotxyAsinx(A、>0)定義域RR值域周期性奇偶性單調性[1,1][1,1]1x|xR且xk,kZ2x|xR且xk,kZRRR奇函數(shù)A,A22奇函數(shù)2當當0,非奇非偶奇函數(shù)偶函數(shù)奇函數(shù)0,上為上為上為增函上為增函數(shù);上為增增函數(shù);增函數(shù);數(shù);上為減函數(shù)函數(shù);上為減函數(shù)上為減上為減上為減函數(shù)函數(shù)函數(shù)注意:①ysinx與ysinx的單調性正好相反;ycosx與ycosx的單調性也同樣相反.一般地,若yf(x)在[a,b]上遞增(減),則yf(x)在[a,b]上遞減(增).②ysinx與的ycosx周期是.
▲y
Ox
0)的周期T③ysin(x)或yx2cos(x)(2.
ytan的周期為2(TT2,如圖,翻折無效).
④ysin(x)的對稱軸方程是xk2(
kZ),對稱中心(
12k,0);
ycos(x)的對稱軸方程是xk(
kZ),對稱中心(k,0);
yatn(
x)的對稱中心(
k2,0).
三角函數(shù)圖像
數(shù)y=Asin(ωx+φ)的`振幅|A|,周期T2||,頻率f1T||2,相位x;初
相(即當x=0時的相位).(當A>0,ω>0時以上公式可去絕對值符號),
由y=sinx的圖象上的點的橫坐標保持不變,縱坐標伸長(當|A|>1)或縮短(當0<|A|<1)到原來的|A|倍,得到y(tǒng)=Asinx的圖象,叫做振幅變換或叫沿y軸的伸縮變換.(用y/A替換y)
由y=sinx的圖象上的點的縱坐標保持不變,橫坐標伸長(0<|ω|<1)或縮短(|ω|>1)到原來的|1|倍,得到y(tǒng)=sinωx的圖象,叫做周期變換或叫做沿x軸的伸縮變換.(用
ωx替換x)
由y=sinx的圖象上所有的點向左(當φ>0)或向右(當φ<0)平行移動|φ|個單位,得到y(tǒng)=sin(x+φ)的圖象,叫做相位變換或叫做沿x軸方向的平移.(用x+φ替換x)
由y=sinx的圖象上所有的點向上(當b>0)或向下(當b<0)平行移動|b|個單位,得到y(tǒng)=sinx+b的圖象叫做沿y軸方向的平移.(用y+(-b)替換y)
由y=sinx的圖象利用圖象變換作函數(shù)y=Asin(ωx+φ)(A>0,ω>0)(x∈R)的圖象,要特別注意:當周期變換和相位變換的先后順序不同時,原圖象延x軸量伸縮量的區(qū)別。
函數(shù)知識點總結6
【—正比例函數(shù)公式】正比例函數(shù)要領:一般地,兩個變量x,y之間的關系式可以表示成形如y=kx(k為常數(shù),且k≠0)的函數(shù),那么y就叫做x的`正比例函數(shù)。
正比例函數(shù)的性質
定義域:R(實數(shù)集)
值域:R(實數(shù)集)
奇偶性:奇函數(shù)
單調性:
當>0時,圖像位于第一、三象限,從左往右,y隨x的增大而增大(單調遞增),為增函數(shù);
當k<0時,圖像位于第二、四象限,從左往右,y隨x的增大而減小(單調遞減),為減函數(shù)。
周期性:不是周期函數(shù)。
對稱性:無軸對稱性,但關于原點中心對稱。
正比例函數(shù)圖像的作法
1、在x允許的范圍內取一個值,根據(jù)解析式求出y的值;
2、根據(jù)第一步求的x、y的值描出點;
3、作出第二步描出的點和原點的直線(因為兩點確定一直線)。
函數(shù)知識點總結7
一、知識導學
1.二次函數(shù)的概念、圖像和性質.(1)注意解題中靈活運用二次函數(shù)的一般式二次函數(shù)的頂點式二次函數(shù)的坐標式
f(x)ax2bxcf(x)a(xm)2n(a0)和f(x)a(xx1)(xx2)(a0)
(a0)
(2)解二次函數(shù)的問題(如單調性、最值、值域、二次三項式的恒正恒負、二次方程根的范圍等)要充分利用好兩種方法:配方、圖像,很多二次函數(shù)都用數(shù)形結合的思想去解.
、
f(x)ax2bxc(a0),當b24ac0時圖像與x軸有兩個交點.
M(x1,0)N(x2,0),|MN|=|x1-x2|=
.|a|②二次函數(shù)在閉區(qū)間上必有最大值和最小值,它只能在區(qū)間的端點或二次函數(shù)的頂點處取得.2.指數(shù)函數(shù)
①amyax(a0,a1)和對數(shù)函數(shù)ylogax(a0,a1)的概念和性質.
。1)有理指數(shù)冪的意義、冪的運算法則:
anamn;②(am)namn;③(ab)nanbn(這時m,n是有理數(shù))
MlogaMlogaNNlogcb1MlogaM;logab
nlogcaloga對數(shù)的概念及其運算性質、換底公式.
loga(MN)logaMlogaN;logaMnnlogaM;logan(2)指數(shù)函數(shù)的圖像、單調性與特殊點.對數(shù)函數(shù)的圖像、單調性與特殊點.
①指數(shù)函數(shù)圖像永遠在x軸上方,當a>1時,圖像越接近y軸,底數(shù)a越大;當0錯解:∵18
5,∴l(xiāng)og185b
log1845log185log189ba∴l(xiāng)og3645log1836log184log189log184a5,∴l(xiāng)og185b
log1845log185log189∴l(xiāng)og3645log1836log184log189bb錯因:因對性質不熟而導致題目沒解完.正解:∵18
bababa
182182alog18()a2log18()a992[例2]分析方程f(x)axbxc0(a0)的兩個根都大于1的充要條件.
