- 相關(guān)推薦
一次函數(shù)課件(精選11篇)
作為一名默默奉獻(xiàn)的教育工作者,時常要準(zhǔn)備好課件,開展教學(xué)工作,課件可以生動、形象地描述各種教學(xué)問題,增加課堂教學(xué)氣氛,提高學(xué)生的學(xué)習(xí)興趣,拓寬學(xué)生的知識視野,那要怎么寫好課件呢?下面是小編為大家整理的一次函數(shù)課件,歡迎閱讀與收藏。
一、 說教材
(一)本節(jié)內(nèi)容在教材中的地位和作用
本課的內(nèi)容是人教版八年級上冊第14章第2節(jié)第2課時,就是課本115到116頁的內(nèi)容。在許多方面與正比例函數(shù)的圖象和性質(zhì)有著緊密聯(lián)系,是本章中的重點。本節(jié)課安排在正比例函數(shù)的圖象與一次函數(shù)的概念之后。通過這一節(jié)課的學(xué)習(xí)使學(xué)生掌握一次函數(shù)圖象的畫法和一次函數(shù)的性質(zhì)。它既是正比例函數(shù)的圖象和性質(zhì)的拓展,又是今后繼續(xù)學(xué)習(xí)“用函數(shù)觀點看方程(組)與不等式”的基礎(chǔ),在本章中起著承上啟下的作用。本節(jié)教學(xué)內(nèi)容還是學(xué)生進(jìn)一步學(xué)習(xí)“數(shù)形結(jié)合”這一數(shù)學(xué)思想方法的很好素材。作為一種數(shù)學(xué)模型,一次函數(shù)在日常生活中也有著極其廣泛的應(yīng)用。
(二)說教學(xué)目標(biāo)
基于以上的教材分析,結(jié)合新課程標(biāo)準(zhǔn)的新理念,確立如下教學(xué)目標(biāo):
知識技能:
1、理解直線y=kx+b與y=kx之間的位置關(guān)系;
2、會利用兩個合適的點畫出一次函數(shù)的圖象;
3、掌握一次函數(shù)的性
數(shù)學(xué)思考:
1、通過研究圖象,經(jīng)歷知識的歸納、探究過程;培養(yǎng)學(xué)生觀察、比較、概括、推理的能力;
2、通過一次函數(shù)的圖象總結(jié)函數(shù)的性質(zhì),體驗數(shù)形結(jié)合法的應(yīng)用,培養(yǎng)推理及抽象思維能力。
情感態(tài)度:
1、通過畫函數(shù)圖象并借助圖象研究函數(shù)的性質(zhì),體驗數(shù)與形的內(nèi)在聯(lián)系,感受函數(shù)圖象的簡潔美;
2、在探究一次函數(shù)的圖象和性質(zhì)的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神。
(三)說教學(xué)重點難點
教學(xué)重點:一次函數(shù)的圖象和性質(zhì)。
教學(xué)難點:由一次函數(shù)的圖象歸納得出一次函數(shù)的性質(zhì)及對性質(zhì)的理解。
二、說教法學(xué)法
1、教學(xué)方法
依據(jù)當(dāng)前素質(zhì)教育的要求:以人為本,以學(xué)生為主體,讓教最大限度的服務(wù)與學(xué)。因此我選用了以下教學(xué)方法:
1.自學(xué)體驗法——利用學(xué)生描點作圖經(jīng)歷體驗并發(fā)現(xiàn)問題,分析問題進(jìn)一步歸納總結(jié)。
目的:通過這種教學(xué)方式來激發(fā)學(xué)生學(xué)習(xí)的積極主動性,培養(yǎng)學(xué)生獨立思考能力和創(chuàng)新意識。
2.直觀教學(xué)法——利用多媒體現(xiàn)代教學(xué)手段。
目的:通過圖片和材料的展示來激發(fā)學(xué)生學(xué)習(xí)興趣,把抽象的知識直觀的展現(xiàn)在學(xué)生面前,逐步將他們的感性認(rèn)識引領(lǐng)到理性的思考。
2、學(xué)法指導(dǎo)
作為一名合格的老師,不止局限于知識的傳授,更重要的是使學(xué)生學(xué)會如何去學(xué)。本著這樣的原則,課上指導(dǎo)學(xué)生采用以下學(xué)習(xí)方法。
1、應(yīng)用自主探究。培養(yǎng)學(xué)生獨立思考能力,閱讀能力和自主探究的學(xué)習(xí)習(xí)慣。
2、指導(dǎo)學(xué)生觀察圖象,分析材料。培養(yǎng)觀察總結(jié)能力。
三、 說教學(xué)程序設(shè)計
(一)創(chuàng)設(shè)情境,導(dǎo)入新課
活動1:觀察:
展示學(xué)生作圖作品(書P28例2),強調(diào)列表及圖象上的點的對應(yīng)關(guān)系。
課前一兩分鐘對學(xué)生上交的作圖作品進(jìn)行快速篩選,進(jìn)量多選出一部分,課上多肯定多表揚多鼓勵。再從中選取一兩幅優(yōu)秀的作品上課為示例。
目的有四:
1、根據(jù)學(xué)生的年齡特征:都具有強烈的表現(xiàn)自我的心理。大部分學(xué)生盼望在課上教師能展示自己的作品,這樣將最大限度地調(diào)動學(xué)生的學(xué)習(xí)積極性,其作圖會比平時更規(guī)范更準(zhǔn)確;也可以說完成了變教師課上被動講為學(xué)生課外主動學(xué)習(xí)的過程,這樣以來學(xué)生的所獲更多,印象更深;
2、課上展示學(xué)生作品本身就是對學(xué)生完成作業(yè)情況的肯定,這又恰好給予了學(xué)生足夠的成功感和榮譽感,這便增加了學(xué)生學(xué)習(xí)數(shù)學(xué)的信心,樂意學(xué)習(xí)數(shù)學(xué),激發(fā)了學(xué)習(xí)熱情,聽課更加專心。
3、學(xué)生經(jīng)歷畫圖象進(jìn)而感悟它的形狀及與正比例函數(shù)圖象的異同,為后面的發(fā)現(xiàn)規(guī)律作了準(zhǔn)備。
4、令教師對學(xué)生有了更深層次的了解,能更好地把握課堂。
(二)嘗試探索、體驗新知:
活動1、觀察探索:
比較兩個函數(shù)圖象的相同點與不同點?
第一步;根據(jù)你的觀察結(jié)果回答問題。(書中原問題1、2、3)
目的:這樣在學(xué)生已經(jīng)知道正比例函數(shù)的圖象是一條直線的基礎(chǔ)上,通過對應(yīng)描點法來畫出了圖象,讓學(xué)生通過操作體驗感悟兩者之間的關(guān)系,問題變得直觀形象,學(xué)生們非常容易地完成平移。
第二步:在學(xué)生作出的兩條平行直線中,教師先引導(dǎo)學(xué)生觀察正比例函數(shù)圖象的交點情況,引用兩點法(兩點確定線);在此基礎(chǔ)上引導(dǎo)學(xué)生發(fā)現(xiàn)“直線y=--6x+5與坐標(biāo)軸交點”并思考:一次函數(shù)y=--6x+5又如何作出圖象?
目的:這樣通過啟發(fā)學(xué)生視覺見到的兩點,即與坐標(biāo)軸的交點{(0,b),和(-b/k,0)兩點};此交點的求法(學(xué)生易從填表中的數(shù)據(jù)發(fā)現(xiàn)),再反之引導(dǎo)學(xué)生抓住這兩點畫圖象。就此題體驗一次函數(shù)圖象的兩點確定;同時也教會了學(xué)生用兩點法畫一次函數(shù)圖象。
活動2:知識再體驗:在同一直角坐標(biāo)系中畫出四個K值不同的一次函數(shù)圖象,并觀察分析。
目的:進(jìn)一步鞏固兩點作圖法,為探究一次函數(shù)的性質(zhì)作準(zhǔn)備。
活動3:展示“上下坡”材料,解決象限問題。(多媒體展示)
目的:讓學(xué)生觸發(fā)漫畫中“上下坡”的情景,引導(dǎo)思考k、b對圖象的影響——設(shè)置化抽象為形象,化枯燥為生動,同時學(xué)生對這種直觀的知識易接受,易理解,記憶深刻。從而突出了重點,攻破了難點。
活動4:師生互動(師生角色互換),提高拓展。(多媒體展出內(nèi)容)
目的:通過這種師生互動角色轉(zhuǎn)換形式,不但能盡快烘起課堂氣憤,而且復(fù)習(xí)了本課的重點內(nèi)容,對一次函數(shù)的性質(zhì)理解的更透徹。
(三)課堂小結(jié)
引導(dǎo)學(xué)生回憶所學(xué)知識。通過這節(jié)課的學(xué)習(xí)你得到什么啟示和收獲?談?wù)勀愕母惺?
