數(shù)學初中教學設計
作為一位兢兢業(yè)業(yè)的人民教師,總不可避免地需要編寫教學設計,編寫教學設計有利于我們科學、合理地支配課堂時間。怎樣寫教學設計才更能起到其作用呢?下面是小編幫大家整理的數(shù)學初中教學設計,歡迎大家借鑒與參考,希望對大家有所幫助。
數(shù)學初中教學設計1
一、學情分析
學生通過上節(jié)課的學習,已經掌握了如何用沒有刻度的直尺和圓規(guī)作一條線段等于已知線段。同時在學習中學生已經初步理解了作圖的步驟,具備了基本的作圖能力,并能簡單的表達作圖過程,為本節(jié)課的學習奠定了良好的知識基礎。同時在以前的數(shù)學學習中學生已經經歷了很多合作學習的過程,具有了一定的合作學習的經驗,具備了一定的`合作與交流的能力。
二、教學目標分析
教科書基于學生在上節(jié)課學習了如何作一條線段等于已知線段,并積累了一定的活動經驗,提出本節(jié)課的主要教學任務是:會用尺規(guī)作一個角等于已知角,并了解它在尺規(guī)作圖中的簡單應用。為此,本節(jié)課的教學目標是:
1、能按照作圖語言來完成作圖動作,能用尺規(guī)作一個角等于已知角,并了解它在尺規(guī)作圖中的簡單應用。
2、能利用尺規(guī)作角的和、差、倍。
3、能夠通過尺規(guī)設計并繪制簡單的圖案。
4、在尺規(guī)作圖過程當中,積累數(shù)學活動經驗,培養(yǎng)動手能力和邏輯分析能力。
三、教學設計分析
1、回顧與思考
活動內容:
(1)怎樣利用沒有刻度的直尺和圓規(guī)作一條線段等于已知線段?
(2)練習:已知線段a,b,c,作一條線段m,使得m=a+b—c
活動目的:
通過回顧上節(jié)課學習的用尺規(guī)作線段,既達到了復習鞏固,反饋落實的目的,同時熟練尺規(guī)的使用,積累活動經驗,也為后面學習用尺規(guī)作角起到了鋪墊的作用。
2、情境引入,探索發(fā)現(xiàn)
活動內容:如圖2
數(shù)學初中教學設計2
一、學情分析
八年級學生具有強烈的好勝心和求知欲,抽象思維趨于成熟,形象直觀思維能力較強,具有一定的獨立思考、實踐操作、合作交流、歸納概括等能力,能進行簡單的推理
二、教材分析
這節(jié)課是人教版八年級第十八章第一節(jié)的內容,教學內容是勾股定理公式的推導、證明及其簡單的應用。本節(jié)課是在學生已經掌握了直角三角形有關性質的基礎上進行學習的,勾股定理是幾何中最重要的定理之一,它揭示的是直角三角形中三條邊之間的數(shù)量關系,將數(shù)與形密切聯(lián)系起來,為以后學習四邊形、圓、解直角三角形等數(shù)學知識奠定了基礎。它有著豐富的歷史背景,在數(shù)學的發(fā)展中起著重要的作用,在現(xiàn)實生活中也有著廣泛的應用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。
三、教學目標設計
知識與技能
探索勾股定理的內容并證明,能夠運用勾股定理進行簡單計算和運用
過程與方法
。1)通過觀察分析,大膽猜想,探索勾股定理,培養(yǎng)學生動手操作、合作交流、邏輯推理的'能力。
。2)在探索勾股定理的過程中,讓學生經歷“觀察—猜想—歸納—驗證”的數(shù)學過程,并體會數(shù)形結合和從特殊到一般的思想方法。
情感態(tài)度與價值
。1)在探索勾股定理的過程中,培養(yǎng)學生的合作交流意識和探索精神,增進數(shù)學學習的信心,感受數(shù)學之美,探究之趣。
。2)利用遠程教育資源介紹中國古代勾股方面的成就,激發(fā)學生熱愛祖國和熱愛祖國悠久文化的思想感情,培養(yǎng)學生的民族自豪感和鉆研精神。
四、教學重點難點
教學重點
探索和證明勾股定理 ·教學難點
用拼圖的方法證明勾股定理
五、教學方法
(學法)“引導探索法”
。ㄗ灾魈骄,合作學習,采用小組合作的方法。
六、教具準備
課件、三角板
七、教學過程設計
教學環(huán)節(jié)1
教學過程:創(chuàng)設情境探索新知 教師活動:出示第24屆國際數(shù)學家大會的會徽的圖案向學生提問
。1) 你見過這個圖案嗎?
。2) 你聽說過“勾股定理”嗎?
學生活動:學生思考回答
設計意圖:目的在于從現(xiàn)實生活中提出“趙爽弦圖”,進一步激發(fā)學生積極主動地投入到探索活動中,同時為探索勾股定理提供背景材料。
教學環(huán)節(jié)2 教學過程:實驗操作獲取新知歸納驗證完善新知
教師活動:出示課件,引導學生探索
學生活動:猜想實驗合作交流畫圖測量拼圖驗證
設計意圖:滲透從特殊到一般的數(shù)學思想。為學生提供參與數(shù)學活動的時間和空間,發(fā)揮學生的主體作用;讓學生自己動手拼出趙爽弦圖,培養(yǎng)他們學習數(shù)學的成就感。通過拼圖活動,使學生對定理的理解更加深刻,體會數(shù)學中的數(shù)形結合思想,調動學生思維的積極性,激發(fā)學生探求新知的欲望。給學生充分的時間與空間討論、交流,鼓勵學生敢于發(fā)表自己的見解,感受合作的重要性。
教學環(huán)節(jié)3 教學過程:解決問題應用新知
教師活動:出示例題和練習
學生活動:交流合作,解決問題
設計意圖:通過運用勾股定理對實際問題的解釋和應用,培養(yǎng)學生從身邊的事物中抽象出幾何模型的能力,使學生更加深刻地認識數(shù)學的本質:數(shù)學來源于生活,并能服務于生活,順利解決如何將實際問題轉化為求直角三角形邊長的問題,培養(yǎng)學生的數(shù)學應用意識。
教學環(huán)節(jié)4 教學內容:課堂小結鞏固新知布置作業(yè)
教師活動:引導學生小結
學生活動:討論交流、自由發(fā)言
設計意圖:既引導學生從面積的角度理解勾股定理,又從能力、情感、態(tài)度等方面關注學生對課堂整體感受,在輕松愉快的氣氛中體會收獲的喜悅。
通過布置課外作業(yè),給學生留有繼續(xù)學習的空間和興趣,及時獲知學生對本節(jié)課知識的掌握情況,適當?shù)恼{整教學進度和教學方法,并對學習有困難的學生給與指導。
八、板書設計
勾股定理:如果直角三角形的兩直角邊分別為a和b,斜邊為c,那么 a2+b2=c2。
九、習題拓展
如圖,將長為10米的梯子AC斜靠在墻上,BC長為6米。
(1)求梯子上端A到墻的底端B的距離AB。
。2)若梯子下部C向后移動2米到C1點,那么梯子上部A向下移動了多少米?
十、作業(yè)設計
1。收集有關勾股定理的證明方法, 下節(jié)課展示、交流。
2。做一棵奇妙的勾股樹(選做)
數(shù)學初中教學設計3
[教學目標]
1.會說出怎樣的兩個圖形是全等形,并會用符號語言表示兩個三角形全等。
2.知道全等三角形的有關概念,會在全等三角形中正確地找出對應頂點、對應邊、對應角。
3.會說出全等三角形的對應邊、對應角相等的性質。
此外,通過把兩個重合的三角形變換其中一個的位置,使它們呈現(xiàn)各種不同位置的活動,讓學生從中了解并體會圖形變換的思想,逐步培養(yǎng)學生
動態(tài)的研究幾何圖形的意思。
[引導性材料]
我們身邊經?吹"一模一樣"的圖形,比如同一版面的記念郵票,同一版面的人民幣、用兩張紙疊在一起剪出的兩張窗花等,請大家舉出這類圖形的例子。
說明:讓學生在舉出實際例子以及對所舉例子的辨析中獲得對全等圖形盡可能多的精確的感知。
[教學設計]
問題1:幾何中,我們把上述所例舉的"一模一樣"的圖形叫做"全等形",以下是描述全等形的三種不同的說法,你認為哪種說法是恰當?shù)?(l)形狀相同的兩個圖形叫全等形。
(2)大小相等的兩個圖形叫全等形。
(3)能夠完全重合的兩個圖形叫全等形。
(學生閱讀課本第21頁,全等三角形的有關概念、全等三解形的表示方法。)操作和觀察(學生用兩塊透明塑料片疊合在一起,任意剪兩個全等的三角形,教師制作兩個全等三角形的復合投影片演示。)(1)將重合的兩塊全等三角形塑料片中的一個沿著一邊所在的直線移動,觀察移動過程中這兩個三角形有哪幾種不同位置?畫出這兩個全等三角形不同位置的組合圖形。
(2)圖是上述移動過程中的兩個全等三角形組合的圖形,說出它們的對應頂點、對應邊、對應角。
(3)將重合的兩塊三角形塑料片,以一邊所在的直線為軸,把其中一個三角形翻折180,請你畫出翻折后的兩個全等三角形組合的圖形。
(4)將兩塊全等的三角形塑料片拼合成如圖中的圖形,并指出它們的對應頂點、對應邊、對應角。
[小結]
1.識別全等三角形的對應邊、對應角的關鍵是正確識別它們的對應頂點。
2.用全等三變換的方法觀察圖形,有助于正確、迅速的從復雜圖形中識別出全等三角形。
[作業(yè)]課本組第2、3、4題。
初中數(shù)學實踐課教案設計三一、教材分析本節(jié)課是人民教育出版社義務教育課程標準實驗教科書(六三學制)七年級下冊第七章第三節(jié)多邊形內角和。
二、教學目標1、知識目標:了解多邊形內角和公式。
2、數(shù)學思考:通過把多邊形轉化成三角形體會轉化思想在幾何中的運用,同時讓學生體會從特殊到一般的認識問題的方法。
3、解決問題:通過探索多邊形內角和公式,嘗試從不同角度尋求解決問題的方法并能有效地解決問題。
4、情感態(tài)度目標:通過猜想、推理活動感受數(shù)學活動充滿著探索以及
數(shù)學結論的確定性,提高學生學習熱情。
三、教學重、難點重點:探索多邊形內角和。
難點:探索多邊形內角和時,如何把多邊形轉化成三角形。
四、教學方法:引導發(fā)現(xiàn)法、討論法五、教具、學具教具:多媒體課件學具:三角板、量角器六、教學媒體:大屏幕、實物投影七、教學過程:
(一)創(chuàng)設情境,設疑激思師:大家都知道三角形的內角和是180o,那么四邊形的內角和,你知道嗎?活動一:探究四邊形內角和。
在獨立探索的基礎上,學生分組交流與研討,并匯總解決問題的方法。
方法一:用量角器量出四個角的度數(shù),然后把四個角加起來,發(fā)現(xiàn)內角和是360o。
方法二:把兩個三角形紙板拼在一起構成四邊形,發(fā)現(xiàn)兩個三角形內角和相加是360o。
接下來,教師在方法二的基礎上引導學生利用作輔助線的方法,連結四邊形的對角線,把一個四邊形轉化成兩個三角形。
師:你知道五邊形的內角和嗎?六邊形呢?十邊形呢?你是怎樣得到的?
