高二數(shù)學(xué)高效復(fù)習(xí)知識點歸納總結(jié)三篇
總結(jié)是指社會團(tuán)體、企業(yè)單位和個人對某一階段的學(xué)習(xí)、工作或其完成情況加以回顧和分析,得出教訓(xùn)和一些規(guī)律性認(rèn)識的一種書面材料,它可以幫助我們總結(jié)以往思想,發(fā)揚(yáng)成績,讓我們抽出時間寫寫總結(jié)吧。你所見過的總結(jié)應(yīng)該是什么樣的?以下是小編為大家整理的高二數(shù)學(xué)高效復(fù)習(xí)知識點歸納總結(jié)三篇,僅供參考,歡迎大家閱讀。
高二數(shù)學(xué)高效復(fù)習(xí)知識點歸納總結(jié)三篇1
等腰直角三角形面積公式:S=a2/2,S=ch/2=c2/4(其中a為直角邊,c為斜邊,h為斜邊上的高)。
面積公式
若假設(shè)等腰直角三角形兩腰分別為a,b,底為c,則可得其面積:
S=ab/2。
且由等腰直角三角形性質(zhì)可知:底邊c上的高h(yuǎn)=c/2,則三角面積可表示為:
S=ch/2=c2/4。
等腰直角三角形是一種特殊的三角形,具有所有三角形的性質(zhì):穩(wěn)定性,兩直角邊相等直角邊夾一直角銳角45°,斜邊上中線角平分線垂線三線合一。
高二數(shù)學(xué)高效復(fù)習(xí)知識點歸納總結(jié)三篇2
反正弦函數(shù)的導(dǎo)數(shù):正弦函數(shù)y=sin_在[-π/2,π/2]上的反函數(shù),叫做反正弦函數(shù)。記作arcsin_,表示一個正弦值為_的角,該角的范圍在[-π/2,π/2]區(qū)間內(nèi)。定義域[-1,1],值域[-π/2,π/2]。
反函數(shù)求導(dǎo)方法
若F(_),G(_)互為反函數(shù),
則:F'(_)_G'(_)=1
E.G.:y=arcsin__=siny
y'__'=1(arcsin_)'_(siny)'=1
y'=1/(siny)'=1/(cosy)=1/根號(1-sin^2y)=1/根號(1-_^2)
其余依此類推
高二數(shù)學(xué)高效復(fù)習(xí)知識點歸納總結(jié)三篇3
一、直線與圓:
1、直線的傾斜角的范圍是
在平面直角坐標(biāo)系中,對于一條與軸相交的.直線,如果把軸繞著交點按逆時針方向轉(zhuǎn)到和直線重合時所轉(zhuǎn)的最小正角記為,就叫做直線的傾斜角。當(dāng)直線與軸重合或平行時,規(guī)定傾斜角為0;
2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα.
過兩點(_1,y1),(_2,y2)的直線的斜率k=(y2-y1)/(_2-_1),另外切線的斜率用求導(dǎo)的方法。
3、直線方程:⑴點斜式:直線過點斜率為,則直線方程為,
、菩苯厥:直線在軸上的截距為和斜率,則直線方程為
4、直線與直線的位置關(guān)系:
(1)平行A1/A2=B1/B2注意檢驗(2)垂直A1A2+B1B2=0
5、點到直線的距離公式;
兩條平行線與的距離是
6、圓的標(biāo)準(zhǔn)方程:.⑵圓的一般方程:
注意能將標(biāo)準(zhǔn)方程化為一般方程
7、過圓外一點作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線.
8、直線與圓的位置關(guān)系,通常轉(zhuǎn)化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構(gòu)造直角三角形解決弦長問題.①相離②相切③相交
9、解決直線與圓的關(guān)系問題時,要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長、弦心距構(gòu)成直角三角形)直線與圓相交所得弦長
二、圓錐曲線方程:
1、橢圓:①方程(a>b>0)注意還有一個;②定義:|PF1|+|PF2|=2a>2c;③e=④長軸長為2a,短軸長為2b,焦距為2c;a2=b2+c2;
2、雙曲線:①方程(a,b>0)注意還有一個;②定義:||PF1|-|PF2||=2a<2c;③e=;④實軸長為2a,虛軸長為2b,焦距為2c;漸進(jìn)線或c2=a2+b2
3、拋物線:①方程y2=2p_注意還有三個,能區(qū)別開口方向;②定義:|PF|=d焦點F(,0),準(zhǔn)線_=-;③焦半徑;焦點弦=_1+_2+p;
4、直線被圓錐曲線截得的弦長公式:
三、直線、平面、簡單幾何體:
1、學(xué)會三視圖的分析:
2、斜二測畫法應(yīng)注意的地方:
(1)在已知圖形中取互相垂直的軸O_、Oy。畫直觀圖時,把它畫成對應(yīng)軸o'_'、o'y'、使∠_'o'y'=45°(或135°);
(2)平行于_軸的線段長不變,平行于y軸的線段長減半.