目的:總結(jié)回顧學(xué)習(xí)內(nèi)容,有助于學(xué)生養(yǎng)成整理知識的習(xí)慣;有助于學(xué)生在剛剛理解了新知識的基礎(chǔ)上,及時把知識系統(tǒng)化、條理化。
(四)作業(yè)布置
加強“教、學(xué)”反思,進(jìn)一步提高“教與學(xué)”效果。
四、說板書設(shè)計
采用了如下板書,要點突出,簡明清晰。
一次函數(shù)
正比例函數(shù)圖像的畫法:確定兩點為(0,0)和(1,K)一次函數(shù)選擇的兩點為:(0,k)和(-bk,0)
五、說課后小結(jié)
實踐證明,在教學(xué)中,充分利用教學(xué)方法的優(yōu)勢,為學(xué)生創(chuàng)造一個好的學(xué)習(xí)氛圍,來引導(dǎo)學(xué)生發(fā)現(xiàn)問題、分析問題從而解決問題。多媒體課件支撐著整個教學(xué)過程,令學(xué)生在一個生動有趣的課堂上,能愉快地接受知識
一次函數(shù)課件 1
教學(xué)內(nèi)容:
一次函數(shù)
教學(xué)目標(biāo):
1、知識與技能:
掌握一次函數(shù)解析式的特點及意義;理解一次函數(shù)圖象特征與解析式的聯(lián)系規(guī)律。
2、過程與方法:
利用數(shù)形結(jié)合思想,進(jìn)一步分析一次函數(shù)與正比例函數(shù)的聯(lián)系,從而提高比較鑒別能力。
3、情感態(tài)度與價值觀:
通過學(xué)習(xí),培養(yǎng)學(xué)生獨立思考、合作探究,科學(xué)的思維方法。
4、法制目標(biāo):
通過對新知的應(yīng)用,向?qū)W生滲透《中華人民共和國環(huán)境保護(hù)法》提高學(xué)生對法律的認(rèn)識。
教學(xué)重點:
1、一次函數(shù)解析式特點
2、一次函數(shù)圖象特征與解析式聯(lián)系規(guī)律。
教學(xué)難點:
一次函數(shù)圖象特征與解析式的聯(lián)系規(guī)律。
教學(xué)過程
一、提出問題,創(chuàng)設(shè)情境
問題:某登山隊大本營所在地的氣溫為15℃,海拔每升高1km氣溫下降6℃.登山隊員由大本營向上登高xkm時,他們所處位置的氣溫是y℃.試用解析式表示y?與x的關(guān)系。
分析:從大本營向上當(dāng)海拔每升高1km時,氣溫從15℃就減少6℃,那么海拔增加xkm時,氣溫從15℃減少6x℃.因此y與x的函數(shù)關(guān)系式為:y=15-6x(x≥0)
當(dāng)然,這個函數(shù)也可表示為:y=-6x+15(x≥0)
當(dāng)?shù)巧疥爢T由大本營向上登高0.5km時,他們所在位置氣溫就是x=0.5時函數(shù)y=-6x+15的值,即y=-6×0.5+15=12(℃)。
這個函數(shù)與我們上節(jié)所學(xué)的正比例函數(shù)有何不同?它的圖象又具備什么特征?我們這節(jié)課將學(xué)習(xí)這些問題。
二、導(dǎo)入新課
1、合作探究:
我們先來研究下列變量間的對應(yīng)關(guān)系可用怎樣的函數(shù)表示?它們又有什么共同特點?
。1)、有人發(fā)現(xiàn),在20~25℃時蟋蟀每分鐘鳴叫次數(shù)c與溫度t(℃)有關(guān),即c?的值約是t的7倍與35的差。
(2)、一種計算成年人標(biāo)準(zhǔn)體重G(kg)的方法是,以厘米為單位量出身高值h減常數(shù)105,所得差是G的值。
。3)、某城市的市內(nèi)電話的月收費額y(元)包括:月租費22元,撥打電話x分的計時費(按0.01元/分收。。
。4)、把一個長10cm,寬5cm的矩形的長減少xcm,寬不變,矩形面積y(cm2)隨x的值而變化。
通過思考分析,可以得到這些問題的函數(shù)解析式分別為:
。1)、c=7t-35。
(2)、G=h-105。
。3)、y=0.01x+22。
。4)、y=-5x+50。
2、歸納總結(jié):
它們的形式與y=-6x+15一樣,函數(shù)的形式都是自變量x的k倍與一個常數(shù)的和。
一般地,形如y=kx+b(k、b是常數(shù),k≠0?)的函數(shù),?叫做一次函數(shù)(?linearfunction).當(dāng)b=0時,y=kx+b即y=kx.所以說正比例函數(shù)是一種特殊的一次函數(shù)。
3、新知應(yīng)用:
某工廠生產(chǎn)某種產(chǎn)品,每件產(chǎn)品的出廠價為50元,其成本價為25元。在生產(chǎn)過程中,平均每生產(chǎn)一件產(chǎn)品就有0.5立方米污水排出,所以為了凈化環(huán)境,工廠設(shè)計兩種方案對污水進(jìn)行處理,并準(zhǔn)備實施。
方案一:工廠污水凈化處理1立方米污水所用原材料費為2元,并且每月排污設(shè)備損耗費為30000元。
方案二:工廠將污水排到污水處理廠統(tǒng)一處理,每處理1立方米污水需要付14元的排污費。
問:
。1)設(shè)工廠每月X件件產(chǎn)品,每月利潤為y元,分別求出依方案一和方案二處理污水時y與x的函數(shù)關(guān)系式。(利潤=總收入—總支出)
。2)設(shè)工廠每月生產(chǎn)量為6000件產(chǎn)品時,你作為廠長在不污染環(huán)境,又節(jié)約資源的前提下應(yīng)選用哪一種處理污水的`方案?請通過計算加以說明。
通過此題,可以向?qū)W生滲透《中華人民共和國環(huán)境保護(hù)法》中的第二十四條產(chǎn)生環(huán)境污染和其他公害的單位,必須把環(huán)境保護(hù)工作納入計劃,建立環(huán)境保護(hù)責(zé)任制度;采取有效措施,防治在生產(chǎn)建設(shè)或者其他活動中產(chǎn)生的廢氣、廢水、廢渣、粉塵、惡臭氣體、放射性物質(zhì)以及噪聲振動、電磁波輻射等對環(huán)境的污染和危害。
第二十五條新建工業(yè)企業(yè)和現(xiàn)有工業(yè)企業(yè)的技術(shù)改造,應(yīng)當(dāng)采用資源利用率高、污染物排放量少的設(shè)備和工藝,采用經(jīng)濟合理的廢棄物綜合利用技術(shù)和污染物處理技術(shù)。第二十八條排放污染物超過國家或者地方規(guī)定的污染物排放標(biāo)準(zhǔn)的企業(yè)事業(yè)單位,依照國家規(guī)定繳納超標(biāo)準(zhǔn)排污費,并負(fù)責(zé)治理。水污染防治法另有規(guī)定的,依照水污染防治法的規(guī)定執(zhí)行。等內(nèi)容,要求學(xué)生要保護(hù)環(huán)境。
三、課堂練習(xí):
1、下列函數(shù)中哪些是一次函數(shù),哪些又是正比例函數(shù)
8(1)y=-8x(2)y=(3)y=5x2+6(3)y=-0.5x-1
2、汽車油箱中原有油50升,如果行駛中每小時用油5升,求油箱中的油量y(升)隨行駛時間x(時)變化的函數(shù)關(guān)系式,并寫出自變量x的取值范圍,y是x的一次函數(shù)嗎?