2錯解:由于方程f(x)axbxc0(a0)對應的二次函數(shù)為
f(x)ax2bxc的圖像與x軸交點的橫坐標都大于1即可.
f(1)0f(1)0故需滿足b,所以充要條件是b
112a2a錯因:上述解法中,只考慮到二次函數(shù)與x軸交點坐標要大于1,卻忽視了最基本的的前題條件,應讓二次函數(shù)圖像與x軸有
交點才行,即滿足△≥0,故上述解法得到的不是充要條件,而是必要不充分條件.
f(1)0b正解:充要條件是12a2b4ac0y36x126x5的單調區(qū)間.
x2xx錯解:令6t,則y361265=t12t5
[例3]求函數(shù)
∴當t≥6,即x≥1時,y為關于t的增函數(shù),當t≤6,即x≤1時,y為關于t的減函數(shù)∴函數(shù)
y36x126x5的單調遞減區(qū)間是(,6],單調遞增區(qū)間為[6,)
x錯因:本題為復合函數(shù),該解法未考慮中間變量的取值范圍.正解:令6∴函數(shù)
t,則t6x為增函數(shù),y36x126x5=t212t5=(t6)241
∴當t≥6,即x≥1時,y為關于t的增函數(shù),當t≤6,即x≤1時,y為關于t的減函數(shù)
y36x126x5的單調遞減區(qū)間是(,1],單調遞增區(qū)間為[1,)
[例4]已知yloga(2ax)在[0,1]上是x的減函數(shù),則a的取值范圍是錯解:∵yloga(2ax)是由ylogau,u2ax復合而成,又a>0∴u2ax在[0,1]上是x的減函數(shù),由復合函數(shù)關系知,ylogau應為增函數(shù),∴a>1
錯因:錯因:解題中雖然考慮了對數(shù)函數(shù)與一次函數(shù)復合關系,卻忽視了數(shù)定義域的限制,單調區(qū)間應是定義域的某個子區(qū)間,即函數(shù)應在[0,1]上有意義.
yloga(2ax)是由ylogau,u2ax復合而成,又a>0∴u2ax在[0,1]上是x的'減函數(shù),
由復合函數(shù)關系知,ylogau應為增函數(shù),∴a>1
又由于x在[0,1]上時yloga(2ax)有意義,u2ax又是減函數(shù),∴x=1時,u2ax取最小值是
正解:∵
umin2a>0即可,∴a<2,綜上可知所求的取值范圍是1<a<2[例5]已知函數(shù)f(x)loga(3ax).
。1)當x[0,2]時f(x)恒有意義,求實數(shù)a的取值范圍.
。2)是否存在這樣的實數(shù)a使得函數(shù)f(x)在區(qū)間[1,2]上為減函數(shù),并且最大值為
存在,請說明理由.分析:函數(shù)
1,如果存在,試求出a的值;如果不
f(x)為復合函數(shù),且含參數(shù),要結合對數(shù)函數(shù)的性質具體分析找到正確的解題思路,是否存在性問題,分析時一
0,a1
般先假設存在后再證明.
解:(1)由假設,3ax>0,對一切x[0,2]恒成立,a顯然,函數(shù)g(x)=3ax在[0,2]上為減函數(shù),從而g(2)=32a>0得到a<(2)假設存在這樣的實數(shù)a,由題設知∴a=
32∴a的取值范圍是(0,1)∪(1,
32)
f(1)1,即f(1)loga(3a)=1
32此時
f(x)loga(33x)當x2時,f(x)沒有意義,故這樣的實數(shù)不存在.2,
12x4xa[例6]已知函數(shù)f(x)=lg,其中a為常數(shù),若當x∈(-∞,1]時,f(x)有意義,求實數(shù)a的取值范圍.
a2a1xx3111xx解:124a>0,且a-a+1=(a-)+>0,∴1+2+4a>0,a>(11),當x∈(-∞,1]時,y=x與y=x都
24424x2xa2a1333是減函數(shù),∴y=(11)在(-∞,1]上是增函數(shù),(11)max=-,∴a>-,故a的取值范圍是(-,+∞).
4444x2x422
2
xx[例7]若(a1)解:∵冪函數(shù)
13(32a)1313,試求a的取值范圍.
yx有兩個單調區(qū)間,
∴根據(jù)a1和32a的正、負情況,有以下關系a10a1032a0.①32a0.②a132aa132a解三個不等式組:①得
a10.③32a023,
23<a<
32,②無解,③a<-1,∴a的取值范圍是(-∞,-1)∪(
32)
[例8]已知a>0且a≠1,f(logax)=
a1(x-
xa21)
(1)求f(x);(2)判斷f(x)的奇偶性與單調性;
2
(3)對于f(x),當x∈(-1,1)時,有f(1-m)+f(1-m)<0,求m的集合M.
分析:先用換元法求出f(x)的表達式;再利用有關函數(shù)的性質判斷其奇偶性和單調性;然后利用以上結論解第三問.解:(1)令t=logax(t∈R),則xat,f(t)aatt(aa),f(x)(axax),(xR).22a1a1aa(axax)f(x),且xR,f(x)為奇函數(shù).當a1時,20,a1a1u(x)axax為增函數(shù),當0a1時,類似可判斷f(x)為增函數(shù).綜上,無論a1或0a1,f(x)在R上都是增函數(shù).
(3)f(1m)f(1m2)0,f(x)是奇函數(shù)且在R上是增函數(shù),f(1m)f(m21).又x(1,1)(2)f(x)211m11m2111m2.1mm21四、典型習題導練1.函數(shù)
f(x)axb的圖像如圖,其中a、b為常數(shù),則下列結論正確的是()A.a1,b0B.a1,b0C.0a1,b0D.0a1,b0
x的值為()
yC.1或4C.2
2
2、已知2lg(x-2y)=lgx+lgy,則A.13、方程loga(x1)xA.04、函數(shù)f(x)與g(x)=(
2B.4B.1
x
D.4或8D.3
()
2(0A.
0,nB.,0C.
0,2
D.
2,0
5、圖中曲線是冪函數(shù)y=x在第一象限的圖像,已知n可取±2,±
1四個值,則相應于曲線c1、c2、c3、c4的n依次為()211111111A.-2,-,,2B.2,,-,-2C.-,-2,2,D.2,,-2,-
2222226.求函數(shù)y=log2
2(x-5x+6)的定義域、值域、單調區(qū)間.7.若x滿足2(log21x)14log4x30,求f(x)=logxx222log22最大值和最小值.
8.已知定義在R上的函數(shù)f(x)2xa2x,a為常數(shù)(1)如果f(x)=f(x),求a的值;
。2)當
f(x)滿足(1)時,用單調性定義討論f(x)的單調性.