活動二:探究五邊形、六邊形、十邊形的內角和。
學生先獨立思考每個問題再分組討論。
關注:(1)學生能否類比四邊形的'方式解決問題得出正確的結論。
(2)學生能否采用不同的方法。
學生分組討論后進行交流(五邊形的內角和)方法1:把五邊形分成三個三角形,3個180o的和是540o。
方法2:從五邊形內部一點出發(fā),把五邊形分成五個三角形,然后用5個180o的和減去一個周角360o。結果得540o。
方法3:從五邊形一邊上任意一點出發(fā)把五邊形分成四個三角形,然后用4個180o的和減去一個平角180o,結果得540o。
方法4:把五邊形分成一個三角形和一個四邊形,然后用180o加上360o,結果得540o。
師:你真聰明!做到了學以致用。
交流后,學生運用幾何畫板演示并驗證得到的方法。
得到五邊形的內角和之后,同學們又認真地討論起六邊形、十邊形的內角和。類比四邊形、五邊形的討論方法最終得出,六邊形內角和是720o,十邊形內角和是1440o。
(二)引申思考,培養(yǎng)創(chuàng)新師:通過前面的討論,你能知道多邊形內角和嗎?活動三:探究任意多邊形的內角和公式。
思考:(1)多邊形內角和與三角形內角和的關系?(2)多邊形的邊數(shù)與內角和的關系?
(3)從多邊形一個頂點引的對角線分三角形的個數(shù)與多邊形邊數(shù)的關系?學生結合思考題進行討論,并把討論后的結果進行交流。
發(fā)現(xiàn)1:四邊形內角和是2個180o的和,五邊形內角和是3個180o的和,六邊形內角和是4個180o的和,十邊形內角和是8個180o的和。
發(fā)現(xiàn)2:多邊形的邊數(shù)增加1,內角和增加180o。
發(fā)現(xiàn)3:一個n邊形從一個頂點引出的對角線分三角形的個數(shù)與邊數(shù)n存在(n-2)的關系。
得出結論:多邊形內角和公式:(n-2)180。
(三)實際應用,優(yōu)勢互補
1、口答:
(1)七邊形內角和xx
(2)九邊形內角和xx
(3)十邊形內角和xx
2、搶答:
(1)一個多邊形的內角和等于1260o,它是幾邊形?
(2)一個多邊形的內角和是1440o,且每個內角都相等,則每個內角的度數(shù)是xx。
3、討論回答:一個多邊形的內角和比四邊形的內角和多540o,并且這個多邊形的各個內角都相等,這個多邊形每個內角等于多少度?(四)概括存儲學生自己歸納總結:
1、多邊形內角和公式
2、運用轉化思想解決數(shù)學問題
3、用數(shù)形結合的思想解決問題(五)作業(yè):練習冊第93頁1、2、3
八、教學反思:
1、教的轉變本節(jié)課教師的角色從知識的傳授者轉變?yōu)閷W生學習的組織者、引導者、合作者與共同研究者,在引導學生畫圖、測量發(fā)現(xiàn)結論后,利用幾何畫板直觀地展示,激發(fā)學生自覺探究數(shù)學問題,體驗發(fā)現(xiàn)的樂趣。
2、學的轉變學生的角色從學會轉變?yōu)闀䦟W。本節(jié)課學生不是停留在學會課本知識層面,而是站在研究者的角度深入其境。
3、課堂氛圍的轉變整節(jié)課以"流暢、開放、合作、隱導"為基本特征,教師對學生的思維減少干預,教學過程呈現(xiàn)一種比較流暢的特征。整節(jié)課學生與學生,學生與教師之間以"對話"、"討論"為出發(fā)點,以互助合作為手段,以解決問題為目的,讓學生在一個比較寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價值。
數(shù)學初中教學設計4
課題:12.3等腰三角形(第一課時)
教學內容:新人教版八年級上冊十二章第三節(jié)等腰三角形的第一課時
任課教師:東灣中學李曉偉
設計理念:
教學的實質是以教材中提供的素材或實際生活中的一些問題為載體,通過一系列探究互動過程,滲透分類討論、數(shù)形結合和方程的思想方法,達到學生知識的構建、能力的培養(yǎng)、情感的陶冶、意識的創(chuàng)新。
㈠教材的地位和作用分析
等腰三角形是新人教版八年級上冊十二章第三節(jié)等腰三角形的第一課時的內容。本節(jié)課是在前面學習了三角形的有關概念及性質、軸對稱變換、全等三角形、垂直平分線和尺規(guī)作圖的基礎上,研究等腰三角形的定義及其重要性質,它既是前面所學知識的延伸,也是后面直角三角形、等邊三角形的知識的重要儲備,我們常常利用它證明角相等、線段相等、兩直線垂直,因此本節(jié)課具有承上啟下的重要作用。
另外,本堂課通過“活動探究”、“觀察—猜想—證明”等途徑,進一步培養(yǎng)學生的動手能力、觀察能力、分析能力和邏輯推理能力,因此,本堂課無論在知識上,還是在對學生能力的培養(yǎng)及情感教育等方面都有著十分重要的作用。
㈡教學內容的分析
本堂課是等腰三角形的第一堂課,在認識等腰三角形的基礎上著重介紹“等腰三角形的性質”。在教學設計的過程中,通過展示我國今年舉辦的精彩絕倫的盛會—上海世博會圖片中的等腰三角形,結合云南豐富的文化資源,讓學生感知生活中處處有數(shù)學,感受圖形的和諧美、對稱美;通過學生感興趣的數(shù)學情景引入等腰三角形定義,提高學生的學習樂趣;讓學生通過動手剪等腰三角形、對折等腰三角形等活動,探究發(fā)現(xiàn)等腰三角形的性質,經歷知識的“再發(fā)現(xiàn)”過程。在探究活動的過程中發(fā)展創(chuàng)新思維能力,改變學生的學習方式。在發(fā)現(xiàn)等腰三角形的性質的基礎上,再經過推理證明等腰三角形的性質,使得推理證明成為學生觀察、實驗、探究得出結論的自然延伸,有機地將等腰三角形的認識與等腰三角形的性質的證明結合起來,從中發(fā)展學生推理能力。
在例題的選取上,注重聯(lián)系實際,激發(fā)學生學習興趣,讓學生主動用數(shù)學知識解決實際問題,同時滲透分類討論、數(shù)形結合和方程的數(shù)學思想方法,讓學生形成自我的數(shù)學思維和能力,發(fā)展學生應用數(shù)學的意識。
二、目標及其解析
㈠教學目標:
知識技能:
1.了解等腰三角形的概念,認識等腰三角形是軸對稱圖形;2.經歷探究等腰三角形性質的過程,理解等腰三角形的性質的證明;
3.掌握等腰三角形的性質,能運用等腰三角形的性質解決生活中簡單的實際問題。
數(shù)學思考:
1.經歷“觀察?實驗?猜想?論證”的過程,發(fā)展學生幾何直觀;
2.經歷證明等腰三角形的性質的過程,體會證明的必要性,發(fā)展合情推理能力和初步的演繹推理能力.
解決問題:
1.能運用等腰三角形的性質解決生活中的實際問題,發(fā)展數(shù)學的應用能力,獲得解決問題的經驗;
2.在小組活動和探究過程中,學會與人合作,體會與他人合作的重要性.
情感態(tài)度:
1.經歷“觀察?實驗?猜想?論證”的過程,體驗數(shù)學活動充滿著探究性和創(chuàng)造性,感受證明的必要性、證明過程的嚴謹性以及結論的確定性,并有克服困難和運用知識解決問題的成功體驗,建立學好數(shù)學的自信心;
2.經歷運用等腰三角形解決實際問題的過程,認識數(shù)學是解決實際問題和進行交流的重要工具,了解數(shù)學對促進社會進步和發(fā)展人類理性精神的作用;
3.在獨立思考的基礎上,通過小組合作,積極參與對數(shù)學問題的.討論,敢于發(fā)表自己的觀點,并尊重與理解他人的見解,在交流中獲益.
