男人天堂日韩,中文字幕18页,天天伊人网,成人性生交大片免费视频

初一上冊數(shù)學(xué)《有理數(shù)》教案優(yōu)秀

時間:2023-03-01 11:40:25 教案 我要投稿
  • 相關(guān)推薦

初一上冊數(shù)學(xué)《有理數(shù)》教案優(yōu)秀

  在教學(xué)工作者實際的教學(xué)活動中,編寫教案是必不可少的,教案是教材及大綱與課堂教學(xué)的紐帶和橋梁。那么應(yīng)當(dāng)如何寫教案呢?以下是小編收集整理的初一上冊數(shù)學(xué)《有理數(shù)》教案優(yōu)秀,供大家參考借鑒,希望可以幫助到有需要的朋友。

初一上冊數(shù)學(xué)《有理數(shù)》教案優(yōu)秀

初一上冊數(shù)學(xué)《有理數(shù)》教案優(yōu)秀1

  一、知識要點

  本章的主要內(nèi)容可以概括為有理數(shù)的概念與有理數(shù)的運算兩部分。有理數(shù)的概念可以利用數(shù)軸來認(rèn)識、理解,同時,利用數(shù)軸又可以把這些概念串在一起。有理數(shù)的運算是全章的重點。在具體運算時,要注意四個方面,一是運算法則,二是運算律,三是運算順序,四是近似計算。

  基礎(chǔ)知識:

  1、大于0的數(shù)叫做正數(shù)。

  2、在正數(shù)前面加上負(fù)號-的數(shù)叫做負(fù)數(shù)。

  3、0既不是正數(shù)也不是負(fù)數(shù)。

  4、有理數(shù)(rational number):正整數(shù)、負(fù)整數(shù)、0、正分?jǐn)?shù)、負(fù)分?jǐn)?shù)都可以寫成分?jǐn)?shù)的形式,這樣的數(shù)稱為有理數(shù)。

  5、數(shù)軸(number axis):通常,用一條直線上的點表示數(shù),這條直線叫做數(shù)軸。

  數(shù)軸滿足以下要求:

  (1)在直線上任取一個點表示數(shù)0,這個點叫做原點(origin);

  (2)通常規(guī)定直線上從原點向右(或上)為正方向,從原點向左(或下)為負(fù)方向;

  (3)選取適當(dāng)?shù)拈L度為單位長度。

  6、相反數(shù)(opposite number):絕對值相等,只有負(fù)號不同的兩個數(shù)叫做互為相反數(shù)。

  7、絕對值(absolute value)一般地,數(shù)軸上表示數(shù)a的點與原點的距離叫做數(shù)a的絕對值。記做|a|。

  由絕對值的定義可得:|a-b|表示數(shù)軸上a點到b點的距離。

  一個正數(shù)的絕對值是它本身;一個負(fù)數(shù)的絕對值是它的相反數(shù);0的絕對值是0.

  正數(shù)大于0,0大于負(fù)數(shù),正數(shù)大于負(fù)數(shù);兩個負(fù)數(shù),絕對值大的反而小。

  8、有理數(shù)加法法則

 。1)同號兩數(shù)相加,取相同的符號,并把絕對值相加。

  (2)絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值。互為相反數(shù)的兩個數(shù)相加得0.

 。3)一個數(shù)同0相加,仍得這個數(shù)。

  加法交換律:有理數(shù)的加法中,兩個數(shù)相加,交換加數(shù)的位置,和不變。表達(dá)式:a+b=b+a。

  加法結(jié)合律:有理數(shù)的加法中,三個數(shù)相加,先把前兩個數(shù)相加或者先把后兩個數(shù)相加,和不變。

  表達(dá)式:(a+b)+c=a+(b+c)

  9、有理數(shù)減法法則

  減去一個數(shù),等于加這個數(shù)的相反數(shù)。表達(dá)式:a-b=a+(-b)

  10、有理數(shù)乘法法則

  兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘。

  任何數(shù)同0相乘,都得0.