基本初等函數(shù)綜合訓練B組
一、選擇題
1.若函數(shù)
f(x)logax(0a1)在區(qū)間[a,2a]上的最大值是最小值的3倍,則a的值為()
A.214B.22C.4D.12
2.若函數(shù)yloga(xb)(a0,a1)的圖象過兩點(1,0)
和(0,1),則()
A.a2,b2B.a2,b2
C.a2,b1D.a2,b23.已知f(x6)log2x,那么f(8)等于()
A.43B.8C.18D.12
4.函數(shù)ylgx()
A.是偶函數(shù),在區(qū)間(,0)上單調遞增B.是偶函數(shù),在區(qū)間(,0)上單調遞減C.是奇函數(shù),在區(qū)間(0,)上單調遞增D.是奇函數(shù),在區(qū)間(0,)上單調遞減
5.已知函數(shù)f(x)lg1x1x.若f(a)b.則f(a)()A.bB.bC.11bD.b
6.函數(shù)f(x)logax1在(0,1)上遞減,那么f(x)在(1,)上()
A.遞增且無最大值B.遞減且無最小值C.遞增且有最大值D.遞減且有最小值
二、填空題1.若
f(x)2x2xlga是奇函數(shù),則實數(shù)a=_________。
2.函數(shù)
f(x)log1x22x5的值域是__________.
23.已知log147a,log145b,則用a,b表示log3528。4.設
A1,y,lgxy,B0,x,y,且AB,則x;y。5.計算:
322log325。
ex16.函數(shù)y的值域是__________.
xe1三、解答題
1.比較下列各組數(shù)值的大。海1)1.7
2.解方程:(1)9
3.已知
4.已知函數(shù)
參考答案
一、選擇題
x3.3和0.82.1;(2)3.30.7和3.40.8;(3)
3,log827,log9252231x27(2)6x4x9x
y4x32x3,當其值域為[1,7]時,求x的取值范圍。
f(x)loga(aax)(a1),求f(x)的定義域和值域;
1112321.Alogaa3loga(2a),loga(2a),a32a,a8a,a,a3842.Aloga(b1)0,且logab1,ab2
3.D令x4.B令令u68(x0),x82,f(8)f(x6)log2xlog2216f(x)lgx,f(x)lgxlgxf(x),即為偶函數(shù)
x,x0時,u是x的減函數(shù),即ylgx在區(qū)間(,0)上單調遞減
1x1xlgf(x).則f(a)f(a)b.5.Bf(x)lg1x1x6.A令ux1,(0,1)是u的遞減區(qū)間,即a1,(1,)是u的遞增區(qū)間,即f(x)遞增且無最大值。
二、填空題1.
1xxxxf(x)f(x)22lga22lga10x(lga1)(2(另法):xR,由2.
2x)0,lga10,a110110f(x)f(x)得f(0)0,即lga10,a,2x22x5(x1)244,
而011,log1x22x5log1422222alog14283.log147log145log1435ab,log3528
ablog1435141log14log14(214)1log14271(1log147)2a
log1435log1435log1435log1435ab4.1,1∵0A,y又∵1B,y0,∴l(xiāng)g(xy)0,xy1
51,∴x1,而x1,∴x1,且y1
3215.
5322log32log32532log321515ex11y6.(1,1)y,ex0,1y1ex11y三、解答題1.解:(1)∵1.71.701,0.82.10.801,∴1.73.30.82.1
0.70.80.70.80.80.8(2)∵3.33.3,3.33.4,∴3.33.4(3)log827log23,log925log35,
3.333332log22log222log23,log332log333log35,223∴l(xiāng)og925log827.
2x2xxxx2.解:(1)(3)63270,(33)(39)0,而330
3x90,3x32,
x22x4x22x2x(2)()()1,()()10
39332251()x0,則()x,332
xlog23512
3.解:由已知得14x32x37,
xxxx43237(21)(24)0,得x即
xxx43231(21)(22)0xx即021,或224∴x0,或1x2。
xx4.解:aa0,aa,x1,即定義域為(,1);
ax0,0aaxa,loga(aax)1,即值域為(,1)。
擴展閱讀:高一數(shù)學上冊 第二章基本初等函數(shù)之對數(shù)函數(shù)知識點總結及練習題(含答案)
〖2.2〗對數(shù)函數(shù)
【2.2.1】對數(shù)與對數(shù)運算
。1)對數(shù)的定義
①若axN(a0,且a1),則x叫做以a為底N的對數(shù),記作xlogaN,其中a叫做底數(shù),
N叫做真數(shù).
②負數(shù)和零沒有對數(shù).③對數(shù)式與指數(shù)式的互化:xlogaNaxN(a0,a1,N0).
。2)幾個重要的對數(shù)恒等式:loga10,logaa1,logaabb.
N;自然對數(shù):lnN,即loge(3)常用對數(shù)與自然對數(shù):常用對數(shù):lgN,即log10…).e2.71828(4)對數(shù)的運算性質如果a0,a1,M①加法:logaN(其中
0,N0,那么
MlogaNloga(MN)
M②減法:logaMlogaNlogaN③數(shù)乘:nlogaMlogaMn(nR)
、
alogaNN
nlogaM(b0,nR)bn⑤logabM⑥換底公式:logaNlogbN(b0,且b1)
logba【2.2.2】對數(shù)函數(shù)及其性質
(5)對數(shù)函數(shù)函數(shù)名稱定義函數(shù)對數(shù)函數(shù)ylogax(a0且a1)叫做對數(shù)函數(shù)a1yx10a1yx1ylogaxylogax圖象O(1,0)O(1,0)xx定義域值域過定點奇偶性(0,)R圖象過定點(1,0),即當x1時,y0.非奇非偶單調性在(0,)上是增函數(shù)在(0,)上是減函數(shù)logax0(x1)函數(shù)值的變化情況logax0(x1)logax0(x1)logax0(0x1)logax0(x1)logax0(0x1)a變化對圖象的影響在第一象限內,a越大圖象越靠低,越靠近x軸在第一象限內,a越小圖象越靠低,越靠近x軸在第四象限內,a越大圖象越靠高,越靠近y軸在第四象限內,a越小圖象越靠高,越靠近y軸(6)反函數(shù)的概念
設函數(shù)果對于
yf(x)的定義域為A,值域為C,從式子yf(x)中解出x,得式子x(y).如
y在C中的任何一個值,通過式子x(y),x在A中都有唯一確定的值和它對應,那么式子
x(y)表示x是y的函數(shù),函數(shù)x(y)叫做函數(shù)yf(x)的反函數(shù),記作xf1(y),習慣
上改寫成
yf1(x).
(7)反函數(shù)的求法
、俅_定反函數(shù)的定義域,即原函數(shù)的值域;②從原函數(shù)式③將xyf(x)中反解出xf1(y);
f1(y)改寫成yf1(x),并注明反函數(shù)的定義域.