㈡教學重點:
等腰三角形的性質及應用。
㈢教學難點:
等腰三角形性質的證明。
㈣解析
本堂課是等腰三角形的第一堂課,所以對于本堂課的知識目標的定位,主要考慮如下:1.了解等腰三角形的概念,認識等腰三角形是軸對稱圖形,在本堂課中要達到如下要求:⑴理解等腰三角形的定義,知道等腰三角形的頂角、底角、腰和底邊;⑵知道等腰三角形是軸對稱圖形,它有一條對稱軸,即:頂角角平分線(底邊上的高或底邊上的中線)所在直線;
2.經歷探究等腰三角形性質的過程,掌握等腰三角形的性質的證明,在課堂中讓學生參與等腰三角形性質的探索,鼓勵學生用規(guī)范的數(shù)學言語表述證明過程,發(fā)展學生的數(shù)學語言能力和演繹推理能力,引導學生完成對等腰三角形的性質的證明;
3.會利用等腰三角形的性質解決簡單的實際問題,本堂課要達到以下要求:掌握等腰三角形的性質,會利用等腰三角形的性質解決簡單的實際問題。
三、問題診斷分析
1.在這堂課中,學生可能遇到的第一個困難是等腰三角形性質的發(fā)現(xiàn),特別是等腰三角形頂角的角平分線、底邊上的中線、底邊上的高相互重合這一性質,解決這一問題教師主要借助等腰三角形對稱性的研究,并引導學生理解“重合”這個詞的涵義。
2.這堂課學生可能遇到的第二個問題是證明等腰三角形的性質,這一問題主要有三個原因:第一學生剛接觸幾何證明不久,對數(shù)學語言表達方式還不熟悉;這一困難,并不是一堂課就能解決的,而要在以后學習中幫助學生增強數(shù)學語言運用的能力,能有條理地、清晰地闡述自己的觀點。在這堂課中我通過等腰三角形性質的證明,鼓勵學生運用規(guī)范的數(shù)學語言來表述,使學生數(shù)學語言能力和演繹推理能力得到提升;第二是添加輔助線的問題,這也是學生在證明中的一個難點。要解決這一問題,我借助等腰三角形是軸對稱圖形,通過研究等腰三角形的對稱軸,讓學生理解三種添加輔助線的方法,即作頂角角平分線、底邊上的高或底邊上的中線;第三是證明等腰三角形頂角角平分線、底邊上的中線、底邊上的高互相重合這一性質,要突破這一難點,我采用先證明等腰三角形兩底角相等這一性質,為學生搭一個臺階,更好地解決這個難點。
3.這堂課中學生可能遇到的第三個問題是對等腰三角形的性質的應用,特別是等腰三角形頂角的角平分線、底邊上的中線、底邊上的高相互重合這一性質的應用;所以我在設計
課堂練習時,注重數(shù)學知識與生活實際的聯(lián)系,提高學生數(shù)學學習的興趣,讓學生主動運用數(shù)學知識解決實際問題,并通過練習滲透分類討論、數(shù)形結合和方程的數(shù)學思想方法,讓學生形成自我的數(shù)學思維和能力,發(fā)展學生應用數(shù)學的意識。
四、教法、學法:
教法:
常言道:“教必有法,教無定法”。所以我針對八年級學生的心理特點和認知能力水平,大膽應用生活中的素材,并作了精心的安排,充分體現(xiàn)數(shù)學是源于實踐又運用于生活。因此,本堂課的教學中,我以學生為主體,讓學生積極思維,勇于探索,主動地獲取知識。同時,采用了現(xiàn)代化教學技術,激發(fā)學生的學習興趣,使整個課堂“活”起來,提高課堂效率。本堂課以生活中的一些例子為中心,讓學生親自嘗試,接受問題的挑戰(zhàn),充分展示自己的觀點和見解,給學生創(chuàng)設一個寬松愉快的學習氛圍,讓學生體驗成功的快樂,為終身學習和發(fā)展打打下堅實的基礎。
本堂課的設計是以課程標準和教材為依據(jù),采用發(fā)現(xiàn)式教學。遵循因材施教的原則,堅持以學生為主體,充分發(fā)揮學生的主觀能動性。教學過程中,注重學生探究能力的培養(yǎng)。還課堂給學生,讓學生去親身體驗知識的產生過程,拓展學生的創(chuàng)造性思維。同時,注意加強對學生的啟發(fā)和引導,鼓勵培養(yǎng)學生大膽猜想,小心求證的科學研究的思想。
學法:
學生都渴望與他人交流,合作探究可使學生感受到合作的重要和團隊的精神力量,增強集體意識,所以本課采用小組合作的學習方式,讓學生遵循“情景問題?實踐探究?證明結論?解決實際問題”的主線進行學習。讓學生從活動中去觀察、探索、歸納知識,沿著知識發(fā)生,發(fā)展的脈絡,學生經過自己親身的實踐活動,形成自己的經驗,產生對結論的感知,實現(xiàn)對知識意義的主動構建。這不僅讓學生對所學內容留下了深刻的印象,而且能力得到培養(yǎng),素質得以提高,充分地調動學生學習的熱情,讓學生學會自主學習,學會探索問題的方法。
五、教學支持條件分析
在本堂課中,準備利用長方形紙片、剪刀、圓規(guī)和直尺等工具,剪出等腰三角形,利用等腰三角形,通過對折、多媒體動畫演示等方法發(fā)現(xiàn)等腰三角形的性質,并且借助多媒體信息技術與實際動手操作加強對所學知識的理解和運用。
六、教學基本流程
七、教學過程設計
數(shù)學初中教學設計5
一、案例實施背景
教材為人教版義務教育課程標準實驗教科書七年級數(shù)學(下冊)。
二、案例主題分析與設計
本節(jié)課是人教版義務教育課程標準實驗教科書七年級數(shù)學(下冊)第五章第3節(jié)內容——5.3.1平行線的性質,它是直線平行的繼續(xù),是后面研究平移等內容的基礎,是“空間與圖形”的重要組成部分。
《數(shù)學課程標準》強調:數(shù)學教學是數(shù)學活動的教學,是師生之間、生生之間交往互動與共同發(fā)展的過程;動手實踐,自主探索,合作交流是孩子學習數(shù)學的重要方式;合作交流的學習形式是培養(yǎng)孩子積極參與、自主學習的有效途徑。本節(jié)課將以“生活?數(shù)學”“活動?思考”“表達?應用”為主線開展課堂教學,以學生看得到、感受得到的基本素材創(chuàng)設問題情境,引導學生活動,并在活動中激發(fā)學生認真思考、積極探索,主動獲取數(shù)學知識,從而促進學生研究性學習方式的形成,同時通過小組內學生相互協(xié)作研究,培養(yǎng)學生合作性學習精神。
三、案例教學目標
1.知識與技能:掌握平行線的性質,能應用性質解決相關問題。
2 .數(shù)學思考:在平行線的性質的探究過程中,讓學生經歷觀察、比較、聯(lián)想、分析、歸納、猜想、概括的全過程。
3.解決問題:通過探究平行線的性質,使學生形成數(shù)形結合的數(shù)學思想方法,以及建模能力、創(chuàng)新意識和創(chuàng)新精神。
4.情感態(tài)度與價值觀:在探究活動中,讓學生獲得親自參與研究的情感體驗,從而增強學生學習數(shù)學的熱情和團結合作、勇于探索、鍥而不舍的精神。
四、案例教學重、難點
1.重點:對平行線性質的掌握與應用。
2.難點:對平行線性質1的探究。
五、案例教學用具
1.教具:多媒體平臺及多媒體課件.
2.學具:三角尺、量角器、剪刀。
六、案例教學過程
1.創(chuàng)設情境,設疑激思
⑴播放一組幻燈片。
內容:①供火車行駛的鐵軌上;②游泳池中的泳道隔欄;③橫格紙中的線。
、铺釂枩毓剩喝粘I钪形覀兘洺龅狡叫芯,你能說出直線平行的條件嗎?
、菍W生活動:針對問題,學生思考后回答——①同位角相等兩直線平行;②內錯角相等兩直線平行;③同旁內角互補兩直線平行。
、冉處熆隙▽W生的回答并提出新問題:若兩直線平行,那么同位角、內錯角、同旁內角各有什么關系呢?從而引出課題:7.2探索平行線的性質(板書)。
2.數(shù)形結合,探究性質
、女媹D探究,歸納猜想。
教師提要求,學生實踐操作:任意畫出兩條平行線(a∥b),畫一條截線c與這兩條平行線相交,標出8個角。(統(tǒng)一采用阿拉伯數(shù)字標角)
教師提出研究性問題一:
指出圖中的同位角,并度量這些角,填寫結果:
第一組:同位角( )( ) 角的度數(shù)( )( ) 數(shù)量關系( )
第二組:同位角( )( ) 角的度數(shù)( )( ) 數(shù)量關系( )
第三組:同位角( )( ) 角的度數(shù)( )( ) 數(shù)量關系( )
第四組:同位角( )( ) 角的度數(shù)( )( ) 數(shù)量關系( )
教師提出研究性問題二:
將圖中的同位角任先一組剪下后疊合。學生活動一:畫圖—剪圖—疊合—猜想學生活動二:畫圖—剪圖—疊合—猜想讓學生根據(jù)活動得出的數(shù)據(jù)與操作得出的結果歸納猜想:兩直線平行,同位角相等。
教師提出研究性問題三:
再畫出一條截線d,看你的猜想結論是否仍然成立?
學生活動:探究、按小組討論,最后得出結論:仍然成立。
、平處熡谩稁缀萎嫲濉氛n件驗證猜想,讓學生直觀感受猜想
⑶教師展示平行線性質1:兩條平行線被第三條直線所截,同位角相等。(兩直線平行,同位角相等)
3.引申思考,培養(yǎng)創(chuàng)新
教師提出研究性問題四:
請判斷兩條平行線被第三條直線所截,內錯角、同旁內角各有什么關系?學生活動:獨立探究——小組討論——成果展示。
教師活動:評價學生的研究成果,并引導學生說理
因為a∥b(已知)所以∠1=∠2(兩直線平行,同位角相等)
又∠1=∠3(對頂角相等)∠1+∠4=180°(鄰補角的定義)
所以∠2=∠3(等量代換)∠2+∠4=180°(等量代換)
教師展示:平行線性質2:兩條平行線被第三條直線所截,內錯角相等。(兩直線平行,內錯角相等)
平行線性質3:兩條平行線被第三條直線所截,同旁內角互補。(兩直線平行,同旁內角互補)
4.實際應用,優(yōu)勢互補
、牛〒尨穑┱n本P21 練一練
1、2及習題5.3
1、3.
、疲ㄓ懻摻獯穑┱n本P22 習題5.
32、
4、5.
5.課堂總結:
這節(jié)課你有哪些收獲?
、艑W生總結:平行線的性質
1、
2、3.⑵教師補充總結:
、儆谩斑\動”的觀點觀察數(shù)學問題;(如前面將同位角剪下疊合后分析問題)。
、谟脭(shù)形結合的方法來解決問題;(如我們前面將同位角測量后分析問題)。③用準確的語言來表達問題(如平行線的性質
1、
2、3的表述)。
④用邏輯推理的形式來論證問題。(如我們前面對性質2和3的說理過程)
6 .作業(yè)。學習與評價: P 2 3 6 ( 選擇);P24
7、12(拓展與延伸)。
七、教學反思
數(shù)學課要注重引導學生探索與獲取知識的過程而不單注重學生對知識內容的認識,因為“過程”不僅能引導學生更好地理解知識,還能夠引導學生在活動中思考,更好地感受知識的價值,增強應用數(shù)學知識解決問題的意識;感受生活與數(shù)學的聯(lián)系,獲得“情感、態(tài)度、價值觀”方面的體驗。這節(jié)課的教學實現(xiàn)了三個方面的轉變:
1.教的轉變
本節(jié)課教師的.角色從知識的傳授者轉變?yōu)閷W生學習的組織者、引導者、合作者與共同研究者。教師成為了學生的導師、伙伴、甚至成為了學生的學生,在課堂上除了導引學生活動外,還要認真聆聽學生“教”你他們活動的過程和通過活動所得的知識或方法。
2.學的轉變
學生的角色從學會轉變?yōu)闀䦟W,跟老師學轉變?yōu)樽灾魅W。本節(jié)課學生不是停留在學會課本知識的層面上,而是站在研究者的角度深入其境,不是簡單地“學”數(shù)學,而是深入地“做”數(shù)學。
3.課堂氛圍的轉變
整節(jié)課以“流暢、開放、合作、隱導”為基本特征,教師對學生的思維活動減少干預,教學過程呈現(xiàn)一種比較流暢的特征,整節(jié)課學生與學生、學生與教師之間以“對話”“討論”為出發(fā)點,以互助、合作為手段,以解決問題為目的,讓學生在一個較為寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價值。
總之,在數(shù)學教學的花園里,教師只要為學生布置好和諧的場景和明晰的路標,然后就讓他們自由地快活地去跳舞吧!