四、課時小結(jié)
本節(jié)學(xué)習(xí)了一次函數(shù)的意義,知道了其解析式、圖象特征,并學(xué)會了簡單方
法畫圖象,進(jìn)而利用數(shù)形結(jié)合的探究方法尋求出一次函數(shù)圖象特征與解析式的聯(lián)系,這使我們對一次函數(shù)知識的理解和掌握更透徹,也體會到數(shù)學(xué)思想在數(shù)學(xué)研究中的重要性
五、作業(yè):
P120第9題。
一次函數(shù)課件 2
一、教材的地位和作用
本 節(jié)課主要是在學(xué)生學(xué)習(xí)了函數(shù)圖象的基礎(chǔ)上,通過動手操作接受一次函數(shù)圖象是直線這一事實,在實踐中體會“兩點法”的簡便,向?qū)W生滲透數(shù)形結(jié)合的數(shù)學(xué)思想, 以使學(xué)生借助直觀的圖形,生動形象的變化來發(fā)現(xiàn)兩個一次函數(shù)圖象在直角坐標(biāo)系中的位置關(guān)系。培養(yǎng)學(xué)生主動學(xué)習(xí)、主動探索、合作學(xué)習(xí)的能力。本節(jié)課為探索一 次函數(shù)性質(zhì)作準(zhǔn)備。
。ㄒ唬┙虒W(xué)目標(biāo)的確定
教學(xué)目標(biāo)是教學(xué)的出發(fā)點和歸宿。因此,我根據(jù)新課標(biāo)的知識、能力和德育目標(biāo)的要求,以學(xué)生的認(rèn)知點,心理特點和本課的特點來制定教學(xué)目標(biāo)。
1、知識目標(biāo)
。1)能用“兩點法”畫出一次函數(shù)的圖象。
。2)結(jié)合圖象,理解直線y=kx+b(k、b是常數(shù),k≠0)常數(shù)k和b的取值對于直線的位置的影響。
2、能力目標(biāo)
。1)通過操作、觀察,培養(yǎng)學(xué)生動手和歸納的能力。
(2)結(jié)合具體情境向?qū)W生滲透數(shù)形結(jié)合的數(shù)學(xué)思想。
3、情感目標(biāo)
。1)通過動手操作,觀察探索一次函數(shù)的特征,體驗數(shù)學(xué)研究和發(fā)現(xiàn)的過程,逐步培養(yǎng)學(xué)生在教學(xué)活動中的主動探索的意識和合作交流的習(xí)慣。
。2)讓學(xué)生通過直觀感知、動手操作去經(jīng)歷、體會規(guī)律形成的過程。
(二)教學(xué)重點、難點
用“兩點法”畫出一次函數(shù)的圖象是研究一次函數(shù)的性質(zhì)的基礎(chǔ),是本節(jié)課的重點。直線y=kx+b(k、b是常數(shù),k≠0)常數(shù)k和b的取值對于直線的位置的影響,是本節(jié)課的難點。關(guān)鍵是通過學(xué)生的直觀感知、動手操作、合作交流歸納其規(guī)律。
二、學(xué)情分析
1、由用描點法畫函數(shù)的圖象的認(rèn)識,學(xué)生能接受一次函數(shù)的圖象是直線,結(jié)合“兩點確定一條直線”,學(xué)生能畫出一次函數(shù)圖象。
2、根據(jù)學(xué)生抽象歸納能力較差,學(xué)習(xí)直線y=kx+b(k、b是常數(shù),k≠0)常數(shù)k和b的取值對于直線的位置的影響有難度。所以教學(xué)中應(yīng)盡可能多地讓學(xué)生動手操作,突出圖象變化特征的探索過程,自主探索出其規(guī)律。
3、抓住初中學(xué)生的心理特征,運用直觀生動的'形象,引發(fā)學(xué)生的興趣,吸引他們的注意力;另一方面積極創(chuàng)造條件和機會,讓學(xué)生發(fā)表見解,發(fā)揮學(xué)生學(xué)習(xí)的主動性。
三、教學(xué)方法
我采用自主探究—→合作交流式教學(xué),讓學(xué)生動手操作,主動去探索,小組合作交流。而互動式教學(xué)將顧及到全體學(xué)生,讓全體學(xué)生都參與,達(dá)到優(yōu)生得到培養(yǎng),后進(jìn)生也有所收獲的效果。
四、教學(xué)設(shè)計
一、設(shè)疑,導(dǎo)入新課(2分鐘)
師:同學(xué)們,上節(jié)課我們學(xué)習(xí)了一次函數(shù),你能說一說什么樣的函數(shù)是一次函數(shù)嗎?
生1:函數(shù)的解析式都是用自變量的一次整式表示的,我們稱這樣的函數(shù)為一次函數(shù)。
生2:一次函數(shù)通?梢员硎緸閥=kx+b的形式,其中k、b為常數(shù),k≠0。
生3:正比例函數(shù)也是一次函數(shù)。
師:(同學(xué)們回答的都很好)通過前面的學(xué)習(xí)我們可以發(fā)現(xiàn),一次函數(shù)是一種特殊的函數(shù),那么一次函數(shù)的圖象是什么形狀呢?
這節(jié)課讓我們一起來研究 “一次函數(shù)的圖象”。(板書)
二、自主探究——小組交流、歸納——問題升華:
1、師:問(1)你們知道一次函數(shù)是什么形狀嗎?(4分鐘)
生:不知道。
師:那就讓我們一起做一做,看一看:(出示幻燈片)
用描點法作出下列一次函數(shù)的圖象。
(1)y= 0.5x (2) y= 0.5x+2
(3)y= 3x (4) y= 3x + 2
師:(為了節(jié)約時間)要求:用描點法時,最少5個點;以小組為單位,由小組長分配,每人畫一個圖象。畫完后,小組訂正,看是否畫的正確?
然后討論解決問題(1):觀察你和你的同伴畫出的圖象,你認(rèn)為一次函數(shù)的圖象是什么形狀?
小組匯報:一次函數(shù)的圖象是直線。
師:所有的一次函數(shù)圖象都是直線嗎?
生:是。
師:那么一次函數(shù)y=kx+b(其中k、b為常數(shù),k≠0),也可以稱為直線y=kx+b(其中k、b為常數(shù),k≠0)。(板書)
師:(出示幻燈片)問(2):觀察你和你的同伴所畫的圖象在位置上有沒有不同之處?(2分鐘)
討論正比例函數(shù)的圖象與一般的一次函數(shù)圖象在位置上有沒有不同之處。
小組1:正比例函數(shù)圖象經(jīng)過原點。
小組2:正比例函數(shù)圖象經(jīng)過原點,一般的一次函數(shù)不經(jīng)過原點。
師出示幻燈片3(使學(xué)生再一次加深印象)
師:問(3):對于畫一次函數(shù)y=kx+b(其中k)b為常數(shù),k≠0)的圖象——直線,你認(rèn)為有沒有更為簡便的方法?
。ㄒ贿吽伎,可以和同桌交流)(2分鐘)
生1:用3個點。
生2:老師我這個更簡單,用兩個點。因為兩點確定一條直線嘛!
生3:如畫y=0.5x的圖象,經(jīng)過(0,0)點和(2,1)點這兩個點做直線就行。
師:我們都認(rèn)為畫一次函數(shù)圖象,只過兩個點畫直線就行。
(幻燈片4:師,動畫演示用“兩點法”畫一次函數(shù)的過程)
師:做一做,請你用“兩點法”在剛才的直角坐標(biāo)系中,畫出其余三個一次函數(shù)的圖象。(比一比誰畫的既快又好)(4分鐘)
師:問(4):和你的同伴比一比,看誰取的那兩個點更為簡便一些?