。8)反函數(shù)的性質
、僭瘮(shù)②函數(shù)
yf(x)與反函數(shù)yf1(x)的圖象關于直線yx對稱.
yf(x)的定義域、值域分別是其反函數(shù)yf1(x)的值域、定義域.
yf(x)的圖象上,則P"(b,a)在反函數(shù)yf1(x)的圖象上.
、廴鬚(a,b)在原函數(shù)④一般地,函數(shù)
yf(x)要有反函數(shù)則它必須為單調函數(shù).
一、選擇題:1.
log89的值是log23A.
()
23B.1C.
32D.2
2.已知x=2+1,則log4(x3-x-6)等于
A.
。ǎ〤.0
D.
32B.
54123.已知lg2=a,lg3=b,則
lg12等于lg15()
A.
2ab
1abB.
a2b
1abC.
2ab
1abD.
a2b
1ab4.已知2lg(x-2y)=lgx+lgy,則x的值為
yA.1
B.4
()C.1或4C.(C.ln5
D.4或-1()
5.函數(shù)y=log1(2x1)的定義域為
2A.(
1,+∞)B.[1,+∞)2B.5e
1,1]2D.(-∞,1)()D.log5e()
y6.已知f(ex)=x,則f(5)等于
A.e5
7.若f(x)logax(a0且a1),且f1(2)1,則f(x)的圖像是
yyyABCD
8.設集合A{x|x10},B{x|log2x0|},則AB等于
A.{x|x1}C.{x|x1}
B.{x|x0}D.{x|x1或x1}
2OxOxOxOx()
9.函數(shù)ylnx1,x(1,)的反函數(shù)為()x1ex1,x(0,)B.yxe1ex1,x(,0)D.yxe1ex1,x(0,)A.yxe1ex1,x(,0)C.yxe1二、填空題
函數(shù)知識點總結8
高一數(shù)學第三章函數(shù)的應用知識點總結
一、方程的根與函數(shù)的零點
1、函數(shù)零點的概念:對于函數(shù)yf(x)(xD),把使f(x)0成立的實數(shù)x叫做函數(shù)yf(x)(xD)的零點。
2、函數(shù)零點的意義:函數(shù)yf(x)的零點就是方程f(x)0實數(shù)根,亦即函數(shù)
yf(x)的圖象與x軸交點的橫坐標。
即:方程f(x)0有實數(shù)根函數(shù)yf(x)的圖象與x軸有交點函數(shù)yf(x)有零點.
3、函數(shù)零點的求法:
1(代數(shù)法)求方程f(x)0的實數(shù)根;○
2(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)yf(x)的圖象○
聯(lián)系起來,并利用函數(shù)的性質找出零點.
零點存在性定理:如果函數(shù)y=f(x)在區(qū)間〔a,b〕上的圖象是連續(xù)不斷的一條曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內有零點,即存在c(a,b),使得f(c)=0,這個c也就是方程f(x)=0的根。先判定函數(shù)單調性,然后證明是否有f(a)f(b)第三章函數(shù)的應用習題
一、選擇題
1.下列函數(shù)有2個零點的是()
222y3x10y4x5x10yx3x5y4x4x1A、B、C、D、22.用二分法計算3x3x80在x(1,2)內的根的過程中得:f(1)0,f(1.5)0,
f(1.25)0,則方程的根落在區(qū)間()
A、(1,1.5)B、(1.5,2)C、(1,1.25)D、(1.25,1.5)
3.若方程axxa0有兩個解,則實數(shù)a的取值范圍是A、(1,)B、(0,1)C、(0,)D、
4.函數(shù)f(x)=lnx-2x的零點所在的大致區(qū)間是()A.(1,2)B.2,eC.e,3D.e,
5.已知方程x3x10僅有一個正零點,則此零點所在的區(qū)間是()
A.(3,4)B.(2,3)C.(1,2)D.(0,1)
6.函數(shù)f(x)lnx2x6的零點落在區(qū)間()A.(2,2.25)B.(2.25,2.5)C.(2.5,2.75)D.(2.75,3)
7.已知函數(shù)
fx的圖象是不間斷的,并有如下的對應值表:x1234567fx8735548那么函數(shù)在區(qū)間(1,6)上的零點至少有()個A.5B.4C.3D.28.方程2x1x5的解所在的區(qū)間是A(0,1)B(1,2)C(2,3)D(3,4)
9.方程4x35x60的根所在的區(qū)間為A、(3,2)B、(2,1)C、(1,0)D、(0,1)
10.已知f(x)2x22x,則在下列區(qū)間中,f(x)0有實數(shù)解的是()
。
。ǎ
。ǎ
((A)(-3,-2)(B)(-1,0)(C)(2,3)(D)(4,5)11.根據(jù)表格中的數(shù)據(jù),可以判定方程ex-x-2=0的一個根所在的區(qū)間為()
xexx+2-10.37101212.72327.394320.095A.(-1,0)B.(0,1)C.(1,2)D.(2,3)12、方程
x12x根的個數(shù)為()
A、0B、1C、2D、3二、填空題
13.下列函數(shù):1)y=lgx;2)y2;3)y=x2;4)y=|x|-1;其中有2個零點的函數(shù)的序號是。
x214.若方程3x2的實根在區(qū)間m,n內,且m,nZ,nm1,
x則mn.
222f(x)(x1)(x2)(x2x3)的零點是15、函數(shù)(必須寫全所有的零點)。
擴展閱讀:高中數(shù)學必修一第三章函數(shù)的應用知識點總結
第三章函數(shù)的應用
一、方程的根與函數(shù)的零點
1、函數(shù)零點的概念:對于函數(shù)yf(x)(xD),把使f(x)0成立的實數(shù)x叫做函數(shù)yf(x)(xD)的零點。
2、函數(shù)零點的意義:函數(shù)yf(x)的零點就是方程f(x)0實數(shù)根,亦即函數(shù)
yf(x)的圖象與x軸交點的橫坐標。
即:方程f(x)0有實數(shù)根函數(shù)yf(x)的圖象與x軸有交點函數(shù)yf(x)有零點.
3、函數(shù)零點的求法:
1(代數(shù)法)求方程f(x)0的實數(shù)根;○
2(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)yf(x)的圖象聯(lián)系起來,○
并利用函數(shù)的性質找出零點.
4、基本初等函數(shù)的零點:
、僬壤瘮(shù)ykx(k0)僅有一個零點。
k(k0)沒有零點。x③一次函數(shù)ykxb(k0)僅有一個零點。
、诜幢壤瘮(shù)y④二次函數(shù)yax2bxc(a0).