數(shù)學初中教學設計6
教材分析:
一元二次方程根與系數(shù)的關系的知識內容主要是以前一單元中的求根公式為基礎的。教材通過一元二次方程ax2+bx+c=0(a≠0)的根x1、x2得出一元二次方程根與系數(shù)的關系,以及以數(shù)x1、x2為根的一元二次方程的求方程模型。然后通過4個例題介紹了利用根與系數(shù)的關系簡化一些計算的知識。
學情分析:
1.學生已學習用求根公式法解一元二次方程。
2.本課的教學對象是九年級學生,學生對事物的認
識多是直觀、形象的,他們所注意的多是事物外部的、直接的、具體形象的特征。
3.在教學初始,出示一些學生所熟悉和感興趣的東西,結合一元二次方程求根公式使他們在現(xiàn)代化的教學模式和傳統(tǒng)的教學模式相結合的基礎上掌握一元二次方程根與系數(shù)的'關系。
教學目標:
1、知識目標:要求學生在理解的基礎上掌握一元二次方程根與系數(shù)的關系式,能運用根與系數(shù)的關系由已知一元二次方程的一個根求出另一個根與未知數(shù),會求一元二次方程兩個根的倒數(shù)和與平方數(shù),兩根之差。
2、能力目標:通過韋達定理的教學過程,使學生經歷觀察、實驗、猜想、證明等數(shù)學活動過程,發(fā)展推理能力,能有條理地、清晰地闡述自己的觀點,進一步培養(yǎng)學生的創(chuàng)新意識和創(chuàng)新精神。
3、情感目標:通過情境教學過程,激發(fā)學生的求知欲望,培養(yǎng)學生積極學習數(shù)學的態(tài)度。體驗數(shù)學活動中充滿著探索與創(chuàng)造,體驗數(shù)學活動中的成功感,建立自信心。
教學重難點:
1、重點:一元二次方程根與系數(shù)的關系。
2、難點:讓學生從具體方程的根發(fā)現(xiàn)一元二次方程根與系數(shù)之間的關系,并用語言表述,以及由一個已知方程求作新方程,使新方程的根與已知的方程的根有某種關系,比較抽象,學生真正掌握有一定的難度,是教學的難點。
教學過程:
板書設計:
一元二次方程根與系數(shù)的關系如果ax+bx+c=0(a≠0)的兩根是x1,x2,那么x1+x2= ,x1x2= 。
問題6.在方程ax+bx+c=0(a≠0)中,a、b、c的作用嗎? ①二次項系數(shù)a是否為零,決定著方程是否為二次方程; ②當a≠0時,b=0,a、c異號,方程兩根互為相反數(shù); ③當a≠0時,△=b-4ac可判定根的情況; ④當a≠0,b-4ac≥0時,x1+x2=,x1x2=。⑤當a≠0,c=0時,方程必有一根為0。
學生學習活動評價設計:
本節(jié)課充分讓學生分析、觀察、提高了學生的歸納能力及推理論證的能力。
教學反思:
1.一元二次方程根與系數(shù)的關系的推導是在求根公式的基礎上進行。它深化了兩根的和與積同系數(shù)之間的關系,是我們今后繼續(xù)研究一元二次方程根的情況的主要工具,必須熟記,為進一步使用打下基礎。
2.以一元二次方程根與系數(shù)的關系的探索與推導,向學生展示認識事物的一般規(guī)律,提倡積極思維,勇于探索的精神,借此鍛煉學生分析、觀察、歸納的能力及推理論證的能力
3.一元二次方程的根與系數(shù)的關系,在中考中多以填空,選擇,解答題的形式出現(xiàn),考查的頻率較高,也常與幾何、二次函數(shù)等問題結合考查,是考試的熱點,它是方程理論的重要組成部分。
4.使學生體會解題方法的多樣性,開闊解題思路,優(yōu)化解題方法,增強擇優(yōu)能力。力求讓學生在自主探索和合作交流的過程中進行學習,獲得數(shù)學活動經驗,教師應注意引導。
數(shù)學初中教學設計7
隨著科學技術的發(fā)展,教育資源和教育需求也隨之增長和變化。我校進行了初中數(shù)學分層教學課題研究,而分層次備課是搞好分層教學的關鍵,教師應在吃透教材、大綱的情況下,按照不同層次學生的實際情況,設計好分層次教學的全過程。本文將結合本人的教學經驗,對分層教學教案設計進行初步探討。
1教學目標的制定
制定具體可行的教學目標,先要分清哪些屬于共同目標,哪些屬于層次目標。并在知識與技能、過程與方法、情感態(tài)度與價值觀三個方面對不同層次的學生制定具體的要求。
2教法學法的制定
制定教法學法應結合各層次學生的具體情況而定,如對A層學生少講多練,注重培養(yǎng)其自學能力;對B層學生,則實行精講精練,注重課本上的例題和習題的處理;對C層學生則要求要低,淺講多練,弄懂基本概念,掌握必要的基礎知識和基本技能。
3教學重難點的制定
教學重難點的制定也應結合各層次學生的具體情況而定。
4教學過程的設計
4.1情境導向,分層定標。教師以實例演示、設問等多種方法導入新課。要利用各種教學資料創(chuàng)設恰當?shù)膶W習情境為各層學生呈現(xiàn)適合于本層學生水平學習的內容。
4.2分層練習,探討生疑。學生對照各自的目標分層自學。教師要鼓勵學生主動實踐,自覺地去發(fā)現(xiàn)問題、探討問題、解決問題。
4.3集體回授,異步釋疑!凹w回授”主要是針對人數(shù)占優(yōu)勢的B層學生,為解決具有共性的問題而組織的一種集體教學活動。教師為那些來不及解決的、不具有共性的問題分先后在層內釋疑即“異步釋疑”。
5練習與作業(yè)的設計
教師在設計練習或布置作業(yè)時要遵循“兩部三層”的原則!皟刹俊笔侵妇毩暬蜃鳂I(yè)分為必做題和選做題兩部分;“三層”是指教師在處理練習時要具有三個層次:第一層次為知識的`直接運用和基礎練習;第二、三兩層次的題目為選做題,這樣可使A層學生有練習的機會,B、C兩層學生也有充分發(fā)展的余地。
分層教學下教師不能再“拿一個教案用到底”,而要精心地設計課堂教學活動,針對不同層次的學生選擇恰當?shù)姆椒ê褪侄,了解學生的實際需求,關心他們的進步,改革課堂教學模式,充分調動學生的學習主動性,創(chuàng)造良好的課堂教學氛圍,形成成功的激勵機制,確保每一個學生都有所進步。
數(shù)學初中教學設計8
一、案例實施背景
本節(jié)課是20xx-20xx學年度第一學期筆者在一鄉(xiāng)鎮(zhèn)中學的多媒體教室里上的一節(jié)課,課堂中數(shù)學優(yōu)秀生、中等生及后進生都有,所用教材為人教版義務教育課程九年級數(shù)學(上冊).
二、案例主題分析與設計
本節(jié)課是人教版義務教育教科書九年級上冊第24章第1節(jié)內容——圓,圓的概念是中心對稱的繼續(xù),是后面研究扇形、弧長的基礎,是“空間與圖形”的重要組成部分!稊(shù)學課程標準》強調:數(shù)學教學是數(shù)學活動的教學,是師生之間、生生之間交往互動與共同發(fā)展的過程;動手實踐,自主探索,合作交流是孩子學習數(shù)學的重要方式;合作交流的學習形式是培養(yǎng)孩子積極參與、自主學習的有效途徑。本節(jié)課將以“生活·數(shù)學”、“活動·思考”、“表達·應用”為主線開展課堂教學,以學生看得到、感受得到的基本素材創(chuàng)設問題情境,引導學生活動,并在活動中激發(fā)學生認真思考、積極探索,主動獲取數(shù)學知識,從而促進學生研究性學習方式的形成,同時通過小組內學生相互協(xié)作研究,培養(yǎng)學生合作性學習精神。
三、案例教學目標
1、知識技能:探索圓的兩種定義,理解并掌握弧、弦、優(yōu)弧、劣弧、半圓等基本概念,能夠從圖形中識別.
2、數(shù)學思考:體會圓的不同定義方法,感受圓和實際生活的聯(lián)系
3、解決問題:在解決問題過程中使學生體會數(shù)學知識在生活中的普遍性.
四、案例教學重、難點
1、重點:圓的兩種定義的探索,能夠解釋一些生活問題.
2、難點:圓的運動式定義方法.
五、案例教學用具
1、教具:多媒體課件、圓規(guī)、細線、鉛筆。
2、學具:圓規(guī)
六、案例教學過程
(一)創(chuàng)設問題情境,激發(fā)學生興趣,引出本節(jié)內容
1、如圖1,觀察下列圖形,從中找出共同特點.
圖1
2、學生活動:學生觀察圖形,發(fā)現(xiàn)圖中都有圓,然后回答問題,此時學生可以再舉出一些生活中類似的圖形.
3、教師活動:讓學生觀察圖形,感受圓和實際生活的密切聯(lián)系,同時激發(fā)學生的學習渴望以及探究熱情.
(二)問題引申,探究圓的定義,培養(yǎng)學生的探究精神
1、如圖2,觀察下列畫圓的過程,你能由此說出圓的形成過程嗎?(課件展示畫圖過程)
圖2
2、學生活動:學生小組合作、分組討論,通過動畫演示,發(fā)現(xiàn)在一個平面內一條線段OA繞它的一個端點O旋轉一周,另一個端點形成的圖形就是圓.
3、教師活動設計:在學生歸納的基礎上,引導學生對圓的一些基本概念作一界定:圓:在一個平面內,一條線段OA繞它的一個端點O旋轉一周,另一個端點A所形成的圖形叫作圓;圓心:固定的端點叫作圓心;半徑:線段OA的長度叫作這個圓的半徑;圓的表示方法:以點O為圓心的圓,記作“⊙O”,讀作“圓O”.
4、師生共同歸納:
。1)圓上各點到定點(圓心)的距離都等于定長(半徑);
。2)到定點的距離等于定長的點都在同一個圓上.
。3)圓的第二定義:所有到定點的距離等于定長的點組成的圖形叫作圓.
5、討論圓中相關元素的定義.
。1)如圖3,你能說出弦、直徑、弧、半圓的定義嗎?
圖3 (2)學生活動:學生小組討論,討論結束后派一名代表發(fā)言進行交流,在交流中逐步完善自己的結果.
。3)教師活動:在學生交流的基礎上得出上述概念的嚴格定義,對于學生的不準確的敘述,可以讓學生討論解決. 弦:連接圓上任意兩點的線段叫作弦; 直徑:經過圓心的弦叫作直徑;
。簣A上任意兩點間的部分叫作圓弧,簡稱;
AB,讀作“圓弧AB”或“弧弧的表示方法:以A、B為端點的弧記作AB”;
半圓:圓的任意一條直徑的兩個端點把圓分成兩條弧,每一條弧都叫作半圓.