組1:若是正比例函數(shù),我們組先取(0,0)點,如畫y=0.5x的圖象,我們再了取(2,1)點。這樣找的坐標(biāo)都是整數(shù)。
組2:我們組認(rèn)為盡量都找整數(shù)。
組3:我們組認(rèn)為都從兩條坐標(biāo)軸上找點,這樣比較準(zhǔn)確。如y=3x+2,我們?nèi)↑c(0,3)和點(-2/3,0)
組4:我們組認(rèn)為,正比例函數(shù)經(jīng)過(0,0)點和(1,k)點;一般的一次函數(shù)經(jīng)過(0,b)點和(-b/k,0)點。
師:同學(xué)們說的都很好。我覺得可以根據(jù)情況來取點。
2、師:我們現(xiàn)在已經(jīng)用:“兩點法”把四個一次函數(shù)圖象準(zhǔn)確而又迅速地畫在了一個直角坐標(biāo)系中,這四個函數(shù)圖象之間在位置上有沒有什么關(guān)系呢?
問(1):(由自己所畫的圖象)觀察下列各對一次函數(shù)圖象在位置上有什么關(guān)系?(獨自觀察——學(xué)生回答)(3分鐘)
、賧=0.5x與y=0.5x+2;②y=3x與y=3x+2;③y=0.5x與y=3x;④y=0.5x+2與y=3x+2。
生1:①y=0.5x與y=0.5x+2;兩直線平行。
生2:②y=3x與y=3x+2;兩直線平行。
生3:③y=0.5x與y=3x;兩直線相交。
生4:④y=0.5x+2與y=3x+2;兩直線相交。
師:其他同學(xué)有沒有補充?
生5:③y=0.5x與y=3x都是正比例函數(shù);兩直線相交,并且交點是點(0,0)點。
生6:老師,我也發(fā)現(xiàn)了④y=0.5x+2與y=3x+2的圖象相交,并且交點是點(0,2)。
師:(出示幻燈片5)同學(xué)們回答都不錯,我們要向生5和生6學(xué)習(xí),學(xué)習(xí)他們的細(xì)致思考。
一次函數(shù)課件 3
一、目的要求
1、使學(xué)生初步理解一次函數(shù)與正比例函數(shù)的概念。
2、使學(xué)生能夠根據(jù)實際問題中的條件,確定一次函數(shù)與正比例函數(shù)的解析式。
二、內(nèi)容分析
1、初中主要是通過幾種簡單的函數(shù)的初步介紹來學(xué)習(xí)函數(shù)的,前面三小節(jié),先學(xué)習(xí)函數(shù)的概念與表示法,這是為學(xué)習(xí)后面的幾種具體的函數(shù)作準(zhǔn)備的,從本節(jié)開始,將依次學(xué)習(xí)一次函數(shù)(包括正比例函數(shù))、二次函數(shù)與反比例函數(shù)的有關(guān)知識,大體上,每種函數(shù)是按函數(shù)的解析式、圖象及性質(zhì)這個順序講述的,通過這些具體函數(shù)的學(xué)習(xí),學(xué)生可以加深對函數(shù)意義、函數(shù)表示法的認(rèn)識,并且,結(jié)合這些內(nèi)容,學(xué)生還會逐步熟悉函數(shù)的知識及有關(guān)的數(shù)學(xué)思想方法在解決實際問題中的應(yīng)用。
2、舊教材在講幾個具體的函數(shù)時,是按先講正反比例函數(shù),后講一次、二次函數(shù)順序編排的,這是適當(dāng)照顧了學(xué)生在小學(xué)數(shù)學(xué)中學(xué)了正反比例關(guān)系的知識,注意了中小學(xué)的銜接,新教材則是安排先學(xué)習(xí)一次函數(shù),并且,把正比例函數(shù)作為一次函數(shù)的特例予以介紹,而最后才學(xué)習(xí)反比例函數(shù),為什么這樣安排呢?第一,這樣安排,比較符合學(xué)生由易到難的認(rèn)識規(guī)津,從函數(shù)角度看,一次函數(shù)的解析式、圖象與性質(zhì)都是比較簡單的,相對來說,反比例函數(shù)就要復(fù)雜一些了,特別是,反比例函數(shù)的圖象是由兩條曲線組成的,先學(xué)習(xí)反比例函數(shù)難度可能要大一些。第二,把正比例函數(shù)作為一次函數(shù)的特例介紹,既可以提高學(xué)習(xí)效益,又便于學(xué)生了解正比例函數(shù)與一次函數(shù)的關(guān)系,從而,可以更好地理解這兩種函數(shù)的概念、圖象與性質(zhì)。
3、“函數(shù)及其圖象”這一章的重點是一次函數(shù)的概念、圖象和性質(zhì),一方面,在學(xué)生初次接觸函數(shù)的有關(guān)內(nèi)容時,一定要結(jié)合具體函數(shù)進(jìn)行學(xué)習(xí),因此,全章的主要內(nèi)容,是側(cè)重在具體函數(shù)的講述上的。另一方面,在大綱規(guī)定的幾種具體函數(shù)中,一次函數(shù)是最基本的,教科書對一次函數(shù)的討論也比較全面。通過一次函數(shù)的學(xué)習(xí),學(xué)生可以對函數(shù)的研究方法有一個初步的認(rèn)識與了解,從而能更好地把握學(xué)習(xí)二次函數(shù)、反比例函數(shù)的學(xué)習(xí)方法。
三、教學(xué)過程
復(fù)習(xí)提問:
1、什么是函數(shù)?
2、函數(shù)有哪幾種表示方法?
3、舉出幾個函數(shù)的例子。
新課講解:
可以選用提問時學(xué)生舉出的例子,也可以直接采用教科書中的四個函數(shù)的例子。然后讓學(xué)生觀察這些例子(實際上均是一次函數(shù)的解析式),y=x,s=3t等。觀察時,可以按下列問題引導(dǎo)學(xué)生思考:
(1)這些式子表示的是什么關(guān)系?(在學(xué)生明確這些式子表示函數(shù)關(guān)系后,可指出,這是函數(shù)。)
(2)這些函數(shù)中的自變量是什么?函數(shù)是什么?(在學(xué)生分清后,可指出,式子中等號左邊的y與s是函數(shù),等號右邊是一個代數(shù)式,其中的字母x與t是自變量。)
(3)在這些函數(shù)式中,表示函數(shù)的自變量的式子,分別是關(guān)于自變量的什么式呢?(這題牽扯到有關(guān)整式的基本概念,表示函數(shù)的自變量的式子也就是等號右邊的.式子,都是關(guān)于自變量的一次式。)
(4)x的一次式的一般形式是什么?(結(jié)合一元一次方程的有關(guān)知識,可以知道,x的一次式是kx+b(k≠0)的形式。)
由以上的層層設(shè)問,最后給出一次函數(shù)的定義。
一般地,如果y=kx+b(k,b是常數(shù),k≠0)那么,y叫做x的一次函數(shù)。
對這個定義,要注意:
(1)x是變量,k,b是常數(shù);
(2)k≠0 (當(dāng)k=0時,式子變形成y=b的形式。b是x的0次式,y=b叫做常數(shù)函數(shù),這點,不一定向?qū)W生講述。)
由一次函數(shù)出發(fā),當(dāng)常數(shù)b=0時,一次函數(shù)kx+b(k≠0)就成為:y=kx(k是常數(shù),k≠0)我們把這樣的函數(shù)叫正比例函數(shù)。
在講述正比例函數(shù)時,首先,要注意適當(dāng)復(fù)習(xí)小學(xué)學(xué)過的正比例關(guān)系,小學(xué)數(shù)學(xué)是這樣陳述的:
兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。
寫成式子是(一定)
需指出,小學(xué)因為沒有學(xué)過負(fù)數(shù),實際的例子都是k>0的例子,對于正比例函數(shù),k也為負(fù)數(shù)。
其次,要注意引導(dǎo)學(xué)生找出一次函數(shù)與正比例函數(shù)之間的關(guān)系:正比例函數(shù)是特殊的一次函數(shù)。
課堂練習(xí):
教科書13、4節(jié)練習(xí)第1題.