  乘法交換律:一般地,有理數(shù)乘法中,兩個數(shù)相乘,交換因數(shù)的位置,積相等。表達(dá)式:ab=ba

  乘法結(jié)合律:三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等。表達(dá)式:(ab)c=a(bc)

  乘法分配律:一般地,一個數(shù)同兩個的和相乘,等于把這個數(shù)分別同這兩個數(shù)相乘,再把積相加。

  表達(dá)式:a(b+c)=ab+ac

  11、倒數(shù)

  1除以一個數(shù)(零除外)的商,叫做這個數(shù)的倒數(shù)。如果兩個數(shù)互為倒數(shù),那么這兩個數(shù)的積等于1。

  12、有理數(shù)除法法則:兩數(shù)相除,同號得負(fù),異號得正,并把絕對值相除。0除以任何一個不等于0的數(shù),都得0.

  13、有理數(shù)的乘方:求n個相同因數(shù)的積的運算,叫做乘方,乘方的結(jié)果叫做冪(power)。an中,a叫做底數(shù)(base number),n叫做指數(shù)(exponent)。

  根據(jù)有理數(shù)的乘法法則可以得出:負(fù)數(shù)的奇次冪是負(fù)數(shù),負(fù)數(shù)的偶次冪是正數(shù)。正數(shù)的任何次冪都是正數(shù),0的任何正整數(shù)次冪都是0。

  14、有理數(shù)的混合運算順序

 。1)先乘方,再乘除,最后加減的順序進(jìn)行;

 。2)同級運算,從左到右進(jìn)行;

 。3)如有括號,先做括號內(nèi)的運算,按小括號、中括號、大括號依次進(jìn)行。

  15、科學(xué)技術(shù)法:把一個大于10的數(shù)表示成a﹡10n的形式(其中a是整數(shù)數(shù)位只有一位的數(shù)(即0

  16、近似數(shù)(approximate number):

  17、有理數(shù)可以寫成m/n(m、n是整數(shù),n0)的形式。另一方面,形如m/n(m、n是整數(shù),n0)的數(shù)都是有理數(shù)。所以有理數(shù)可以用m/n(m、n是整數(shù),n0)表示。

  拓展知識:

  1、數(shù)集:把一些數(shù)放在一起,就組成一個數(shù)的集合,簡稱數(shù)集。

  一、(1)所有有理數(shù)組成的數(shù)集叫做有理數(shù)集;

  二、(2)所有的整數(shù)組成的數(shù)集叫做整數(shù)集。

  2、任何有理數(shù)都可以用數(shù)軸上的一個點來表示,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想。

  3、根據(jù)絕對值的幾何意義知道:|a|0,即對任何有理數(shù)a,它的絕對值是非負(fù)數(shù)。

  4、比較兩個有理數(shù)大小的方法有:

  (1)根據(jù)有理數(shù)在數(shù)軸上對應(yīng)的點的位置直接比較;

  (2)根據(jù)規(guī)定進(jìn)行比較:兩個正數(shù);正數(shù)與零;負(fù)數(shù)與零;正數(shù)與負(fù)數(shù);兩個負(fù)數(shù),體現(xiàn)了分類討論的數(shù)學(xué)思想;

  (3)做差法:a-ba

  (4)做商法:a/b1,bab.

  二、基礎(chǔ)訓(xùn)練

  選擇題

  1、下列運算中正確的是( )。

  A. a2a3=a6 B. =2 C. |(3--3 D. 32=-9

  2、下列各判斷句中錯誤的是( )

  A.數(shù)軸上原點的位置可以任意選定

  B.數(shù)軸上與原點的距離等于個單位的點有兩個

  C.與原點距離等于-2的點應(yīng)當(dāng)用原點左邊第2個單位的點來表示

  D.數(shù)軸上無論怎樣靠近的兩個表示有理數(shù)的點之間,一定還存在著表示有理數(shù)的點。

  3、 、是有理數(shù),若且,下列說法正確的是( )