優(yōu)。捍笥诎雸A的弧叫作優(yōu)弧,用三個字母表示,如圖3中的 ABC;
。 劣弧:小于半圓的弧叫作劣弧,如圖3中的BC
。ㄈ┯懻,車輪為什么做成圓形?如果做成正方形會有什么結果?(課件:車輪;課件:方形車輪)
1、學生活動:學生首先根據(jù)對圓的.概念的理解獨立思考,然后進行分組討論,最后進行交流.
2、教師活動設計:引導學生進行如下分析:如圖4,把車輪做成圓形,車輪上各點到車輪中心(圓心)的距離都等于車輪的半徑,當車輪在平面上滾動時,車輪中心與平面的距離保持不變,因此當車輛在平坦的路上行駛時,坐車的人會感覺到非常平穩(wěn);如果做成其他圖形,比如正方形,正方形的中心(對角線的交點)距離地面的距離隨著正方形的滾動而改變,因此中心到地面的距離就不是保持不變,因此不穩(wěn)定.
圖4
。ㄋ模⿷锰岣撸囵B(yǎng)學生的應用意識和創(chuàng)新能力m的圓?說出你的理由
2、師生活動設計:教師鼓勵學生獨立思考,讓學生表述自己的方法.根據(jù)圓的定義可以知道,圓是一條線段繞一個端點旋轉一周,另一個端點形成的圖形,所以可以用一條長5m的繩子,將繩子的一端A固定,然后拉緊繩子的另一端B,并繞A在地上轉一圈.B所經過的路徑就是所要的圓.cm,這棵紅杉樹平均每年半徑增加多少?
圖5
4、師生活動設計:首先求出半徑,然后除以20即可.
解答:樹干的半徑是23÷2=11.5(cm).
平均每年半徑增加11.5÷20=0.575(cm).
。ㄎ澹w納小結、布置作業(yè)
小結:圓的兩種定義以及相關概念.
作業(yè):請做一個正方形的車輪,體會在車輪滾動的過程中車身的情況
七、教學反思
1、教師角色的轉變:本節(jié)課教師的角色從知識的傳授者轉變?yōu)閷W生學習的組織者、引導者、合作者與共同探討者。在引導學生觀察、畫圖、發(fā)現(xiàn)結論后,利用多媒體課件直觀的、動態(tài)的展示圓的形成過程及車輪原理,激發(fā)了興趣。
2、學生角色的轉變:學生的角色從學會轉變?yōu)闀䦟W。本節(jié)課學生不是停留在學會課本知識的層面上,而是站在研究者的角度深入其境。
3、課堂氛圍的轉變:整節(jié)課以 “流暢、開放、合作、“隱導”為基本特征。教師對學生的思維活動減少干預,教學過程呈現(xiàn)一種比較流暢的特征,整節(jié)課學生與學生、學生與教師之間以“對話”、“討論”為出發(fā)點,以互助、合作為手段,以解決問題為目的,讓學生在一個較為寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價值。
數(shù)學初中教學設計9
現(xiàn)代教學論研究指出,從本質上講,學生學習的根本原因是問題。在數(shù)學課堂教學中,教師可根據(jù)不同的教學內容,圍繞不同的教學目標,設計出符合學生實際的教學問題,圍繞所設計的問題開展教學活動。這樣,在課堂教學環(huán)節(jié)中,問題該怎樣設計?圍繞問題該怎樣進行教學,才能使教學效率得以提高?這是擺在我們面前急需解決的問題。
本文將結合自己的教學實踐,就問題設計的策略及反思等方面談談自己的看法。
一、注重問題情境的創(chuàng)設
著名數(shù)學家費賴登塔爾認為:“數(shù)學源于現(xiàn)實又寓于現(xiàn)實,數(shù)學教學應從學生所接觸的客觀實際中提出問題,然后升華為數(shù)學概念、運算法則或數(shù)學思想!边@一觀念既反映了數(shù)學的本質,同時說明了在數(shù)學課堂教學中創(chuàng)設問題情境的重要性。比如,在《有理數(shù)的加法》一節(jié)的教學導入時,我首先出示了一周來本班的積分統(tǒng)計表(表中的得分用正數(shù)表示,失分用負數(shù)表示,)讓學生觀察:
星期 一 二 三 四 五 六 合計
積分 +3 -2 -4 -2 +2 +4
然后提出問題:“誰能幫我們班算出這一周的總積分呢?”結果我發(fā)現(xiàn)大多數(shù)同學能用“抵消”的方法統(tǒng)計出這一周本班的總積分。然后我出了一道算式題:“(+3)+(-2)+(-4)+(-2)=?”發(fā)現(xiàn)學生不知道該怎樣算。當學生產生這樣的認知沖突時我便引入了本節(jié)課要學習的內容,最后我用表中的數(shù)據(jù)分成了幾種類型,如正數(shù)加正數(shù)、負數(shù)加負數(shù)、正數(shù)加負數(shù)等,展開新知學習,教學效果較以前有明顯改觀。
本節(jié)課成功之處在于:(1)導入的情境問題貼近學生的現(xiàn)實,調動了學生的積極性。(2)情境問題為后面的教學埋下了伏筆,引發(fā)了學生的認知沖突。當然,情境問題的創(chuàng)設不當,會直接影響教學。比如,在《函數(shù)》一節(jié)的教學時,我用游樂園中的摩天輪引入,當我提出問題:“同學們,當你坐在摩天輪上,隨著時間的變化,你離開地面的高度是如何變化的?”我發(fā)現(xiàn)學生幾乎沒有反應,只是偶爾聽到:“摩天輪?”“很危險……”本來是一個很典型的函數(shù)問題,只因為農村學生對該情境的認識模糊,一時沒有進入到虛擬情境中來,導致課堂開端出現(xiàn)“僵局”,也影響了后面的教學工作的勝利開展。
2、教學重點、難點處的問題設計
初中數(shù)學課堂教學中重點與難點的處理將直接影響教學效果。通過設計好的問題串可以強化重點與突破難點。例如,《結識拋物線》一節(jié)的教學重點就是做二次函數(shù)y=x2的圖像并根據(jù)圖像認識和理解函數(shù)的性質。而作圖過程又是一個難點問題,要從所畫的圖像中發(fā)現(xiàn)并歸納性質,首先得畫出較準確的函數(shù)圖像。在學生畫圖像的過程中,我抓住學生的幾種錯誤畫法提出了三個問題讓學生討論交流:(1)根據(jù)你畫的圖像,給自變量x任取一個值,函數(shù)y有唯一的值與它對應嗎?(2)自變量x的范圍是什么?(3)在0 3、例題或課堂練習中的'問題設計 例題教學具有及時鞏固知識和靈活運用知識的雙重功能,隨堂練習是檢查學生的數(shù)學學習效果和培養(yǎng)學生思維的有效手段之一。數(shù)學課堂教學中,教師通過優(yōu)選例題,精心設計層次分明的練習,能夠讓學生以積極的態(tài)度去思考并解決問題,獲得問題解決的成就感和快樂感。例如筆者在《反比例函數(shù)的圖像與性質》一節(jié)的教學中設計了一道這樣的問題:已知A(-2,y1)、B(-1,y2)、C(2,y3)三點都在反比例函數(shù)y=k/x(k>0)圖像上,(1)比較y1、y2、y3的大小關系。(2)若D(a,y1)、E(b,y2)、F(c,y3)三點也在反比例函數(shù)y=k/x(k>0)的圖像上,其中a0判斷y1、y2、y3的大小關系。教學中我發(fā)現(xiàn)多數(shù)學生對問題(1)采用了直接代入計算的方法得到結果,對問題(2)顯然用代入法難以得到結果,這時,我讓學生小組討論來解決。經過討論后,學生A回答:“因為k>0時,反比例函數(shù)y隨x的增大而減小,而a 4、在學習反思中的問題設計 初中學生學習數(shù)學的方法相對欠缺,學生“重結論,輕過程”的現(xiàn)象較普遍,對學習結果的反思意識淡薄,自我評價不徹底,做錯的題目一錯再錯。作為教師,在平時的教學中要注重引導,徹底分析錯因,讓學生在錯題中有反思的機會。例如,在一元一次方程的教學中,我發(fā)現(xiàn)學生解含有分母的方程時很容易出錯,針對學生做錯的題目,我設計了如的表格: 通過引導學生對錯因徹底分析與校正,學生明白了產生錯誤的真正原因是什么,認識到了自己的不足。然后我出了幾道解方程的練習,結果發(fā)現(xiàn),學生確實重視了錯誤,效果明顯有所好轉。 總之,在數(shù)學教學中,教學問題的設計確實是一種學問,是一種藝術。要讓學生在實實在在的問題情境中去親歷體驗,在對問題的分析、探索與交流的過程中主動思考,與人分享成果,來體驗成功的快樂,增強他們的自信心。 一、內容和內容解析 平行四邊形是“空間與圖形”領域中最基本的幾何圖形,它在生活中有著十分廣泛的應用,這不僅表現(xiàn)在日常生活中有許多平行四邊形的圖案,還包含其性質在生產、生活各領域的實際應用。 平行四邊形,是建立在前面學習了四邊形的概念和性質的基礎之上,將要學習的特殊的四邊形。本節(jié)課是平行四邊形的第一課時,主要研究平行四邊形的概念和邊、角的性質。 關于平行四邊形的概念,在小學,學生已經學過,并不會感到生疏,但對于這個概念的本質屬性,理解的并不是十分深刻,所以,本節(jié)課的學習,并不是簡單的重復。本節(jié)課,平行四邊形的定義采用的是內涵定義法,即“種概念+屬差=被定義的概念”。在平行四邊形的定義中,大前提是“四邊形(種概念)”,條件是“兩組對邊分別平行(屬差)”!皟山M對邊分別平行”是平行四邊形獨有的、用以區(qū)別于一般四邊形的本質屬性,這也是平行四邊形概念的核心之所在。平行四邊形的概念,揭示了平行四邊形與四邊形的隸屬關系、區(qū)別與聯(lián)系,反映了平行四邊形的本質屬性。同時,它既是平行四邊形的判定,又可以作為平行四邊形的一個性質。 關于平行四邊形邊、角的性質,“平行四邊形的對邊相等”相對于定義中的“兩組對邊分別平行”,是由位置關系向數(shù)量關系的一種延伸;“平行四邊形的對角相等”相對于“兩組對邊分別平行”,是由“相鄰的角互補”產生的思維的.一種深化。同時,兩條性質的探究,經歷的是“感知、猜想、驗證、概括、證明”的認知過程;兩條性質的研究,先從邊分析,再從角分析,再到下一節(jié)課的從對角線分析,提供的是研究幾何圖形性質的一般思路;兩條性質的證明,滲透的是將四邊形問題轉化為三角形問題的一種轉化思想,而添加對角線,介紹的是將四邊形問題轉化為三角形問題的一種常用的轉化手段。 