一次函數(shù)課件 4
教材分析
課程標(biāo)準(zhǔn)的描述
要求學(xué)生明確確定一次函數(shù)需要兩個條件,確定正比例函數(shù)需要一個條件;會用待定系數(shù)法求一次函數(shù)的解析式,并使學(xué)生初步形成數(shù)形結(jié)合的思想;
教學(xué)內(nèi)容分析
通過例4,介紹了用待定系數(shù)法求一次函數(shù)的解析式的基本步驟,并明確待定系數(shù)法的用途和目的,進(jìn)而形成數(shù)形結(jié)合的思想;
前面學(xué)生一直學(xué)習(xí)的是已知函數(shù)的解析式,然后研究函數(shù)的圖象和性質(zhì),是從數(shù)到形的過程;從這一節(jié)課開始,學(xué)生反過來學(xué)習(xí)從形到數(shù),并且在后面的學(xué)習(xí)中也經(jīng)常用到數(shù)形結(jié)合的思想,所以這節(jié)課是整個學(xué)生的一種逆向思維的轉(zhuǎn)折點,起著承上啟下的作用,具有重要意義。
學(xué)情分析
教學(xué)對象分析
1.本班學(xué)生對于一次函數(shù)的圖像和性質(zhì)掌握的比較好,能通過解析式畫出函數(shù)圖象,通過圖象判斷k和b的符號,會用待定系數(shù)法計算簡單的正比例函數(shù)的解析式,但求解二元一次方程組還有一定的困難,而利用待定系數(shù)法求一次函數(shù)的解析式,由于兩個式子相減,b就可以抵消,所以計算問題不會很大。另外,學(xué)生在練習(xí)的過程中,對新題型比較陌生,特別是沒有直接給出點或者沒有說求函數(shù)解析式,這樣的題學(xué)生掌握的不夠好。
2.學(xué)生已經(jīng)學(xué)過解二元一次方程組,并會求正比例函數(shù)的解析式,初步認(rèn)識過待定系數(shù)法,以前也接觸過數(shù)形結(jié)合的思想。在此基礎(chǔ)上,可以先讓學(xué)生知道什么是待定系數(shù)法,怎樣去用,具體步驟有哪些,進(jìn)而體會數(shù)形結(jié)合的思想,然后舉例說明從數(shù)到形和從形到數(shù)的相互滲透。
3.如何根據(jù)所給的信息找到條件,確定一次函數(shù)的`解析式,是學(xué)生學(xué)習(xí)的障礙,對于這個問題,主要利用四種題型(圖象、列表、交點、實際應(yīng)用)和學(xué)生一起探尋條件(主要是找兩個點),從而突破這個障礙。
教學(xué)目標(biāo)
1、理解待定系數(shù)法,并會用待定系數(shù)法求一次函數(shù)的解析式;
2、能結(jié)合一次函數(shù)的圖象和性質(zhì),靈活運用待定系數(shù)法求一次函數(shù)解析式;
3、能根據(jù)函數(shù)圖象確定一次函數(shù)的表達(dá)式,并由此進(jìn)一步體會數(shù)形結(jié)合的思想;
4、通過引入待定系數(shù)法的過程,向?qū)W生滲透轉(zhuǎn)化的思想,培養(yǎng)學(xué)生分析問題,解決問題的能力
教學(xué)重點和難點
項 目
內(nèi) 容
解 決 措 施
教學(xué)重點
利用待定系數(shù)法求一次函數(shù)的解析式
強調(diào)用待定系數(shù)法求一次函數(shù)解析式的步驟
教學(xué)難點
培養(yǎng)數(shù)形結(jié)合分析問題和解決問題的能力
指導(dǎo)學(xué)生從題目中找出兩個條件
教學(xué)策略
教學(xué)策略的簡要闡述
通過講授不同題型,從淺入深掌握待定系數(shù)法求一次函數(shù)解析式的四個步驟。
教學(xué)過程也是學(xué)生的認(rèn)知過程,只有學(xué)生積極地參與教學(xué)活動才能收到良好的效果。因此,本課采用啟發(fā)誘導(dǎo)、實例探究、講練結(jié)合的教學(xué)方法,揭示知識的發(fā)生和形成過程。先“引導(dǎo)發(fā)現(xiàn)”,后“講評點撥”,再加上多媒體的運用,使學(xué)生真正成為學(xué)習(xí)的主體。
教學(xué)過程
課堂教學(xué)過程設(shè)計
教學(xué)環(huán)節(jié)
教師活動
學(xué)生活動
設(shè)計意圖、依據(jù)
復(fù)習(xí)
出了一組關(guān)于一次函數(shù)解析式、圖象及性質(zhì)的填空題。
一、溫故知新:
1、在函數(shù)y=2x中,函數(shù)y隨自變量x的增大__________。
2、已知一次函數(shù)y=2x+4的圖像經(jīng)過點(m,8),則m=________。
3、一次函數(shù)y=-2x+1的圖象經(jīng)過第 象限,y隨著x的增大而 ; y=2x -1圖象經(jīng)過第 象限,y隨著x的增大而。
4、若一次函數(shù)y=x+b的圖象過點A(1,-1),則b=________
5、已知一次函數(shù)y=kx+5過點P(-1,2),則k=_____
大部分同學(xué)很快就完成,一小組同學(xué)輪流說答案并簡單講解。
復(fù)習(xí)一次函數(shù)的圖象和性質(zhì),并初步體會從數(shù)到形的思想
創(chuàng)設(shè)情景,提出問題
讓學(xué)生畫出y=2x和y=x+3的圖象,并思考“你在作這兩個函數(shù)圖象時,分別描了幾個點?你能否通過取直線上的這兩個點來求這條直線的解析式呢”
接著讓學(xué)生完成:
已知:一次函數(shù)y=kx+b當(dāng)x=1時y的值為2,當(dāng)x=2時y的值為5,求k和b.
解:把x=1,y=2;x=2,y=5分別代入函數(shù)y=kx+b得:
解得:
學(xué)生通過畫圖象確定“兩點確定一條直線”,即求一次函數(shù)解析式需要兩個條件,求出k和b即可。
激發(fā)學(xué)生學(xué)習(xí)的興趣,培養(yǎng)學(xué)生分析問題的能力。通過填空題的形式,初步體會列二元一次方程組求k和b的值。
講授例題
以教材例4為主,講授待定系數(shù)法的四個步驟,如何利用待定系數(shù)法求函數(shù)的解析式,如何找到兩個點,并總結(jié)歸納什么是待定系數(shù)法。
例:已知一次函數(shù)的圖象經(jīng)過點(3,5)與(-4,-9). 求這個一次函數(shù)的解析式.
待定系數(shù)法:______________________________________________________________
你能歸納出待定系數(shù)法求函數(shù)解析式的基本步驟嗎?
(1)_______________(2)_______________(3)_______________(4)____________
學(xué)生能根據(jù)給的兩個點的坐標(biāo)代到一次函數(shù)的解析式,并且解出二元一次方程組,求出k和b,知道求一次函數(shù)的解析式,只需要求出k和b,也就是需要找兩個條件,實質(zhì)上就是找兩個點。
通過例題使學(xué)生形成完整的利用待定系數(shù)法求函數(shù)解析式的步驟。
提出問題,形成思路
出示四種題型:圖象、表格、兩點的坐標(biāo)、實際應(yīng)用,分別用待定系數(shù)法求一次函數(shù)的解析式。
圖象的學(xué)生基本能求出,會找兩個點;對于利用表格信息確定函數(shù)解析式,學(xué)生不知道是求函數(shù)的解析式;實際應(yīng)用問題,學(xué)生分析問題能力較差,但基本上能找到兩個條件。
加深對待定系數(shù)法的理解,加強分析問題并解決問題的能力。
課堂小結(jié)
1、待定系數(shù)法求一次函數(shù)的解析式的步驟;
2、數(shù)形結(jié)合的思想:從數(shù)到形和從形到數(shù)的思路。
學(xué)生基本能說出這節(jié)課學(xué)習(xí)的主要內(nèi)容,對于數(shù)形結(jié)合的思想,學(xué)生基本能理解。
復(fù)習(xí)鞏固所學(xué)知識,體會數(shù)形結(jié)合的思想。
小試身手
設(shè)計了一組從淺入深的題目,鞏固本節(jié)課的內(nèi)容。
由于時間關(guān)系,只完成了3題。
深化鞏固所學(xué)知識,并能有所拓展提高。
板書設(shè)計
用待定系數(shù)法求一次函數(shù)的解析式
例、解:設(shè)這個一次函數(shù)的解析式為:y=kx+b
∵y=kx+b的圖象過點(3,5)與(-4,-9).