  A.一定是正數(shù)B.一定是負(fù)數(shù)C.一定是正數(shù)D.一定是負(fù)數(shù)

  4、兩數(shù)相加,如果比每個加數(shù)都小,那么這兩個數(shù)是

  A.同為正數(shù)B.同為負(fù)數(shù)C.一個正數(shù),一個負(fù)數(shù)D.0和一個負(fù)數(shù)

  5、兩個非零有理數(shù)的和為零,則它們的商是()

  A.0 B.-1 C.+1 D.不能確定

  6、一個數(shù)和它的倒數(shù)相等,則這個數(shù)是( )

  A.1 B.-1 C. 1 D. 1和0

  7、如果|a|=-a,下列成立的是( )

  A.a0 B.a0 C.a0或a=0 D.a0或a=0

  8、(-2)11+(-2)10的值是( )

  A.-2 B.(-2)21 C.0 D.-210

  9、已知4個礦泉水空瓶可以換礦泉水一瓶,現(xiàn)有16個礦泉水空瓶,若不交錢,最多可以喝礦泉水( )

  A. 3瓶B. 4瓶C. 5瓶D. 6瓶

  10、在下列說法中,正確的個數(shù)是( )

 、湃魏我粋有理數(shù)都可以用數(shù)軸上的一個點來表示

 、茢(shù)軸上的每一個點都表示一個有理數(shù)

  ⑶任何有理數(shù)的絕對值都不可能是負(fù)數(shù)

 、让總有理數(shù)都有相反數(shù)

  A、1 B、2 C、3 D、4

  11、如果一個數(shù)的相反數(shù)比它本身大,那么這個數(shù)為( )

  A、正數(shù)B、負(fù)數(shù)

  C、整數(shù)D、不等于零的有理數(shù)

  12、下列說法正確的是( )

  A、幾個有理數(shù)相乘,當(dāng)因數(shù)有奇數(shù)個時,積為負(fù);

  B、幾個有理數(shù)相乘,當(dāng)正因數(shù)有奇數(shù)個時,積為負(fù);

  C、幾個有理數(shù)相乘,當(dāng)負(fù)因數(shù)有奇數(shù)個時,積為負(fù);

  D、幾個有理數(shù)相乘,當(dāng)積為負(fù)數(shù)時,負(fù)因數(shù)有奇數(shù)個;

  填空題

  1、在有理數(shù)-7,,-(-1.43),,0,,-1.7321中,是整數(shù)的有_____________是負(fù)分?jǐn)?shù)的有_______________。

  2、一般地,設(shè)a是一個正數(shù),則數(shù)軸上表示數(shù)a的點在原點的____邊,與原點的距離是____個單位長度;表示數(shù)-a的點在原點的____邊,與原點的距離是____個單位長度。

  3、如果一個數(shù)是6位整數(shù),用科學(xué)記數(shù)法表示它時,10的指數(shù)是_____;用科學(xué)記數(shù)法表示一個n位整數(shù),其中10的指數(shù)是___________.

  4、實數(shù)a、b、c在數(shù)軸上的位置如圖:化簡|a-b|+|b-c|-|c-a|。

  5、絕對值大于1而小于4的整數(shù)有_____________________________________,其和為___________.

  6、若a、b互為相反數(shù),c、d互為倒數(shù),則(a+b)3-3(cd)4=________.

  7、1-2+3-4+5-6++20xx-2002的值是____________.

  8、若(a-1)2+|b+2|=0,那么a+b=_____________________.

  9、平方等于它本身的有理數(shù)是___________,立方等于它本身的有理數(shù)是__ ___________.

  10、用四舍五入法把3.1415926精確到千分位是,用科學(xué)記數(shù)法表示302400,應(yīng)記為,近似數(shù)3.0精確到位。

  11、正數(shù)a的絕對值為__ ________;負(fù)數(shù)b的絕對值為________

  12、甲乙兩數(shù)的和為-23.4,乙數(shù)為-8.1,甲比乙大

  13、在數(shù)軸上表示兩個數(shù),的數(shù)總比的.大。(用左邊右邊填空)

  14、數(shù)軸上原點右邊4.8厘米處的點表示的有理數(shù)是32,那么,數(shù)軸左邊18厘米處的點表示的有理數(shù)是____________。

  三、強(qiáng)化訓(xùn)練

  1、計算:1+2+3++20xx+2003=__________.