在本章的后續(xù)學習中,對于幾種特殊的四邊形,其定義均采用的是內涵定義法,并且矩形和菱形的定義,均以平行四邊形作為種概念,所以平行四邊形的概念作為“核心概念”當之無愧。關于平行四邊形的性質,也是后續(xù)學習矩形、菱形、正方形等知識的基礎,這些特殊平行四邊形的性質,都是在平行四邊形性質基礎上擴充的,它們的探索方法,也都與平行四邊形性質的探索方法一脈相承,因此,平行四邊形的性質,在后續(xù)的學習中,也是處于核心地位。 教學重點:平行四邊形的概念和性質。 二、目標和目標解析 。1)教學目標: 、僬莆掌叫兴倪呅蔚母拍罴靶再|。 、趯W會用分析法、綜合法解決問題。 、垠w會特殊與一般的辯證關系。 、苤鸩金B(yǎng)成良好的個性思維品質。 。2)目標解析: ①使學生掌握平行四邊形的概念,掌握平行四邊形的對邊相等,對角相等的性質,會根據(jù)概念或性質進行有關的計算和證明。 、谕ㄟ^有關的證明及應用,教給學生一些基本的數(shù)學思想方法。使學生逐步學會分別從題設或結論出發(fā),尋求論證思路,學會用綜合法證明問題,從而提高學生分析問題解決問題的能力。 、弁ㄟ^四邊形與平行四邊形的概念之間和性質之間的聯(lián)系與區(qū)別,使學生認識特殊與一般的辯證關系,個性與共性之間的關系等。使學生體會到事物之間總是互相聯(lián)系又相互區(qū)別的,進一步培養(yǎng)辯證唯物主義觀點。 、芡ㄟ^對平行四邊形性質的探究,使學生經歷觀察、分析、猜想、驗證、歸納、概括的認知過程,培養(yǎng)學生良好的個性思維品質。 一、案例實施背景 本節(jié)課是20xx-20xx學年度第一學期開學第七周筆者在長青中學的多媒體教室里上的一節(jié)公開課,課堂中數(shù)學優(yōu)秀生、中等生及后進生都有,所用教材為北師大版義務教育教科書七年級數(shù)學(上冊)。 二、案例主題分析與設計 本節(jié)課是北師大版義務教育教科書七年級數(shù)學(上冊)——科學記數(shù)法,它是在學習乘方的基礎上,研究更簡便的記數(shù)方法,是第二章有理數(shù)及其運算的重要組成部分。 《數(shù)學課程標準》強調:數(shù)學教學是數(shù)學活動的教學,是師生之間、生生之間交往互動與共同發(fā)展的過程;動手實踐,自主探索,合作交流是孩子學習數(shù)學的重要方式;合作交流的學習形式是培養(yǎng)孩子積極參與、自主學習的有效途徑。本節(jié)課將以“生活·數(shù)學”、“活動·思考”、“表達·應用”為主線開展課堂教學,以學生看得到、感受得到的基本素材創(chuàng)設問題情境,引導學生活動,并在活動中激發(fā)學生認真思考、積極探索,主動獲取數(shù)學知識,從而促進學生研究性學習方式的形成,同 時通過小組內學生相互協(xié)作研究,培養(yǎng)學生合作性學習精神。 三、案例教學目標 1、知識與技能:掌握科學記數(shù)法的方法,能將一些大數(shù)寫成科學記數(shù)法。 2、過程與方法:在尋找科學記數(shù)法的探究過程中,讓學生經歷觀察、比較、聯(lián)想、分析、歸納、猜想、概括的全過程。 3、情感態(tài)度與價值觀:通過科學記數(shù)法的總結,使學生形成數(shù)形結合的數(shù)學思想方法,以及知識的遷移能力、創(chuàng)新意識和創(chuàng)新精神。 四、案例教學重、難點 1、重點:正確運用科學記數(shù)法表示較大的數(shù) 2、難點:正確掌握10的冪指數(shù)特征,將科學記數(shù)法表示的數(shù)寫成原數(shù) 五、案例教學用具 1、教具:多媒體平臺及多媒體課件、圖片 六、案例教學過程 一、創(chuàng)設情境,興趣導學: 1、展示學生收集的非常大的數(shù),與同學交流,你覺得記錄這些數(shù)據(jù)方便嗎? 2、展示課本第63頁圖片,現(xiàn)實中,我們會遇到一些比較 大的數(shù),如世界人口數(shù)、地球的半徑、光速等,讀寫這樣大的數(shù)有一定的困難。 師:(展示剛才演示過的3個大數(shù))我們能不能找到更好的記數(shù)方法使下列各數(shù)更加便于讀、寫?請同學們六個人一組,分組進行討論。 (1) 1 370 000 000 (2) 6 400 000 (3) 300 000 000 生1:答:13.7億,640萬,3億。 師:回答正確。這是數(shù)字加上單位的記數(shù)方法,在小學已經學過,是比較常用的一種方法,可是它有一定的局限性。如果我在3億后面再加上好多個0,那么這種記數(shù)方法還好用嗎? 生:不好用。(讓學生意識到以前所學的方法不夠用了) 師:接下來我們一起來探索新的記數(shù)方法。 分析:在讀寫大數(shù)時使學生感覺到不方便,從實際生活的需要,自然引入課題,需要尋找一種更簡單的方法記數(shù),為新課創(chuàng)設了良好的問題情境。 二、嘗試探索,講授新課: 1、探索10n的特征 計算一下102、103、104、105、1010你發(fā)現(xiàn)什么規(guī)律? 102=100103 =1 00010 4 =10 000105=100 0001010 =10 000 000 000 。ㄓ^察并思考,小組討論) 。1)結果中“0”的個數(shù)與10的指數(shù)有什么關系? (2)結果的.位數(shù)與10的指數(shù)有什么關系? 2、練習:將下列個數(shù)寫成只有一位整數(shù)乘以10n的形式。 。1)500(2)3000(4)40000 師:(學生完成之后)可見這種表示方法不僅書寫簡短,同時還便于讀數(shù)。這就是我們本節(jié)課研究的內容—科學記數(shù)法。 分析:通過教師引導,學生小組討論,合作探究,成功地找到表示大數(shù)的簡便記數(shù)方法——科學記數(shù)法。 4、科學記數(shù)法: 像上面這樣,把一個大于10的數(shù)表示成 a×10n的形式(其中1≤a<10,a是整數(shù)數(shù)位只有一位的數(shù),n是整數(shù)),這種記數(shù)方法叫做科學記數(shù)法。 。ㄋ伎,小組討論) 10的指數(shù)與結果的位數(shù)有什么關系? 分析:這是本節(jié)課的重難點:10的冪指數(shù)n與原數(shù)的整數(shù)位數(shù)之間的關系。從特殊數(shù)據(jù)出發(fā),尋找解決問題的方案,這符合“特殊到一般”的認知規(guī)律。在探究過程中,學生的探究活動體現(xiàn)了“化繁為簡”、“分析歸納”的數(shù)學思想。 三、鞏固新知,知識運用: 1、將下列各數(shù)寫成科學記數(shù)法形式。 。1)23 000 000(2)453 000 000(3)13 400 000 000 000 000米,用科學記數(shù)法表示是多少米? 分析:學生的模仿能力強,在分析討論10的指數(shù)與結果的位數(shù)有什么關系時,會與前面曾經討論過的10n聯(lián)系起來,也可以對知識進行遷移和回顧。再加上學生好奇心都特別強,很想將自己總結出來的結論加以應用,針對以上學生特點,給出相應的練習題。這樣學生能夠體會到學以致用的樂趣,從而調動學生自主學習的積極性。 。ㄓ^察并思考,小組討論) 5、如何將一個用科學記數(shù)法表示的數(shù)寫成原數(shù)? a×10n將a的小數(shù)點向右移動n位原數(shù) 分析:這是本節(jié)課另一個重點,也是知識的逆向鞏固,學生通過尋找寫出原數(shù)的方法,更加明白在寫科學記數(shù)法時,如何確定10的指數(shù),同時也學會了如何寫出原數(shù)。 練習:人體內約有2.5×10 5個細胞,其原數(shù)為多少個? 七、教學反思: 數(shù)學課要注重引導學生探索與獲取知識的過程而不單注重學生對知識內容的認識,因為“過程”不僅能引導學生更好 地理解知識,還能夠引導學生在活動中思考,更好地感受知識的價值,增強應用數(shù)學知識解決問題的意識;感受生活與數(shù)學的聯(lián)系,獲得“情感、態(tài)度、價值觀”方面的體驗。 20xx年寒假期間,我讀《初中數(shù)學創(chuàng)新教學設計》一書對我很有幫助,感想很多。 教學設計作為教師進行教學的主要工作之一,對教學起著先導作用,它往往決定著教學工作的方向;同時教學設計的技能作為教師專業(yè)發(fā)展的重要內容,已成為教師從師任教必備的基本功。所以教師了解初中數(shù)學教學設計的內容很有必要。新理念下的初中數(shù)學教學設計的內容可以包括: 。1) 教學目標。 在新理念下,教學目標一般包括過程性目標和結果性目標兩個方面,也可以進一步細分為知識技能,數(shù)學思考,解決問題,情感態(tài)度等多方面。 。2)任務分析 進行任務分析的重點在于關注幾個要點: 一是關注學生的起點;二是關注學生主要的認知障礙和可能的認知途徑;三是分析教學內容的重點、難點和關鍵;四是研究達成目標的主要途徑和方法。 在這里,有兩個問題十分重要:第一,要關注學生的經驗基礎,第二,要正確認識教材。對于前者,意味著不僅要考慮學科自身的特點,更應遵循學生學科學習的心理規(guī)律;要把學生的個人知識、直接經驗和現(xiàn)實世界作為初中數(shù)學教學的重要資源。對于后者,意味著要“用教材教,而不是教教材”。創(chuàng)造性的使用教材是本次新課程對我們提出的新要求,教材是極其宏觀性的一個藍本,覆蓋著非常廣闊的時空,主要對教師教什么、學生學什么起到指向作用。但教材僅僅是教師組織數(shù)學課堂教學活動的素材,使學生進行數(shù)學學習的平臺。新理念下的教材給教師留下了比較大的創(chuàng)造空間,進行任務分析,就必須改變“以教材為本處理教材”的現(xiàn)象,根據(jù)學生實際、教學實際和當?shù)貙嶋H,模擬教材,重組教材,編制教材,消減技巧性訓練,增加其探索性、思考性和現(xiàn)實性的成分,為實施開放式、活動式的探究、合作、參與等新型學習方式創(chuàng)造條件。