3k+b=5
-4k+b=-9
解方程組得
K=2
b=-1
這個一次函數(shù)的解析式為:y=2x-1
用待定系數(shù)法求函數(shù)解析式的步驟:
1、設(shè)
2、代
3、解
4、寫
教學(xué)
特色
教學(xué)特色
及時肯定學(xué)生和營造鼓勵學(xué)生的氛圍,激發(fā)學(xué)生學(xué)習(xí)的興趣,積極參與課堂,自覺學(xué)習(xí)和思考。
利用多媒體輔助教學(xué),增強直觀性,提高學(xué)習(xí)效率和質(zhì)量,增大教學(xué)容量,激發(fā)學(xué)生興趣,調(diào)動積極性。
問題式教學(xué), 互動式教學(xué)引導(dǎo)學(xué)生學(xué)會探究、學(xué)會合作、學(xué)會學(xué)習(xí)、學(xué)會體驗。
設(shè)置了學(xué)案,讓學(xué)生對教學(xué)內(nèi)容更容易掌握。
教學(xué)
反思
在導(dǎo)入新課時,通過一組練習(xí),讓學(xué)生清楚一次函數(shù)解析式或圖象關(guān)鍵是k和b的確定。通過幾種題型的練習(xí),讓學(xué)生思考和回答問題,令學(xué)生的數(shù)學(xué)語言概括能力,互助學(xué)習(xí)、合作學(xué)習(xí)的能力得到提高,因為之前學(xué)習(xí)了函數(shù)的圖象和性質(zhì),學(xué)生的數(shù)形結(jié)合思想滲透也較好。反而,在教學(xué)過程中,特別是學(xué)生解二元一次方程組,本來說很簡單的,但很多學(xué)生計算都出現(xiàn)了問題,所以在后面的教學(xué)中,要加強學(xué)生的計算能力。教學(xué)過程也是學(xué)生的認(rèn)知過程,只有學(xué)生積極地參與教學(xué)活動才能收到良好的效果.因此,本課采用啟發(fā)誘導(dǎo)、實例探究、講練結(jié)合的教學(xué)方法,揭示知識的發(fā)生和形成過程。先“引導(dǎo)發(fā)現(xiàn)”,后“講評點撥”,再加上多媒體的運用,使學(xué)生真正成為學(xué)習(xí)的主體。在課堂總結(jié)環(huán)節(jié)應(yīng)逐步培養(yǎng)學(xué)生學(xué)會總結(jié)的意識和習(xí)慣。
但有些細(xì)節(jié)還沒把握好,譬如小組交流探討時間較短等等,希望以后的課堂能更好的培養(yǎng)學(xué)生的合作交流能力。
一次函數(shù)課件 5
一、素質(zhì)教育目標(biāo)
。ㄒ唬┲R教學(xué)點
使學(xué)生初步了解正弦、余弦概念;能夠較正確地用sinA、cosA表示直角三角形中兩邊的比;熟記特殊角30°、45°、60°角的正、余弦值,并能根據(jù)這些值說出對應(yīng)的銳角度數(shù)。
。ǘ┠芰τ(xùn)練點
逐步培養(yǎng)學(xué)生觀察、比較、分析、概括的思維能力。
。ㄈ┑掠凉B透點
滲透教學(xué)內(nèi)容中普遍存在的運動變化、相互聯(lián)系、相互轉(zhuǎn)化等觀點。
二、教學(xué)重點、難點
1.教學(xué)重點:使學(xué)生了解正弦、余弦概念。
2.教學(xué)難點:用含有幾個字母的符號組sinA、cosA表示正弦、余弦;正弦、余弦概念。
三、教學(xué)步驟
。ㄒ唬┟鞔_目標(biāo)
1。引導(dǎo)學(xué)生回憶“直角三角形銳角固定時,它的對邊與斜邊的比值、鄰邊與斜邊的比值也是固定的”
2。明確目標(biāo):這節(jié)課我們將研究直角三角形一銳角的對邊、鄰邊與斜邊的比值——正弦和余弦。
。ǘ┱w感知
只要知道三角形任一邊長,其他兩邊就可知。
而上節(jié)課我們發(fā)現(xiàn):只要直角三角形的銳角固定,它的對邊與斜邊、鄰邊與斜邊的比值也固定。這樣只要能求出這個比值,那么求直角三角形未知邊的問題也就迎刃而解了。
通過與“30°角所對的直角邊等于斜邊的一半”相類比,學(xué)生自然產(chǎn)生想學(xué)習(xí)的欲望,產(chǎn)生濃厚的學(xué)習(xí)興趣,同時對以下要研究的內(nèi)容有了大體印象。
。ㄈ┲攸c、難點的學(xué)習(xí)與目標(biāo)完成過程
正弦、余弦的概念是全章知識的基礎(chǔ),對學(xué)生今后的學(xué)習(xí)與工作都十分重要,因此確定它為本課重點,同時正、余弦概念隱含角度與數(shù)之間具有一一對應(yīng)的函數(shù)思想,又用含幾個字母的符號組來表示,因此概念也是難點。
在上節(jié)課研究的基礎(chǔ)上,引入正、余弦,“把對邊、鄰邊與斜邊的比值稱做正弦、余弦”。如圖6—3:
請學(xué)生結(jié)合圖形敘述正弦、余弦定義,以培養(yǎng)學(xué)生概括能力及語言表達(dá)能力。教師板書:在△ABC中,∠C為直角,我們把銳角A的對邊與斜邊的比叫做∠A的正弦,記作sinA,銳角A的.鄰邊與斜邊的比叫做∠A的余弦,記作cosA。
若把∠A的對邊BC記作a,鄰邊AC記作b,斜邊AB記作c,則
引導(dǎo)學(xué)生思考:當(dāng)∠A為銳角時,sinA、cosA的值會在什么范圍內(nèi)?得結(jié)論0
教材例1的設(shè)置是為了鞏固正弦概念,通過教師示范,使學(xué)生會求正弦,這里不妨增問“cosA、cosB”,經(jīng)過反復(fù)強化,使全體學(xué)生都達(dá)到目標(biāo),更加突出重點。
例1求出圖6—4所示的Rt△ABC中的sinA、sinB和cosA、cosB的值。
學(xué)生練習(xí)1中1、2、3。
讓每個學(xué)生畫含30°、45°的直角三角形,分別求sin30°、sin45°、sin60°和cos30°、cos45°、cos60°。這一練習(xí)既用到以前的知識,又鞏固正弦、余弦的概念,經(jīng)過學(xué)習(xí)親自動筆計算后,對特殊角三角函數(shù)值印象很深刻。
例2求下列各式的值:
為了使學(xué)生熟練掌握特殊角三角函數(shù)值,這里還應(yīng)安排六個小題:
。1)sin45°+cos45;(2)sin30°?cos60°;
在確定每個學(xué)生都牢記特殊角的三角函數(shù)值后,引導(dǎo)學(xué)生思考,“請大家觀察特殊角的正弦和余弦值,猜測一下,sin20°大概在什么范圍內(nèi),cos50°呢?”這樣的引導(dǎo)不僅培養(yǎng)學(xué)生的觀察力、注意力,而且培養(yǎng)學(xué)生勇于思考、大膽創(chuàng)新的精神。還可以進(jìn)一步請成績較好的同學(xué)用語言來敘述“銳角的正弦值隨角度增大而增大,余弦值隨角度增大而減小!睘椴檎嘞冶碜鳒(zhǔn)備。
(四)總結(jié)、擴展
首先請學(xué)生作小結(jié),教師適當(dāng)補充,“主要研究了銳角的正弦、余弦概念,已知直角三角形的兩邊可求其銳角的正、余弦值。知道任意銳角A的正、余弦值都在0~1之間,即
0
還發(fā)現(xiàn)Rt△ABC的兩銳角∠A、∠B,sinA=cosB,cosA=sinB。正弦值隨角度增大而增大,余弦值隨角度增大而減小!