(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.
3、表(側(cè))面積與體積公式:
、胖w:①表面積:S=S側(cè)+2S底;②側(cè)面積:S側(cè)=;③體積:V=S底h
⑵錐體:①表面積:S=S側(cè)+S底;②側(cè)面積:S側(cè)=;③體積:V=S底h:
、桥_體①表面積:S=S側(cè)+S上底S下底②側(cè)面積:S側(cè)=
、惹蝮w:①表面積:S=;②體積:V=
4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書寫
(1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。
(2)平面與平面平行:①線面平行面面平行。
(3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內(nèi)的兩條相交直線
5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)
、女惷嬷本所成角的求法:平移法:平移直線,構(gòu)造三角形;
⑵直線與平面所成的角:直線與射影所成的角
四、導(dǎo)數(shù):導(dǎo)數(shù)的意義-導(dǎo)數(shù)公式-導(dǎo)數(shù)應(yīng)用(極值最值問題、曲線切線問題)
1、導(dǎo)數(shù)的定義:在點處的導(dǎo)數(shù)記作.
2.導(dǎo)數(shù)的幾何物理意義:曲線在點處切線的斜率
、賙=f/(_0)表示過曲線y=f(_)上P(_0,f(_0))切線斜率。V=s/(t)表示即時速度。a=v/(t)表示加速度。
3.常見函數(shù)的導(dǎo)數(shù)公式:①;②;③;
、;⑥;⑦;⑧。
4.導(dǎo)數(shù)的四則運算法則:
5.導(dǎo)數(shù)的應(yīng)用:
(1)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù)在某個區(qū)間內(nèi)可導(dǎo),如果,那么為增函數(shù);如果,那么為減函數(shù);
注意:如果已知為減函數(shù)求字母取值范圍,那么不等式恒成立。
(2)求極值的步驟:
、偾髮(dǎo)數(shù);
、谇蠓匠痰母;
、哿斜:檢驗在方程根的左右的符號,如果左正右負(fù),那么函數(shù)在這個根處取得極大值;如果左負(fù)右正,那么函數(shù)在這個根處取得極小值;
(3)求可導(dǎo)函數(shù)值與最小值的步驟:
ⅰ求的根;ⅱ把根與區(qū)間端點函數(shù)值比較,的為值,最小的是最小值。
五、常用邏輯用語:
1、四種命題:
⑴原命題:若p則q;⑵逆命題:若q則p;⑶否命題:若p則q;⑷逆否命題:若q則p
注:1、原命題與逆否命題等價;逆命題與否命題等價。判斷命題真假時注意轉(zhuǎn)化。
2、注意命題的否定與否命題的區(qū)別:命題否定形式是;否命題是.命題“或”的否定是“且”;“且”的否定是“或”.
3、邏輯聯(lián)結(jié)詞:
、徘(and):命題形式pq;pqpqpqp
、苹(or):命題形式pq;真真真真假
、欠(not):命題形式p.真假假真假
假真假真真
假假假假真
“或命題”的真假特點是“一真即真,要假全假”;
“且命題”的真假特點是“一假即假,要真全真”;
“非命題”的真假特點是“一真一假”
4、充要條件
由條件可推出結(jié)論,條件是結(jié)論成立的充分條件;由結(jié)論可推出條件,則條件是結(jié)論成立的必要條件。
5、全稱命題與特稱命題:
短語“所有”在陳述中表示所述事物的全體,邏輯中通常叫做全稱量詞,并用符號表示。含有全體量詞的命題,叫做全稱命題。
短語“有一個”或“有些”或“至少有一個”在陳述中表示所述事物的個體或部分,邏輯中通常叫做存在量詞,并用符號表示,含有存在量詞的命題,叫做存在性命題。
【高二數(shù)學(xué)高效復(fù)習(xí)知識點歸納總結(jié)三篇】相關(guān)文章:
數(shù)學(xué)高效學(xué)習(xí)方法歸納12-26
初三化學(xué)復(fù)習(xí)知識點的歸納總結(jié)11-30
語文《背影》知識點總結(jié)歸納12-07
高二語文《滕王閣序》知識點歸納12-27
高二數(shù)學(xué)單元復(fù)習(xí)難點突破09-01
四年級數(shù)學(xué)單元復(fù)習(xí)知識點歸納(通用5篇)01-11
《觀潮》知識點歸納09-01
高三語文外國文學(xué)常識知識點復(fù)習(xí)歸納05-16
中考數(shù)學(xué)知識點資料復(fù)習(xí)大全07-30
高二化學(xué)知識點總結(jié)01-14