事實上,對初中生來說,喜好數(shù)學問題,對有關的.數(shù)學活動充滿好奇心,這是進一步學習數(shù)學的首要前提和發(fā)展動力。 。3)教學思路。 主要考慮具體的教學過程,包括創(chuàng)設的情景、活動的線索、學生可能提出的問題,可能的情況下必須附設計說明。 。4)教學反思。 主要針對如下一些問題開展反思: 是否達到預期目標?如果沒有達到,分析其原因,并提供改進的方案。有哪些突發(fā)的靈感,印象最深的討論或學生獨特的想法?哪些地方與教學設計的不一樣,學生提出了哪些沒有想到的問題?為什么會提出這些問題? 了解了教學設計的內容,為我們以后教學設計具有很重要的指導意義。 今天,李老師帶著我們去看舞劇《羚羚的故事》。到那里以后,先是主持人講話,之后是大隊輔導員李老師講話,她帶我們一起回顧了羚羚的故事的精彩鏡頭,看完了我覺得他們太辛苦了! 第一幕講的是在美麗的可可西里,有很多很多的羚羊在玩,羚羚和妹妹跟媽媽在說話,媽媽說:“你們看,藍藍的天空多漂亮!”羚羚說:“是啊,你看那朵云彩多像我!”媽媽說:“這美麗的一切是很多很多媽媽的犧牲換來的!”之后,一位來西藏旅游的少年來了,她和小羚羊玩耍,對小羚羊特別好。 第二幕講的是羚羚聽見“砰”的一聲,她問媽媽是怎么回事,媽媽說:“這是槍聲,咱們趕快跑吧!”羚羚說:“妹妹呢?”她們到處找,突然發(fā)現(xiàn)妹妹已經被擊中了!羊媽媽剛想去救她,但是來不及了,偷獵者來了!妹妹被偷獵者帶走了,羚羚非常傷心! 第三幕講的是小羚羊們又累又餓,走不動了。羊媽媽說:“孩子,堅持一下吧!”羚羚問:“媽媽,我們要去哪兒?我們?yōu)槭裁匆x開可可西里?”媽媽說:“我們要去一個沒有人類的地方,因為現(xiàn)在的可可西里已經不是我們的家園了!绷缌鐔枺骸皨寢專皇钦f人類是我們的好朋友么?我們?yōu)槭裁匆h離他們?”羊媽媽說:“因為現(xiàn)在來可可西里的人是魔鬼,他們要殺掉我們,用我們的毛皮做衣服,我們要離開這里!”小羚羊們走著走著,大雪來了,大雨來了,大風來了,羚羚實在受不了了。這時,她們的面前出現(xiàn)了一片沼澤地,小羚羊們很著急,怎么過去呢?羊媽媽說:“我們已經沒有選擇了!”說著,所有的羊媽媽都跳了下去,她們背著小羚羊過去了,但是羊媽媽們卻被埋在了沼澤地里。羚羚和小羚羊們大喊著:“媽媽!媽媽!”這時少年來了,她正在尋找小羚羊,小羚羊看到她,跑了過去。少年說:“羚羚,是你嗎?你身上怎么這么多傷?你的媽媽呢?”羚羚傷心地說:“媽媽死了,妹妹也死了!” 第四幕講的是少年帶著她的朋友們來了,他們都是動物保護者,他們同小動物們一起打敗了偷獵者。小羚羊們又有了新的家園。這時候羚羚也當媽媽了,她們過上了幸福的生活! 看完這個故事,我想說:“可惡的偷獵者,不許再殺害小動物了!”因為中國的珍稀動物越來越少,比如大熊貓、揚子鱷、白鰭豚,我必須要保護小動物,我們每個人都要保護小動物,它們是我們人類的好朋友!讓我們每個人都做環(huán)保的小衛(wèi)士! 研究教學方法的組合運用這一課題,對提高思想政治課教學質量有重要的意義。教學方法是多種多樣的,每一種方法都有自己的特點和適用范圍。師生在教學中可以也應該自主選擇不同的教和學的方法,努力創(chuàng)造新的教和學的方法。教學有法,但無定法,貴在得法,教師教學時必須注意方法選擇。我在教學中常用的方法有:演講法、發(fā)現(xiàn)教學法與探究教學法 、訓練與實踐式教學方法、復習測驗式教學法、小組討論法等。其中用得最多的是演講法,其優(yōu)勢在于: 。1)演講法可以說明一些原則,可以敘述一些事實,解決高中政治教學當中某些內容抽象學生難以理解的問題和概念。在新課程標準下,高中政治教學目的在于向學生傳授基本的理論知識從而讓學生具備正確是世界觀和方法論,從而具有在現(xiàn)實生活當中解決問題的能力。 雖然高中政治是一門與時事關系非常密切的學科,但是它同樣具有抽象性和蒙蔽性,這些僅僅靠學生的自發(fā)理解是解決不了的,這時候,演講法就具備了相當?shù)膬?yōu)勢。通過演講法,教師可以將政治學科當中難以理解的問題結合時事和例子深入淺出的講述清楚,插入有趣的例子和時事,這樣就可以將時效性和趣味性結合起來,既解決了教學重點和難點,同時也可以提高學生對政治這門學科的興趣,讓他們明白,這門學科對他們而言具有相當?shù)膶嵱眯,而又不顯得課堂空蕩蕩。教師就可以通過“演講法”,把教學內容和例子相結合,就可以解決這些對學生而言非常抽象的概念和理念,畢竟,高中的學生的理解能力在挖掘發(fā)展當中。 。2)可以節(jié)省教學的時間,在高中政治教學的過程當中,有時候教學任務繁重在一節(jié)課當中,這個時候,“單向式”的演講法就可以節(jié)省時間,能夠順利完成當節(jié)教學任務; 正如之前所說的,任何事物都有其兩面性,演講法有其優(yōu)點,自然也有它的缺陷。它主要是在于「單向教學」的問題,教師不易掌握學生對教材的接受情況與了解的程度,同時也容易發(fā)生灌輸式教學的危險,如果教師對課堂出現(xiàn)的問題處理能力不強或者語言表達能力不夠,那么在使用演講法時就很容易陷入讓學生覺得枯燥乏味的情緒當中,因為畢竟來說高中政治這門學科對于學生來說已經有“枯燥無味”和“學了也沒什么用”的這種先入為主的觀念了,所以這時候對于高中的政治老師的課堂處理能力和語言表達能力就提出更高的要求對于使用演講法來說。因此,當高中政治教師在使用演講法之時,應當配合其它一些可以使學生參與的方法來使用,譬如:討論式、問題式、游戲式等等,盡量讓學生參與到課堂當中,同時通過語言的渲染力提高學生上課的情緒。 比如在講述到“公民的政治權利”這個概念時,就可以提出當前社會當中易讓人困惑的問題讓學生參與討論,通過這樣的設問討論,學生的情緒就非常高漲,紛紛發(fā)表自己的看法,最后再通過演講法由教師進行總結,這樣既可以加深對問題的理解,也可以調節(jié)課堂氣氛,增強師生之間的互動性,這樣就可以很好的彌補了演講法本身的缺陷。教學的重點并不完全在于將一大堆的知識或材料傾倒給學生。學生積極、熱切地參與在教與學的過程中是非常重要的。讓學生多有運用手及腦的機會是有益處的。對高中這些年紀稍大一點的學生而言,他們自主性很強,有自己獨立的思想,愈給他們參與的機會,就學習得愈好。 在教學目標的落實方面需要改進的主要是加強與學生的溝通,因為不管多好的方法,只有能被學生有效分享,為學生的學習提高助力,幫助學生理解教學內容的教學方法才是真正有效的方法。 在教學過程中,很多教師總認為自己在上課中講得井井有條,知識條理十分透徹,演算透徹清晰,但結果是有大多數(shù)學生不能舉一反三,數(shù)學學習困難重重。產生這種現(xiàn)象的原因,多數(shù)教師都歸因于學生素質差、家庭教育環(huán)境不良等教師以外的因素,很少發(fā)現(xiàn)是自己教學能力和素養(yǎng)導致而成。 課堂教學是師生的雙邊活動。課堂教學的實質是師生雙方的信息交流,共同學校的過程。教師得知學生在數(shù)學學習很困難時,是否想到了可能教師自己對教材理解不夠,沒有準確地把握教材的重點、難點,對教材內容層次沒有理清和教學方法不適呢?《數(shù)學課程標準》指導下,我們的數(shù)學教學目的是要學生在數(shù)學學習中,由“聽”到“懂”,再到“會”,最后到“通”。為此,教師必須深刻反思自己的教育教學行為,批判性地考察自我主體行為表現(xiàn)及其行為依據(jù)。通過觀察、回顧、診斷、自我監(jiān)控等方式,或給予肯定、支持與強化,或給予否定、思索與修正,將“學會教學”與“學會學習”結合起來,從而努力提升教學實踐的合理性,提高課堂教學效能,到達提高教學質量的目的。現(xiàn)就以下幾方面談談自己的看法。 一、教師要反思教育觀念 新課標下要求教師要改變學科的教育觀,始終體現(xiàn)“學生是教學活動的主體”科學理念,著眼于學生的終身發(fā)展,注重培養(yǎng)學生濃厚的學習興趣和正確的學習習慣。數(shù)學非常重視教學內容與實際生活的緊密聯(lián)系。但是在教學活動中還是有不少教師習慣于傳統(tǒng)的教學模式,偏重于知識的傳授,強調接受式學習,這樣使很多學生在學習數(shù)學上失去了興趣。教學中教師要抓住時機,不斷地引導學生在設疑、質疑、解疑的過程中,創(chuàng)設認知“沖突”,激發(fā)學生持續(xù)的學習興趣和求知欲望,順利地建立數(shù)學概念,把握數(shù)學定義、定理和規(guī)律。 教師在探究教學中要立足與培養(yǎng)學生的獨立性和自主性,引導他們質疑、調查和探究,學會在實踐中學,在合作中學,逐步形成適合于自己的學習策略。例如,在學習等腰三角形三線合一的性質時可以讓三個同學合作分別去畫出頂角平分線、底邊上的高、底邊上的中線,這是學生會發(fā)現(xiàn)三條線為什么會是一條線?證明三角形全等的方法有多種,為什么 “角邊邊”不能判定兩三角形全等?在學習鑲嵌時,可以提這樣的問題,為什么正三角形、正方形、長方形正六邊形可以,而正五邊形不可以?等等。 這樣教師不斷地設問,不斷地質疑,就能引導學生進行積極思考,激發(fā)起學生濃厚的學習興趣和求知欲望,促使學生在生活中發(fā)現(xiàn)和歸納各種各樣的數(shù)學規(guī)律,為下一步學習數(shù)學知識打下堅實的基礎。所以我們的教師必須反思自己的教育觀念,緊緊抓住主導和主體的關系,解決好學生學習積極性的問題。 二、教師要反思教學設計 教學設計是課堂教學的藍本,是對課堂教學的整體規(guī)劃和預設,勾勒出了課堂教學活動的效益取向。設計教學方案時,教師對當前的教學內容及其地位(概念的“解構”、思想方法的“析出”、相關知識的聯(lián)系方式等),學生已有知識經驗,教學目的,重點與難點,如何依據(jù)學生已有認知水平和知識的邏輯過程設計教學過程,如何突出重點和突破難點,學生在理解概念和思想方法時可能會出現(xiàn)哪些情況以及如何處理這些情況,設計哪些練習以鞏固新知識,如何評價學生的.