。1)△>0,方程ax2bxc0(a0)有兩不等實根,二次函數(shù)的圖象與x軸有兩個交點,二次函數(shù)有兩個零點.
(2)△=0,方程ax2bxc0(a0)有兩相等實根,二次函數(shù)的圖象與x軸有一個交點,二次函數(shù)有一個二重零點或二階零點.
。3)△<0,方程ax2bxc0(a0)無實根,二次函數(shù)的圖象與x軸無交點,二次函數(shù)無零點.
、葜笖(shù)函數(shù)ya(a0,且a1)沒有零點。⑥對數(shù)函數(shù)ylogax(a0,且a1)僅有一個零點1.
⑦冪函數(shù)yx,當n0時,僅有一個零點0,當n0時,沒有零點。
5、非基本初等函數(shù)(不可直接求出零點的較復雜的函數(shù)),函數(shù)先把fx轉化成,這另fx0,再把復雜的函數(shù)拆分成兩個我們常見的函數(shù)y1,y2(基本初等函數(shù))個函數(shù)圖像的交點個數(shù)就是函數(shù)fx零點的個數(shù)。
6、選擇題判斷區(qū)間a,b上是否含有零點,只需滿足fafb0。Eg:試判斷方程xx2x10在區(qū)間[0,2]內是否有實數(shù)解?并說明理由。
1
42x7、確定零點在某區(qū)間a,b個數(shù)是唯一的條件是:①fx在區(qū)間上連續(xù),且fafb0②在區(qū)間a,b上單調。Eg:求函數(shù)f(x)2xlg(x1)2的零點個數(shù)。
8、函數(shù)零點的性質:
從“數(shù)”的角度看:即是使f(x)0的實數(shù);
從“形”的角度看:即是函數(shù)f(x)的圖象與x軸交點的橫坐標;
若函數(shù)f(x)的圖象在xx0處與x軸相切,則零點x0通常稱為不變號零點;若函數(shù)f(x)的圖象在xx0處與x軸相交,則零點x0通常稱為變號零點.
Eg:一元二次方程根的分布討論
一元二次方程根的分布的'基本類型
2axbxc0(a0)的兩實根為x1,x2,且x1x2.設一元二次方程
k為常數(shù),則一元二次方程根的k分布(即x1,x2相對于k的位置)或根在區(qū)間上的
分布主要有以下基本類型:
表一:(兩根與0的大小比較)
分布情況兩個負根即兩根都小于0兩個正根即兩根都大于0一正根一負根即一個根小于0,一個大于0x10,x20x10,x20x10x2a0)大致圖象(得出的結論0b02af000b02af00f00
大致圖象(a0)得出的結論0b02af000b02aaf000b02af000b02aaf00f00(不綜討合論結a論)
af00表二:(兩根與k的大小比較)
分布情況兩根都小于k即兩根都大于k即一個根小于k,一個大于k即x1k,x2kx1k,x2kx1kx2a0)大致圖象(kkk得出的結論0bk2afk00bk2afk0fk0大致圖象(a0)得出的結論0bk2afk00bk2aafk00bk2afk00bk2aafk0fk0(不綜討合論結a論)a0)afk0分布情況大致圖象(得出的結論表三:(根在區(qū)間上的分布)
兩根都在m,n內兩根有且僅有一根在m,n一根在m,n內,另一根在p,q內(有兩種情況,只畫了一種)內,mnpq0fm0fn0bmn2afmfn0fm0fn0fmfn0fp0fq0fpfq0或
大致圖象(a0)得出的結論0fm0fn0bmn2a綜合結論fmfn0fm0fn0fmfn0fp0fq0fpfq0或fmfn0fpfq0(a不)討論
fmfn0Eg:(1)關于x的方程x22(m3)x2m140有兩個實根,且一個大于1,一個小于1,求m的取值范圍?
。2)關于x的方程x2(m3)x2m140有兩實根在[0,4]內,求m的取值范圍?
2(3)關于x的方程mx2(m3)x2m140有兩個實根,且一個大于4,一個小于4,求m的取值范圍?
9、二分法的定義
對于在區(qū)間[a,b]上連續(xù)不斷,且滿足f(a)f(b)0的函數(shù)
yf(x),通過不斷地把函數(shù)f(x)的零點所在的區(qū)間一分為二,
使區(qū)間的兩個端點逐步逼近零點,進而得到零點近似值的方法叫做二分法.
10、給定精確度ε,用二分法求函數(shù)f(x)零點近似值的步驟:(1)確定區(qū)間[a,b],驗證f(a)f(b)0,給定精度;(2)求區(qū)間(a,b)的中點x1;(3)計算f(x1):
、偃鬴(x1)=0,則x1就是函數(shù)的零點;
②若f(a)f(x1)14、根據(jù)散點圖設想比較接近的可能的函數(shù)模型:一次函數(shù)模型:f(x)kxb(k0);二次函數(shù)模型:g(x)ax2bxc(a0);冪函數(shù)模型:h(x)axb(a0);
指數(shù)函數(shù)模型:l(x)abxc(a0,b>0,b1)
利用待定系數(shù)法求出各解析式,并對各模型進行分析評價,選出合適的函數(shù)模型
函數(shù)知識點總結9
一、函數(shù)的概念與表示
1、映射
(1)映射:設A、B是兩個集合,如果按照某種映射法則f,對于集合A中的任一個元素,在集合B中都有唯一的元素和它對應,則這樣的對應(包括集合A、B以及A到B的對應法則f)叫做集合A到集合B的映射,記作f:A→B。
注意點:(1)對映射定義的理解。(2)判斷一個對應是映射的方法。一對多不是映射,多對一是映射
2、函數(shù)
構成函數(shù)概念的三要素
、俣x域②對應法則③值域
兩個函數(shù)是同一個函數(shù)的條件:三要素有兩個相同
二、函數(shù)的解析式與定義域
1、求函數(shù)定義域的主要依據(jù):
(1)分式的分母不為零;
(2)偶次方根的被開方數(shù)不小于零,零取零次方沒有意義;
(3)對數(shù)函數(shù)的真數(shù)必須大于零;
(4)指數(shù)函數(shù)和對數(shù)函數(shù)的底數(shù)必須大于零且不等于1;
三、函數(shù)的值域
1求函數(shù)值域的方法
①直接法:從自變量x的范圍出發(fā),推出y=f(x)的取值范圍,適合于簡單的復合函數(shù);
、趽Q元法:利用換元法將函數(shù)轉化為二次函數(shù)求值域,適合根式內外皆為一次式;
、叟袆e式法:運用方程思想,依據(jù)二次方程有根,求出y的取值范圍;適合分母為二次且∈R的'分式;
、芊蛛x常數(shù):適合分子分母皆為一次式(x有范圍限制時要畫圖);
、輪握{性法:利用函數(shù)的單調性求值域;
⑥圖象法:二次函數(shù)必畫草圖求其值域;
、呃脤μ柡瘮(shù)
、鄮缀我饬x法:由數(shù)形結合,轉化距離等求值域。主要是含絕對值函數(shù)
四.函數(shù)的奇偶性
1.定義:設y=f(x),x∈A,如果對于任意∈A,都有,則稱y=f(x)為偶函數(shù)。
如果對于任意∈A,都有,則稱y=f(x)為奇
函數(shù)。
2.性質:
、賧=f(x)是偶函數(shù)y=f(x)的圖象關于軸對稱,y=f(x)是奇函數(shù)y=f(x)的圖象關于原點對稱,
、谌艉瘮(shù)f(x)的定義域關于原點對稱,則f(0)=0
③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[兩函數(shù)的定義域D1,D2,D1∩D2要關于原點對稱]
3.奇偶性的判斷
、倏炊x域是否關于原點對稱②看f(x)與f(-x)的關系
五、函數(shù)的單調性
1、函數(shù)單調性的定義:
2設是定義在M上的函數(shù),若f(x)與g(x)的單調性相反,則在M上是減函數(shù);若f(x)與g(x)的單調性相同,則在M上是增函數(shù)。
函數(shù)知識點總結10
1二次函數(shù)的定義
一般地,形如y=ax2+bx+c(a,b,c為常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù).如y=3x2,y=3x2-2,y=2x2+x-1等都是二次函數(shù).