  2、已知:若(a,b均為整數(shù))則a+b=

  3、觀察下列等式,你會發(fā)現(xiàn)什么規(guī)律:……請將你發(fā)現(xiàn)的規(guī)律用只含一個字母n(n為正整數(shù))的等式表示出來

  4、已知,則___________

  5、已知是整數(shù),是一個偶數(shù),則a是(奇,偶)

  6、已知1+2+3++31+32+33==1733,求1-3+2-6+3-9+4-12++31-93+32-96+33-99的值。

  7、在數(shù)1,2,3,,50前添+或-,并求它們的和,所得結(jié)果的最小非負(fù)數(shù)是多少?請列出算式解答。

  8、如果有理數(shù)a,b滿足∣ab-2∣+(1-b)2=0,試求++的值。

  9、如果規(guī)定符號*的意義是a*b=ab/(a+b),求2*(-3)*4的值。

  10、已知|x+1|=4,(y+2)2=4,求x+y的值。

  11、投資股票是一種很重要的投資方式,但股市的風(fēng)云變化又牽動了股民的心。

  例:某股民在上星期五買進(jìn)某種股票500股,每股60元,下表是本周每日該股票的漲跌情況(單位:元):

  星期一二三四五

  每股漲跌+4 +4.5 -1 -2.5 -6

  第1章(1)星期三收盤時,每股是多少元?

  第2章(2)本周內(nèi)最高價是每股多少元?最低價是多少元?

  第3章(3)已知買進(jìn)股票是付了1.5的手續(xù)費,賣出時需付成交額1.5的手續(xù)費和1的交易費,如果在星期五收盤前將全部股票一次性地賣出,他的收益情況如何?

  第4章(4)以買進(jìn)的股價為0點,用折線統(tǒng)計圖表示本周該股的股價情況。

  四、競賽訓(xùn)練

  1、最小的非負(fù)有理數(shù)與最大的非正有理數(shù)的和是

  2、乘積=

  3、比較大。篈=,B=,則A B

  4、滿足不等式104105的整數(shù)A的個數(shù)是x104+1,則x的值是( )

  A、9B、8C、7D、6

  5、最小的一位數(shù)的質(zhì)數(shù)與最小的兩位數(shù)的質(zhì)數(shù)的積是()

  A、11 B、22 C、26 D、33

  6、比較

  7、計算:

  8、計算:(2+1)(22+1)(24+1)(28+1)(2 16+1)(232+1)

  9、計算:

  10、計算

  11、計算1+3+5+7++1997+1999的值

  12、計算1+5+52+53++599+5100的值。

  13、有理數(shù)均不為0,且設(shè)試求代數(shù)式20xx之值。

  14、已知a、b、c為實數(shù),且,求的值。

  15、已知:。

  16、解方程組。

  17、若a、b、c為整數(shù),且,求的值。

初一上冊數(shù)學(xué)《有理數(shù)》教案優(yōu)秀2

  教學(xué)目標(biāo):

  1、理解有理數(shù)的概念,懂得有理數(shù)的兩種分類,及對一個有理數(shù)進(jìn)行分類判別;

  2、在數(shù)的分類中,應(yīng)加強(qiáng)對負(fù)數(shù)的理解及對零在數(shù)分類中的特殊意義的理解。

  重點:在引進(jìn)負(fù)數(shù)后,能對已有的各種數(shù)進(jìn)行概括,理解有理數(shù)的意義,及有理數(shù)的兩種不同分類的重要意義。

  難點:在對有理數(shù)的認(rèn)識上,應(yīng)加強(qiáng)對負(fù)數(shù)及零的重視,明確兩者在有理數(shù)集的地位與作用。

  教學(xué)過程:

  一、知識導(dǎo)向:

  通過上節(jié)課對“負(fù)數(shù)“概念的引入,通過對數(shù)范圍的補(bǔ)充及擴(kuò)大,進(jìn)一步引入了有理數(shù)的概念,并對擴(kuò)大后的數(shù)的范圍進(jìn)行重新分類。

  二、新課拆析:

  1、引例:(1)請學(xué)生說出負(fù)數(shù)的特征,并指出實例說明。

 。2)以第(1)題中,學(xué)生所回答的數(shù)進(jìn)一步分析,不同數(shù)的不同特點。

  2、通過對“負(fù)數(shù)”的引入,從我們所接觸的數(shù)可發(fā)現(xiàn)有這樣幾類:

  正整數(shù):如1,2,34,…

  零:0

  負(fù)整數(shù):如-1,-3,-5,…

  正分?jǐn)?shù):如…

  負(fù)分?jǐn)?shù):如-0.3,…

  由此我們有:

  概括:正整數(shù)、零和負(fù)整數(shù)統(tǒng)稱為整數(shù);

  正分?jǐn)?shù)、負(fù)分?jǐn)?shù)統(tǒng)稱為分?jǐn)?shù);

  整數(shù)和分?jǐn)?shù)統(tǒng)稱為有理數(shù)。

  然后根據(jù)我們的.概括,我們可以對有理數(shù)進(jìn)行如下的分類

  分類一:分類二:

  正整數(shù)正整數(shù)

  整數(shù)零正有理數(shù)正分?jǐn)?shù)

  有理數(shù)負(fù)整數(shù)有理數(shù)零

  分?jǐn)?shù)正分?jǐn)?shù)負(fù)有理數(shù)負(fù)整數(shù)

  負(fù)分?jǐn)?shù)負(fù)分?jǐn)?shù)

  3、有關(guān)集合的簡單知識:

  概括:把一些數(shù)放在一起,就組成一個數(shù)的集合,簡稱為數(shù)集;

  所有的有理數(shù)組成的數(shù)集叫做有理數(shù)集;

  所有的整數(shù)組成的數(shù)集叫做整數(shù)集;……

  例:把下列各數(shù)填入表示它所在的數(shù)值的圈里:

  -18,3.1416,0,20__,-0.142857,95%

  正整數(shù)負(fù)整數(shù)

  整數(shù)集有理數(shù)集

  三、鞏固訓(xùn)練:P20,練習(xí):1,2,3

  四、知識小結(jié):

  從有理數(shù)的分類入手,就著重于各類數(shù)的特點,特別是正,負(fù)及零的處理。

  五、作業(yè):

  P20-21習(xí)題2.1:2,3,4

初一上冊數(shù)學(xué)《有理數(shù)》教案優(yōu)秀3

  教學(xué)目標(biāo)

  1.了解代數(shù)和的概念,理解有理數(shù)加減法可以互相轉(zhuǎn)化,會進(jìn)行加減混合運算;

  2.通過學(xué)習(xí)一切加減法運算,都可以統(tǒng)一成加法運算,繼續(xù)滲透數(shù)學(xué)的轉(zhuǎn)化思想;

  3.通過加法運算練習(xí),培養(yǎng)學(xué)生的運算能力,數(shù)學(xué)教案-有理數(shù)的加減混合運算。

  教學(xué)建議

 。ㄒ唬┲攸c、難點分析

  本節(jié)課的重點是依據(jù)運算法則和運算律準(zhǔn)確迅速地進(jìn)行有理數(shù)的加減混合運算,難點是省略加號與括號的代數(shù)和的`計算.

  由于減法運算可以轉(zhuǎn)化為加法運算,所以加減混合運算實際上就是有理數(shù)的加法運算。了解運算符號和性質(zhì)符號之間的關(guān)系,把任何一個含有有理數(shù)加、減混合運算的算式都看成和式,這是因為有理數(shù)加、減混合算式都看成和式,就可靈活運用加法運算律,簡化計算.