四、布置作業(yè)
教材習(xí)題14.1中A組3。
預(yù)習(xí)下一課內(nèi)容。
五、板書設(shè)計
一次函數(shù)課件 6
一、復(fù)習(xí)目標(biāo)
知識目標(biāo):了解一次函數(shù)的概念,掌握一次函數(shù)的圖象和性質(zhì);能正確畫出一次函數(shù)的圖象,并能根據(jù)圖象探索函數(shù)的性質(zhì);能根據(jù)具體條件列出一次函數(shù)的關(guān)系式。
能力目標(biāo):理解數(shù)形結(jié)合的數(shù)學(xué)思想,強化數(shù)學(xué)的建模意識,提高利用演繹和歸納進(jìn)行復(fù)習(xí)的能力。
情感目標(biāo):通過對零散知識點的系統(tǒng)整理,讓學(xué)生認(rèn)識到事物是有規(guī)律可循的,同時幫助他們提高復(fù)習(xí)的效果,增進(jìn)數(shù)學(xué)學(xué)習(xí)的興趣。
教學(xué)重點與難點
重點:根據(jù)不同條件求一次函數(shù)的解析式。
難點:根據(jù)函數(shù)圖象探索其性質(zhì)、體會函數(shù)與方程、函數(shù)與幾何的轉(zhuǎn)換。
教法與學(xué)法
教法分析:經(jīng)過精心的整理,我把本單元的知識歸納成“六個知識要點”,采用的“演繹法”向?qū)W生傳授。由于是復(fù)習(xí)課,我采用邊講邊練和問題教學(xué)的方式。
學(xué)法指導(dǎo):在這節(jié)課之前,我已經(jīng)讓全班同學(xué)擬定復(fù)習(xí)計劃書,很多同學(xué)在計劃書中都提出函數(shù)是難點,希望能多復(fù)習(xí)一點,我把這一信息反饋給班級,使全班同學(xué)都有一種意見得到尊重的滿足感,并產(chǎn)生了強烈的主動求知欲望。另外,通過向?qū)W生展示我對本單元的歸納,培養(yǎng)學(xué)生自己動腦,自己歸納總結(jié)的能力,從而掌握一種良好的復(fù)習(xí)方法。
二、教學(xué)過程
。ㄒ唬、知識回顧:由于是復(fù)習(xí)課,所以開門見山做課前練習(xí)。
(二)、提出“六個知識要點”:本單元的知識點比較繁多,而且在初中數(shù)學(xué)中所占的地位也比較重要。因此,我用“六點”來對于本單元進(jìn)行復(fù)習(xí):
知識點1、一般形式:
1、選擇題:
分析:這類題目是考察同學(xué)們對函數(shù)解析式的特征的理解,在講解時要突出兩個疑難:一是一次函數(shù)中自變量的指數(shù)等于1,而不是0;二是一次函數(shù)解析式中自變量的系數(shù)不為零。
知識點2:直線與坐標(biāo)的交點:函數(shù)y=kx+b圖象與X軸交點是()
與Y軸交點是
知識點3:一次函數(shù)圖像與特征:是指一次函數(shù)的圖象在坐標(biāo)系中的位置,直線經(jīng)過的象限:一般的,一條直線都經(jīng)過三個象限,由于新教材不注重k,b的符號決定直線經(jīng)過的象限的理解,且加上我班學(xué)生的基礎(chǔ)較差,成績一般。而題目又往往出這種知識點,因此我把這個知識點編成順口溜:“大大一二三,小小二三四,大小一三四,小大一二四”,意思是當(dāng)k>0,b>0是,直線經(jīng)過一二三象限,以此類推。(課件中以表格的形式向同學(xué)展示)同學(xué)們很容易記住并理解,舉一些例子加以說明:
知識點4:求解析式:一般用特定系數(shù)法求函數(shù)的解析式,特定系數(shù)法的一般步驟是“設(shè)→代→解→答”。當(dāng)然,在一些日常生活實際問題中,則可以根據(jù)題意直接列出解析式,這里應(yīng)該說明:自變量的取值范圍是函數(shù)解析式的一部分,但具體求法不作要求。
知識點5:求交點、求面積:指一次函數(shù)的圖象與坐標(biāo)軸的`交點坐標(biāo)以及兩直線交點坐標(biāo)的求法。直線y=kx+b與x軸的交點坐標(biāo),與y軸的交點坐標(biāo)是(0,b),這里要再次向?qū)W生解釋一下,交點坐標(biāo)是怎樣得出來的。兩條直線的交點坐標(biāo)的求法:是將兩直線的解析式聯(lián)成一個二元一次方程組,解這個方程組,將它的解寫成一個有序?qū)崝?shù)對,就是兩直線的交點坐標(biāo)。
求面積6:平移:
。ㄈ、堂堂清:
。ㄋ模、小結(jié):本節(jié)課歸納的“六個點”不是互相孤立,而是互相依托,互相滲透的,如求直線與坐標(biāo)軸圍成的直角三角形的面積時,需要先求出直線與坐標(biāo)軸的交點坐標(biāo),求直線與坐標(biāo)軸的交點坐標(biāo)時,往往需要先求出直線的解析式。由此告訴同學(xué)們,只有將知識融會貫通,舉一反三,才能學(xué)有所樂,學(xué)有所成。
。ㄎ澹、布置作業(yè):作業(yè)的布置應(yīng)精心設(shè)計,體現(xiàn)分層教學(xué)和因材施教的原則。
1、必做題:配套的試卷1張。
2、選做題:課堂上布置的思考題。
一次函數(shù)課件 7
一、課程標(biāo)準(zhǔn)要求:
、俳Y(jié)合具體情境體會一次函數(shù)的意義,根據(jù)已知條件確定一次函數(shù)表達(dá)式。
、跁嬕淮魏瘮(shù)的圖象,根據(jù)一次函數(shù)的圖象和解析表達(dá)式y(tǒng)=kx+b(k0)探索并理解其性質(zhì)(h0或b0時,圖象的變化情況)。
、劾斫庹壤瘮(shù)。
④能根據(jù)一次函數(shù)的圖象求二元一次方程組的近似解。
⑤能用一次函數(shù)解決實際問題。
二、識方法回顧:
1.已知直線y=2x+m不經(jīng)過第二象限,那么實數(shù)m的取值范圍是 _.
2.一次函數(shù)y=kx+b 的圖象經(jīng)過P(1,0)和Q(0,1)兩點,則k= ,b= .
3.正比例函數(shù)的圖象與直線y= - 3(2)x+4平行,則該正比例函數(shù)的解析式為 ____ .
4.函數(shù)y= - 2(3)x的圖象是一條過原點(0,0)及點(2, )的直線,這條直線經(jīng)過第 _____象限,y隨的增大而 .
5.已知一次函數(shù)y= - 2(1)x+2當(dāng)x= 時,y=0;當(dāng)x 時y 當(dāng)x 時y0.
6.把直線y= - 2(3)x -2向 平移 個單位,得到直線y= - 2(3)(x+4)
7.一次函數(shù)y=kx+b過點(-2,5),且它的圖象與y軸的交點和直線y=-2(1)x+3與y軸的交點關(guān)于x軸對稱,那么一次函數(shù)的.解析式是 .
8. 直線y=kx+b經(jīng)過點(0,3),且與兩坐標(biāo)軸構(gòu)成的直角三角形的面積是6,則其解析式為 .
三、典型例題講解:
例1 已知一次函數(shù)y=-2x-6。
(1)當(dāng)x=-4時,則y= ,當(dāng)y=-2時,則x=
(2)畫出函數(shù)圖象;
(3)不等式-2x-60解集是_____,不等式-2x-60解集是_____;
(4)函數(shù)圖像與坐標(biāo)軸圍成的三角形的面積為
(5)若直線y=3x+4和直線y=-2x-6交于點A,則點A的坐標(biāo)______;
(6)如果y 的取值范圍-42,則x的取值范圍__________;
(7)如果x的取值范圍-33,則y的最大值是________,最小值是_______.
例2 在邊長為的正方形ABCD的邊BC上,有一點P從B點運動到C點,設(shè)PB=x,四邊形APCD的面積為y,寫出y與自變量x的函數(shù)關(guān)系式,并且在直角坐標(biāo)系中畫出它的圖象.
例3 已知一次函數(shù)y=x+m和y=-x+n的圖象交于點A(-2,0)且與y軸的交點分別為B、C兩點,求△ABC的面積.