注意:(1)二次函數(shù)是關于自變量的二次式,二次項系數(shù)a必須是非零實數(shù),即a≠0,而b,c是任意實數(shù),二次函數(shù)的表達式是一個整式;
(2)二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0),自變量x的取值范圍是全體實數(shù);
(3)當b=c=0時,二次函數(shù)y=ax2是最簡單的二次函數(shù);
(4)一個函數(shù)是否是二次函數(shù),要化簡整理后,對照定義才能下結論,例如y=x2-x(x-1)化簡后變?yōu)閥=x,故它不是二次函數(shù).
2二次函數(shù)解析式的幾種形式
(1)一般式:y=ax2+bx+c (a,b,c為常數(shù),a≠0).
(2)頂點式:y=a(x-h)2+k(a,h,k為常數(shù),a≠0).
(3)兩根式:y=a(x-x1)(x-x2),其中x1,x2是拋物線與x軸的`交點的橫坐標,即一元二次方程ax2+bx+c=0的兩個根,a≠0.
說明:(1)任何一個二次函數(shù)通過配方都可以化為頂點式y(tǒng)=a(x-h)2+k,拋物線的頂點坐標是(h,k),h=0時,拋物線y=ax2+k的頂點在y軸上;當k=0時,拋物線a(x-h)2的頂點在x軸上;當h=0且k=0時,拋物線y=ax2的頂點在原點
3二次函數(shù)y=ax2+c的圖象與性質
(1)拋物線y=ax2+c的形狀由a決定,位置由c決定.
(2)二次函數(shù)y=ax2+c的圖象是一條拋物線,頂點坐標是(0,c),對稱軸是y軸.
當a>0時,圖象的開口向上,有最低點(即頂點),當x=0時,y最小值=c.在y軸左側,y隨x的增大而減小;在y軸右側,y隨x增大而增大.
當a<0時,圖象的開口向下,有最高點(即頂點),當x=0時,y最大值=c.在y軸左側,y隨x的增大而增大;在y軸右側,y隨x增大而減小.
(3)拋物線y=ax2+c與y=ax2的關系.
拋物線y=ax2+c與y=ax2形狀相同,只有位置不同.拋物線y=ax2+c可由拋物線y=ax2沿y軸向上或向下平行移動|c|個單位得到.當c>0時,向上平行移動,當c<0時,向下平行移動.
函數(shù)知識點總結11
一:函數(shù)及其表示
知識點詳解文檔包含函數(shù)的概念、映射、函數(shù)關系的判斷原則、函數(shù)區(qū)間、函數(shù)的三要素、函數(shù)的定義域、求具體或抽象數(shù)值的函數(shù)值、求函數(shù)值域、函數(shù)的表示方法等
1. 函數(shù)與映射的區(qū)別:
2. 求函數(shù)定義域
常見的用解析式表示的函數(shù)f(x)的定義域可以歸納如下:
、佼攆(x)為整式時,函數(shù)的定義域為R.