 。ǘ┲R結(jié)構(gòu)

  (三)教法建議

  1.通過習(xí)題,復(fù)習(xí)、鞏固有理數(shù)的加、減運算以及加減混合運算的法則與技能,講課前教師要認(rèn)真總結(jié)、分析學(xué)生在進(jìn)行有理數(shù)加、減混合運算時常犯的錯誤,以便在這節(jié)課分析習(xí)題時,有意識地幫助學(xué)生改正.

  2.關(guān)于“去括號法則”,只要學(xué)生了解,并不要求追究所以然.

  3.任意含加法、減法的算式,都可把運算符號理解為數(shù)的性質(zhì)符號,看成省略加號的和式。這時,稱這個和式為代數(shù)和。

  4、先把正數(shù)與負(fù)數(shù)分別相加,可以使運算簡便。

  5、在交換加數(shù)的位置時,要連同前面的符號一起交換。

初一上冊數(shù)學(xué)《有理數(shù)》教案優(yōu)秀4

  一、知識與能力

  理解有理數(shù)的概念,懂得有理數(shù)的兩種分類方法:會判別一個有理數(shù)是整數(shù)還是分?jǐn)?shù),是正數(shù)、負(fù)數(shù)還是零。

  二、過程與方法

  經(jīng)歷對有理數(shù)進(jìn)行分類的探索過程,初步感受分類討論的思想。

  三、情感態(tài)度與價值觀

  通過對有理數(shù)的.學(xué)習(xí),體會到數(shù)學(xué)與現(xiàn)實世界的緊密聯(lián)系。

  教學(xué)重難點及突破

  在引入了負(fù)數(shù)后,本課對所學(xué)過的數(shù)按照一定的標(biāo)準(zhǔn)進(jìn)行分類,提出了有理數(shù)的概念。分類是數(shù)學(xué)中解決問題的常用手段,通過本節(jié)課的學(xué)習(xí),使學(xué)生了解分類的思想并進(jìn)行簡單的分類是數(shù)學(xué)能力的體現(xiàn),教師在教學(xué)中應(yīng)引起足夠的重視。關(guān)于分類標(biāo)準(zhǔn)與分類結(jié)果的關(guān)系,分類標(biāo)準(zhǔn)的確定可向?qū)W生作適當(dāng)?shù)臐B透,集合的概念比較抽象,學(xué)生真正接受需要很長的過程,本課不宜過多展開。

  教學(xué)準(zhǔn)備

  用電腦制作動畫體現(xiàn)有理數(shù)的分類過程。

  教學(xué)過程

  四、課堂引入

  1、我們把小學(xué)里學(xué)過的數(shù)歸納為整數(shù)與分?jǐn)?shù),引進(jìn)了負(fù)數(shù)以后,我們學(xué)過的數(shù)有哪些?將如何歸類?

  2、舉例說明現(xiàn)實中具有相反意義的量。

  3、如果由A地向南走3千米用3千米表示,那么-5千米表示什么意義?

  4、舉兩個例子說明+5與-5的區(qū)別。

【初一上冊數(shù)學(xué)《有理數(shù)》教案優(yōu)秀】相關(guān)文章:

初一上冊數(shù)學(xué)《有理數(shù)》教案12-06

初一上冊數(shù)學(xué)《 有理數(shù)》課件07-09

數(shù)學(xué)有理數(shù)的除法優(yōu)秀教案06-20

初一數(shù)學(xué)有理數(shù)的乘法優(yōu)秀教案及教學(xué)反思06-16

有理數(shù)的減法北師大版數(shù)學(xué)初一上冊教案10-19

有理數(shù)加法北師大版數(shù)學(xué)初一上冊教案09-30

有理數(shù)的混合運算北師大版數(shù)學(xué)初一上冊教案10-18

數(shù)學(xué)有理數(shù)的乘法教案03-07

有理數(shù)的數(shù)學(xué)教案10-12