學習效果等,都應該有一定的思考和預設。教學設計的反思就是對這些思考和預設是否考慮到 了。教學后,要對實際進程和學生的接受程度進行比較和反思,找出成功和不足之處及其原因,從而有效地改進教學。 三、教師要反思教學方法 教師教得好,本質上講是學生學得好。在實際教學過程中我們的教學方法是否合乎學生實際呢?上課、評卷、答疑解難時,有的教師自以為講清楚明白了,學生受到了一定的啟發(fā),但反思后發(fā)現(xiàn),教師的講解并沒有很好地從學生原有的知識基礎出發(fā),從根本上解決學生認識上鴻溝問題。有的教師只是一味的設想按照自己某個固定的程序去解決某一類問題,也許學生當時聽明白了,但往往是是而非,并沒有真正理解問題的本質。 初中數(shù)學教學中,例習題教學是數(shù)學教學中重要的組成部分,是概念類教學的延伸和發(fā)展。教材中的例習題都是編者精心編制的,具有典型性和啟發(fā)性,它們不僅是對基礎知識的鞏固,同時對培養(yǎng)學生智力、掌握數(shù)學思想和方法,及培養(yǎng)學生應用數(shù)學意識和能力,提高學生的數(shù)學素養(yǎng)等都有重要意義。 四、教師要反思學生學習方法 《數(shù)學課程標準》指出,有效的數(shù)學學習活動不能單純依賴模仿與記憶,動手實踐、自主探索與合作交流是學生學習數(shù)學的重要方式,因此,轉變數(shù)學學習方式,倡導有意義的學習方式是課程改革的核心任務。初中學生年齡一般在十二至十六歲之間,正處生長發(fā)育期,思想不成熟,行為不穩(wěn)定,辦事情緒化,喜表露,易沖動, 既有面見師長的羞澀, 有初生牛犢不怕虎的習性。在數(shù)學學習上憑興趣,看心情,個性反映較為突出,有不少學生學習方法也存在一定的問題。同時他們往往又很難發(fā)現(xiàn)自己的學習方法不妥。所以,教師就應該反思學生的學習方法,找一找哪些問題,并幫助他們努力改變不恰當?shù)姆椒,使學生達到《新課標》的要求。 總之,為學之道,必本與思,思則得之,不思則不得。教學也是這個規(guī)律,只教不思就會成為教死書的教書匠,學生也得不到很好的受益。要想成為優(yōu)秀的教師,只有一邊教書一邊總結,一邊教書一邊反思,才能實現(xiàn)自己的目的。 一、教學目標: 。1)學生在教師引導下,積極主動地經歷探索三角形全等的條件的過程,體會利用操作、歸納獲得數(shù)學結論的過程。 (2)掌握三角形全等的“邊邊邊”、“邊角邊”、“角邊角”、“角角邊”的判定方法,了解三角形的穩(wěn)定性,能用三角形的全等解決一些實際問題。 (3)培養(yǎng)學生的空間觀念,推理能力,發(fā)展有條理地表達能力,積累數(shù)學活動經驗。 二、教學的重點與難點: 重點:三角形全等條件的探索過程是本節(jié)課的重點。 從設置情景提出問題,到動手操作,交流,直至歸納得出結論,整個過程學生不僅得到了兩個三角形全等的條件,更重要得是經歷了知識的形成過程,體會了一種分析問題的方法,積累了數(shù)學活動經驗,這將有利于學生更好的理解數(shù)學,應用數(shù)學。 難點:三角形全等條件的探索過程,特別是創(chuàng)設出問題后,學生面對開放性問題,要做出全面、正確得分析,并對各種情況進行討論,對初一學生有一定的難度。 根據(jù)初一學生年齡、生理及心理特征,還不具備獨立系統(tǒng)地推理論證幾何問題的能力,思維受到一定的局限,考慮問題不夠全面,因此要充分發(fā)揮教師的主導作用,適時 點撥、引導,盡可能調動所有學生的積極性、主動性參與到合作探討中來,使學生在與他人的合作交流中獲取新知,并使個性思維得以發(fā)展。 三、教學過程 電腦顯示,帶領學生復習全等三角定義及其性質。電腦顯示,小明畫了一個三角形,怎樣才能畫一個三角形與他的三角形全等?我們知道全等三角形三條邊分別對應相等,三個角分別對應相等,那麼,反之這六個元素分別對應,這樣的兩個三角形一定全等.但是,是否一定需要六個條件呢?條件能否盡可能少嗎?對學生分類中出現(xiàn)的問題,予以糾正,對學生提出的解決問題的不同策略,要給予肯定和鼓勵,以滿足多樣化的學生需要,發(fā)展學生個性思維。 按照三角形“邊、角”元素進行分類,師生共同歸納得出: 1、一個條件:一角,一邊 2、兩個條件:兩角;兩邊;一角一邊 3、三個條件:三角;三邊;兩角一邊;兩邊一角 按以上分類順序動腦、動手操作,驗證。 教師收集學生的作品,加以比較,得出結論: 只給出一個或兩個條件時,都不能保證所畫出的三角形一定全等。 下面將研究三個條件下三角形全等的'判定。 (1)已知三角形的三個角分別為40°、60°、80°,畫出這個三角形,并與同伴比較是否全等。 學生得出結論后,再舉例體會一下。舉例說明: 如老師上課用的三角尺與同學用的三角板三個角分別對應相等,但一個大一個小,很顯然不全等; 再如同是:等邊三角形,邊長不等,兩個三角形也不全等。等等。 。2)已知三角形三條邊分別是4cm,5cm,7cm,畫出這個三角形,并與同伴比較是否全等。 板演:三邊對應相等的兩個三角形全等,簡寫為“邊邊邊”或“SSS”。 由上面的結論可知:只要三角形三邊的長度確定了,這個三角形的形狀和大小就確定了。實物演示:由三根木條釘成的一個三角形框架,它的大小和形狀是固定不變的,三角形的這個性質叫三角形的穩(wěn)定性。 舉例說明該性質在生活中的應用 類比著三角形,讓學生動手操作,研究四邊形、五邊性有無穩(wěn)定性 圖形的穩(wěn)定性與不穩(wěn)定性在生活中都有其作用,讓學生舉例說明。 題組練習(略)3 、(對有能力的學生要求把實際問題抽象成數(shù)學問題,根據(jù)自己的理解寫出推理過程。對一般學生要求口頭表達理由,并能說明每一步的根據(jù)。) 教師帶領,回顧反思本節(jié)課對知識的研究探索過程,小結方法及結論,提煉數(shù)學思想,掌握數(shù)學規(guī)律。 在教師引導下回憶前面知識,為探究新知識作好準備。 議一議: 學生分小組進行討論交流。受教師啟發(fā),從最少條件開始考慮,一個條件;兩個條件;三個條件?經過學生逐步分析,各種情況漸漸明朗,進行交流予以匯總,歸納。 想一想: 對只給一個條件畫三角形,畫出的三角形一定全等嗎 。慨嬕划嫞 按照下面給出的兩個條件做出三角形: 。1)三角形的兩個角分別是:30°,50° 。2)三角形的兩條邊分別是:4cm,6cm 。3)三角形的一個角為30,一條邊為3cm剪一剪: 把所畫的三角形分別剪下來。比一比: 同一條件下作出的三角形與其他同學作的比一比,是否全等。學生重復上面的操作過程,畫一畫,剪一剪,比一比。學生總結出:三個內角對應相等的兩個三角形不一定全等學生舉例說明 學生模仿上面的研究方法,獨立完成操作過程,通過交流,歸納得出結論。鼓勵學生自己舉出實例,體驗數(shù)學在生活中的應用.學生那出準備好的硬紙條,進行實驗,得出結論:四邊形、五邊形不具穩(wěn)定性。 學生練習 學生在教師引導下回顧反思,歸納整理。 一教學目標 1.通過案例理解正比例函數(shù),能列出正比例函數(shù)關系式 2.教會學生應用正比例函數(shù)解決生活實際問題的能力 二教學重點 理解正比例函數(shù)的概念 三教學難點 利用正比例函數(shù)解決生活實際問題 四教學過程 【提出問題】 1.《阿甘正傳》是一部勵志影片。片中阿甘曾跑步繞美國數(shù)圈,假設他從德州到加州行進了千米,耗費了他150天時間。 。1)阿甘大約平均每天跑步多少千米? (3)阿甘一個月(30天)的行程是多少千米? 【生】列算式回答 【師】點評總結 2.寫出下列變量間的函數(shù)表達式 。1)正方形的周長l和半徑r之間的關系【進一步抽象問題讓學生思考】 。2)大米每千克四元,則售價y元與數(shù)量x(kg)的函數(shù)關系式是什么? 。3)下列函數(shù)關系式有什么共同點?(小組合作)【分析共同點和不同點,找出規(guī)律】 。1)y=200x(2) l=2∏r(3) m= 【生回答,師點評】 【引入新課】 1、正比例函數(shù)的概念:一般地,形如y=kx (k≠0)的函數(shù),叫做正比例函數(shù),其中k叫做比例系數(shù).【板書概念,引導學生分析正比例函數(shù)的定義】 2 、【例題講解】 例1在同一坐標系里,畫出下列函數(shù)的圖像:y==x y=3x 解:【略】 【掌握函數(shù)圖像的畫法:列表,描點,連線】 3、練習 。1)已知正比例函數(shù)y=kx.當x=3時y=6 。求k的值 (2)一種筆記本每本的單價為3元。則銷售金額y元與銷售量x之間的關系式是怎樣的?當銷售金額為360元時,則售出了多少本這種筆記本? 五課外作業(yè) 【反思】 由于函數(shù)的`概念比較抽象,學生不容易理解。而理解函數(shù)的概念是教學的重點。這節(jié)課首先通過實例,回顧函數(shù)的概念,其次抽象提出正比例函數(shù)關系式,由學生觀察得到特點,然后引出正比例函數(shù)的概念和特點,再通過練習加以鞏固,最后通過小組討論利用正比例函數(shù)解決生活中的問題。 【數(shù)學初中教學設計】相關文章: 初中數(shù)學的教學設計06-21 初中數(shù)學教學設計03-03 初中數(shù)學教學設計07-26 數(shù)學初中教學設計02-21 初中數(shù)學教學設計與反思12-23 初中數(shù)學函數(shù)教學設計07-28 人教版初中數(shù)學教學設計08-02 初中數(shù)學教學設計模板07-23 初中數(shù)學教學設計大全07-23數(shù)學初中教學設計10
數(shù)學初中教學設計11
數(shù)學初中教學設計12
數(shù)學初中教學設計13
數(shù)學初中教學設計14
數(shù)學初中教學設計15