、诋攆(x)為分式時,函數(shù)的定義域為使分式分母不為零的實數(shù)集合。
、郛攆(x)為偶次根式時,函數(shù)的定義域是使被開方數(shù)不小于0的.實數(shù)集合。
、墚攆(x)為對數(shù)式時,函數(shù)的定義域是使真數(shù)為正、底數(shù)為正且不為1的實數(shù)集合。
⑤如果f(x)是由幾個部分的數(shù)學式子構成的,那么函數(shù)定義域是使各部分式子都有意義的實數(shù)集合,即求各部分有意義的實數(shù)集合的交集。
、迯秃虾瘮(shù)的定義域是復合的各基本的函數(shù)定義域的交集。
⑦對于由實際問題的背景確定的函數(shù),其定義域除上述外,還要受實際問題的制約。
3. 求函數(shù)值域
(1)、觀察法:通過對函數(shù)定義域、性質的觀察,結合函數(shù)的解析式,求得函數(shù)的值域;
(2)、配方法;如果一個函數(shù)是二次函數(shù)或者經過換元可以寫成二次函數(shù)的形式,那么將這個函數(shù)的右邊配方,通過自變量的范圍可以求出該函數(shù)的值域;
(3)、判別式法:
(4)、數(shù)形結合法;通過觀察函數(shù)的圖象,運用數(shù)形結合的方法得到函數(shù)的值域;
(5)、換元法;以新變量代替函數(shù)式中的某些量,使函數(shù)轉化為以新變量為自變量的函數(shù)形式,進而求出值域;
(6)、利用函數(shù)的單調性;如果函數(shù)在給出的定義域區(qū)間上是嚴格單調的,那么就可以利用端點的函數(shù)值來求出值域;
(7)、利用基本不等式:對于一些特殊的分式函數(shù)、高于二次的函數(shù)可以利用重要不等式求出函數(shù)的值域;
(8)、最值法:對于閉區(qū)間[a,b]上的連續(xù)函數(shù)y=f(x),可求出y=f(x)在區(qū)間[a,b]內的極值,并與邊界值f(a).f(b)作比較,求出函數(shù)的最值,可得到函數(shù)y的值域;
(9)、反函數(shù)法:如果函數(shù)在其定義域內存在反函數(shù),那么求函數(shù)的值域可以轉化為求反函數(shù)的定義域。
函數(shù)知識點總結12
余割函數(shù)
對于任意一個實數(shù)x,都對應著唯一的角(弧度制中等于這個實數(shù)),而這個角又對應著唯一確定的`余割值cscx與它對應,按照這個對應法則建立的函數(shù)稱為余割函數(shù)。
記作f(x)=cscx
f(x)=cscx=1/sinx
1、定義域:{x|x≠kπ,k∈Z}
2、值域:{y|y≤-1或y≥1}
3、奇偶性:奇函數(shù)
4、周期性:最小正周期為2π
5、圖像:
圖像漸近線為:x=kπ ,k∈Z
其實有一點需要注意,就是余割函數(shù)與正弦函數(shù)互為倒數(shù)。
函數(shù)知識點總結13
一次函數(shù):一次函數(shù)圖像與性質是中考必考的內容之一。中考試題中分值約為10分左右題型多樣,形式靈活,綜合應用性強。甚至有存在探究題目出現(xiàn)。
主要考察內容:
、贂嬕淮魏瘮(shù)的圖像,并掌握其性質。
、跁鶕(jù)已知條件,利用待定系數(shù)法確定一次函數(shù)的解析式。
、勰苡靡淮魏瘮(shù)解決實際問題。
、芸疾煲籭c函數(shù)與二元一次方程組,一元一次不等式的關系。
突破方法:
、僬_理解掌握一次函數(shù)的概念,圖像和性質。
、谶\用數(shù)學結合的思想解與一次函數(shù)圖像有關的問題。
、壅莆沼么ㄏ禂(shù)法球一次函數(shù)解析式。
④做一些綜合題的`訓練,提高分析問題的能力。
函數(shù)性質:
1.y的變化值與對應的x的變化值成正比例,比值為k.即:y=kx+b(k,b為常數(shù),k≠0),∵當x增加m,k(x+m)+b=y+km,km/m=k。
2.當x=0時,b為函數(shù)在y軸上的點,坐標為(0,b)。
3當b=0時(即y=kx),一次函數(shù)圖像變?yōu)檎壤瘮?shù),正比例函數(shù)是特殊的一次函數(shù)。
4.在兩個一次函數(shù)表達式中:
當兩一次函數(shù)表達式中的k相同,b也相同時,兩一次函數(shù)圖像重合;當兩一次函數(shù)表達式中的k相同,b不相同時,兩一次函數(shù)圖像平行;當兩一次函數(shù)表達式中的k不相同,b不相同時,兩一次函數(shù)圖像相交;當兩一次函數(shù)表達式中的k不相同,b相同時,兩一次函數(shù)圖像交于y軸上的同一點(0,b)。若兩個變量x,y間的關系式可以表示成Y=KX+b(k,b為常數(shù),k不等于0)則稱y是x的一次函數(shù)圖像性質
1、作法與圖形:通過如下3個步驟:
(1)列表.
。2)描點;[一般取兩個點,根據(jù)“兩點確定一條直線”的道理,也可叫“兩點法”。一般的y=kx+b(k≠0)的圖象過(0,b)和(-b/k,0)兩點畫直線即可。
正比例函數(shù)y=kx(k≠0)的圖象是過坐標原點的一條直線,一般。0,0)和(1,k)兩點。(3)連線,可以作出一次函數(shù)的圖象一條直線。因此,作一次函數(shù)的圖象只需知道2點,并連成直線即可。(通常找函數(shù)圖象與x軸和y軸的交點分別是-k分之b與0,0與b).
2、性質:
。1)在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b(k≠0)。
(2)一次函數(shù)與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像都是過原點。
3、函數(shù)不是數(shù),它是指某一變化過程中兩個變量之間的關系。
4、k,b與函數(shù)圖像所在象限:
y=kx時(即b等于0,y與x成正比例):
當k>0時,直線必通過第一、三象限,y隨x的增大而增大;當k0,b>0,這時此函數(shù)的圖象經過第一、二、三象限;當k>0,b
函數(shù)知識點總結14
奇函數(shù)和偶函數(shù)的定義
奇函數(shù):如果函數(shù)f(x)的定義域中任意x有f(—x)=—f(x),則函數(shù)f(x)稱為奇函數(shù)。
偶數(shù)函數(shù):如果函數(shù)f(x)的定義域中任意x有f(—x)=f(x),則函數(shù)f(x)稱為偶數(shù)函數(shù)。
性質
奇函數(shù)性質:
1、圖象關于原點對稱
2、滿足f(—x)= — f(x)
3、關于原點對稱的區(qū)間上單調性一致
4、如果奇函數(shù)在x=0上有定義,那么有f(0)=0
5、定義域關于原點對稱(奇偶函數(shù)共有的)
偶函數(shù)性質:
1、圖象關于y軸對稱
2、滿足f(—x)= f(x)
3、關于原點對稱的`區(qū)間上單調性相反
4、如果一個函數(shù)既是奇函數(shù)有是偶函數(shù),那么有f(x)=0
5、定義域關于原點對稱(奇偶函數(shù)共有的)
常用運算方法
奇函數(shù)±奇函數(shù)=奇函數(shù)
偶函數(shù)±偶函數(shù)=偶函數(shù)
奇函數(shù)×奇函數(shù)=偶函數(shù)
偶函數(shù)×偶函數(shù)=偶函數(shù)
奇函數(shù)×偶函數(shù)=奇函數(shù)
證明方法
設f(x),g(x)為奇函數(shù),t(x)=f(x)+g(x),t(—x)=f(—x)+g(—x)=—f(x)+(—g(x))=—t(x),所以奇函數(shù)加奇函數(shù)還是奇函數(shù);
若f(x),g(x)為偶函數(shù),t(x)=f(x)+g(x),t(—x)=f(—x)+g(—x)=f(x)+g(x)=t(x),所以偶函數(shù)加偶函數(shù)還是偶函數(shù)。
函數(shù)知識點總結15
基本概念
1、變量:在一個變化過程中可以取不同數(shù)值的量。常量:在一個變化過程中只能取同一數(shù)值的量。
2、函數(shù):一般的,在一個變化過程中,如果有兩個變量x和y,并且對于x的每一個確定的值,y都有唯一確定的值與其對應,那么我們就把x稱為自變量,把y稱為因變量,y是x的函數(shù)。
*判斷Y是否為X的函數(shù),只要看X取值確定的時候,Y是否有唯一確定的值與之對應3、定義域:一般的,一個函數(shù)的自變量允許取值的范圍,叫做這個函數(shù)的定義域。(x的取值范圍)一次函數(shù)
1..自變量x和因變量y有如下關系:
y=kx+b(k為任意不為零實數(shù),b為任意實數(shù))則此時稱y是x的一次函數(shù)。特別的,當b=0時,y是x的正比例函數(shù)。即:y=kx(k為任意不為零實數(shù))
定義域:自變量的取值范圍,自變量的取值應使函數(shù)有意義;要與實際有意義。2.當x=0時,b為函數(shù)在y軸上的截距。一次函數(shù)性質:
1在一次函數(shù)上的任意一點P(x,y),都滿足等式:y=kx+b(k≠0)。
2一次函數(shù)與y軸交點的坐標總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點。3.函數(shù)不是數(shù),它是指某一變量過程中兩個變量之間的關系。
特別地,當b=0時,直線通過原點O(0,0)表示的是正比例函數(shù)的圖像。這時,當k>0時,直線只通過一、三象限;當k<0時,直線只通過二、四象限。4、特殊位置關系
當平面直角坐標系中兩直線平行時,其函數(shù)解析式中K值(即一次項系數(shù))相等
當平面直角坐標系中兩直線垂直時,其函數(shù)解析式中K值互為負倒數(shù)(即兩個K值的乘積為-1)
應用
一次函數(shù)y=kx+b的性質是:(1)當k>0時,y隨x的增大而增大;(2)當ky2,則x1與x2的大小關系是()
A.x1>x2B.x10,且y1>y2。根據(jù)一次函數(shù)的性質“當k>0時,y隨x的增大而增大”,得x1>x2。故選A。
判斷函數(shù)圖象的位置例3.一次函數(shù)y=kx+b滿足kb>0,且y隨x的增大而減小,則此函數(shù)的圖象不經過()A.第一象限B.第二象限C.第三象限D.第四象限
解:由kb>0,知k、b同號。因為y隨x的增大而減小,所以k
。5)實際問題中,函數(shù)定義域還要和實際情況相符合,使之有意義。5、函數(shù)的圖像
一般來說,對于一個函數(shù),如果把自變量與函數(shù)的每對對應值分別作為點的橫、縱坐標,那么坐標平面內由這些點組成的圖形,就是這個函數(shù)的圖象.
6、函數(shù)解析式:用含有表示自變量的字母的代數(shù)式表示因變量的式子叫做解析式。7、描點法畫函數(shù)圖形的一般步驟
第一步:列表(表中給出一些自變量的值及其對應的函數(shù)值);
第二步:描點(在直角坐標系中,以自變量的值為橫坐標,相應的函數(shù)值為縱坐標,描出表格中數(shù)值對應的各點);第三步:連線(按照橫坐標由小到大的順序把所描出的各點用平滑曲線連接起來)。8、函數(shù)的表示方法
列表法:一目了然,使用起來方便,但列出的對應值是有限的,不易看出自變量與函數(shù)之間的.對應規(guī)律。
解析式法:簡單明了,能夠準確地反映整個變化過程中自變量與函數(shù)之間的相依關系,但有些實際問題中的函數(shù)關系,不能用解析式表示。
圖象法:形象直觀,但只能近似地表達兩個變量之間的函數(shù)關系。9、正比例函數(shù)及性質
一般地,形如y=kx(k是常數(shù),k≠0)的函數(shù)叫做正比例函數(shù),其中k叫做比例系數(shù).注:正比例函數(shù)一般形式y(tǒng)=kx(k不為零)①k不為零②x指數(shù)為1③b取零解析式:y=kx(k是常數(shù),k≠0)必過點:(0,0)、(1,k)
走向:k>0時,圖像經過一、三象限;k0,y隨x的增大而增大;k0時,向上平移;當b0,圖象經過第一、三象限;k0,圖象經過第一、二象限;b0,y隨x的增大而增大;k0時,將直線y=kx的圖象向上平移b個單位;當b
.函數(shù)y=ax+b與y=bx+a的圖象在同一坐標系內的大致位置正確的是()
將直線y=3x向下平移5個單位,得到直線;將直線y=-x-5向上平移5個單位,得到直線.若直線yxa和直線yxb的交點坐標為(m,8),則ab____________.
已知函數(shù)y=3x+1,當自變量增加m時,相應的函數(shù)值增加()A.3m+1B.3mC.mD.3m-111、一次函數(shù)y=kx+b的圖象的畫法.根據(jù)幾何知識:經過兩點能畫出一條直線,并且只能畫出一條直線,即兩點確定一條直線,所以畫一次函數(shù)的圖象時,只要先描出兩點,再連成直線即可.一般情況下:是先選取它與兩坐標軸的交點:(0,b),坐標或縱坐標為0的點.
b>0經過第一、二、三象限b0圖象從左到右上升,y隨x的增大而增大經過第一、二、四象限經過第二、三、四象限經過第二、四象限k0時,向上平移;當b
(1)設一次函數(shù)的表達式(也叫解析式)為y=kx+b。(2)因為在一次函數(shù)上的任意一點P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個方程:y1=kx1+b①
和y2=kx2+b②
。3)解這個二元一次方程,得到k,b的值。(4)最后得到一次函數(shù)的表達式。15、一元一次方程與一次函數(shù)的關系
任何一元一次方程到可以轉化為ax+b=0(a,b為常數(shù),a≠0)的形式,所以解一元一次方程可以轉化為:當某個一次函數(shù)的值為0時,求相應的自變量的值.從圖象上看,相當于已知直線y=ax+b確定它與x軸的交點的橫坐標的值.
【函數(shù)知識點總結】相關文章:
函數(shù)知識點總結06-23
函數(shù)知識點總結02-10
函數(shù)知識點03-01
[精選]函數(shù)知識點03-01
初二函數(shù)知識點總結01-13
關于高中函數(shù)的知識點總結03-30
函數(shù)知識點總結20篇04-20
初二函數(shù)知識點總結07-27
函數(shù)知識點總結(20篇)07-20