例4 某單位要印刷產(chǎn)品說明書,甲印刷廠提出:每份說明書收1元印刷費,另收1500元制版費;乙印刷廠提出:每份說明書收2.5元印刷費,不收制版費。
(1)分別寫出兩個印刷廠的收費y甲、y乙(元)與印刷數(shù)量x(份)之間的函數(shù)關(guān)系式;
(2)在同一坐標(biāo)系中作出它們的圖像;
(3)根據(jù)圖像回答問題:
、儆∷800份說明書時,選擇哪家印刷廠比較合算?
②該單位準(zhǔn)備拿出3000元用于印刷說明書,找哪家印刷廠印制的說明書多一些?
四、探究實踐:
【問題1】已知:一次函數(shù)的圖象經(jīng)過點(2,1)和點(-1,-3).
(1)求此一次函數(shù)的解析式;
(2)求此一次函數(shù)與x軸、y軸的交點坐標(biāo)以及該函數(shù)圖象與兩坐標(biāo)軸所圍成的三角形的面積;
(3)若一條直線與此一次函數(shù)圖象相交于(-2,a)點,且與y軸交點的縱坐標(biāo)是5,求這條直線的解析式;
(4)求這兩條直線與x軸所圍成的三角形面積.
【問題2】有一賣報人,從報社批進(jìn)某種證券報是每份1.5元,賣出的價格是每份2元,賣不掉的報紙以每份1元的價格退回報社,在30天的時間里有20天每天可賣出150份,其余10天只能賣出100份,但這30天每天從報社批進(jìn)的份數(shù)必須相同.設(shè)賣報人每天從報社批出x份報紙,月利潤為y元.
(1)寫出y與x的函數(shù)關(guān)系式;
(2)畫出此函數(shù)的圖象;
(3)此賣報人應(yīng)該每天從報社批進(jìn)多少份報紙時才能使月利潤最高?最高利潤是多少?
五、鞏固練習(xí):
1.直線y=kx+b經(jīng)過一、二、四象限,則直線y=-bx+k不經(jīng)過第____象限.
2.已知等腰三角形周長為20,寫出底邊長y關(guān)于腰長x的函數(shù)解析式(x為自變量),并寫出自變量取值范圍,畫出函數(shù)圖象.
3.已知A(8,0)及在第一象限的動點P(x,y),且x+y=10,設(shè)△OPA的面積為S.(1)求S關(guān)于x的函數(shù)解析式;(2)求x的取值范圍;(3)求S=12時P點坐標(biāo);(4)畫出函數(shù)S的圖象.
4.某果品公司欲請汽車運輸公司或火車貨運站將60噸水果從A地運到B地。已知汽車和火車從A地到B地的運輸路程均為s千米。這兩家運輸單位在運輸過程中,除都要收取運輸途中每噸每小時5元的冷藏費外,要收取的其它費用及有關(guān)運輸資料由下表給出:
運輸工具
行駛速度(千米/小時)
運費單價(元/噸千米)
裝卸總費用(元)
汽車
50
2
3000
火車
80
1.7
4620
說明:1元/噸千米表示每噸每千米1元
(1) 請分別寫出這兩家運輸單位運送這批水果所要收取的總費用y1(元)和y2(元)(用含s的式子表示);
(2) 為減少費用,你認(rèn)為果品公司應(yīng)選擇哪家運輸單位運送這批水果更為合算?
六、小結(jié) 本節(jié)我們主要是學(xué)習(xí)了哪些內(nèi)容?
七、教學(xué)反思
一次函數(shù)課件 8
教學(xué)目標(biāo)
。ㄒ唬┲R認(rèn)知要求
1、認(rèn)識一元一次方程與一次函數(shù)問題的轉(zhuǎn)化關(guān)系;
2、學(xué)會用圖象法求解方程;
3、進(jìn)一步理解數(shù)形結(jié)合思想;
。ǘ┠芰τ(xùn)練要求
1、通過一元一次方程與一次函數(shù)的圖象之間的結(jié)合,培養(yǎng)學(xué)生的數(shù)形結(jié)合意識;
2、訓(xùn)練大家能利用數(shù)學(xué)知識去解決實際問題的能力。
(三)情感與價值觀要求
體驗數(shù)、圖形是有效地描述現(xiàn)實世界的重要手段,認(rèn)識到數(shù)學(xué)是解決問題和進(jìn)行交流的重要工具,了解數(shù)學(xué)對促進(jìn)社會進(jìn)步和發(fā)展人類理性精神的.作用。
教學(xué)重點與難點
1、理解一元一次不方程與一次函數(shù)的轉(zhuǎn)化及本質(zhì)聯(lián)系。
2、掌握用圖象求解方程的方法。
教學(xué)過程
一、提出問題
(1)方程2x+20=0;(2)函數(shù)y=2x+20
觀察思考:二者之間有什么聯(lián)系?
從數(shù)上看:方程2x+20=0的解,是函數(shù)y=2x+20的值為0時,對應(yīng)自變量x的值
從形上看:函數(shù)y=2x+20與x軸交點的橫坐標(biāo)即為方程2x+20=0的解
根據(jù)上述問題,教師啟發(fā)學(xué)生思考:
根據(jù)學(xué)生回答,教師總結(jié):
由于任何一元一次方程都可以轉(zhuǎn)化為ax+b=0(a,b為常數(shù),a≠0)的形式,所以解一元一次方程可以轉(zhuǎn)化為:當(dāng)某一個函數(shù)的值為0時,求相應(yīng)的自變量的值。從圖象上看,這相當(dāng)于已知直線y=ax+b,確定它也x軸交點的橫坐標(biāo)的值。
二、典型例題:
例1、(書中例1)一個物體現(xiàn)在的速度是5米/秒,其速度每秒增加2米/秒,再過幾秒它的速度為17米/秒?
一次函數(shù)課件 9
一、教學(xué)目標(biāo)
知識與技能目標(biāo)
1、繼續(xù)鞏固一次函數(shù)的作圖方法;
2、結(jié)合一次函數(shù)的圖像,掌握一次函數(shù)及其圖像的簡單性質(zhì)。
過程與方法目標(biāo)
1、經(jīng)歷對一次函數(shù)性質(zhì)的探索過程,增強學(xué)生數(shù)形結(jié)合的意識,培養(yǎng)學(xué)生識圖能力;
2、經(jīng)歷對一次函數(shù)性質(zhì)的探索過程,培養(yǎng)學(xué)生的觀察力、語言表達(dá)能力。
情感與態(tài)度目標(biāo)
經(jīng)歷一次函數(shù)及性質(zhì)的探索過程,在合作與交流活動中發(fā)展學(xué)生的合作意識和能力。
二、教材分析
本節(jié)通過對一次函數(shù)圖像的研究,對一次函數(shù)的單調(diào)性作了探討;對一次函數(shù)的幾何意義也有涉及。在教學(xué)中要結(jié)合學(xué)生的認(rèn)識情況,循序漸進(jìn),逐層深入,對教材內(nèi)容可作適當(dāng)增加,但不宜太難。
教學(xué)重點:結(jié)合一次函數(shù)的圖像,研究一次函數(shù)的簡單性質(zhì)。
教學(xué)難點:一次函數(shù)性質(zhì)的`應(yīng)用。
三、學(xué)情分析
學(xué)生已經(jīng)對一次函數(shù)的圖像有了一定的認(rèn)識,在此基礎(chǔ)上,結(jié)合一次函數(shù)的圖像,通過問題的設(shè)計,引導(dǎo)學(xué)生探討一次函數(shù)的簡單性質(zhì),學(xué)生是較容易掌握的。
四、教學(xué)過程
(一)做一做
在同一直角坐標(biāo)系內(nèi)分別作出一次函數(shù)y=2x+6,y=2x1,y=x+6,y=5x的圖象。
(二)議一議
上述四個函數(shù)中,隨著x值的增大,y的值分別如何變化?
學(xué)生:有的在增大,有的在減小。
師:哪些一次函數(shù)隨x的增大y在增大;哪些一次函數(shù)隨x的增大y在減小,是什么在影響這個變化?
學(xué)生討論:y=2x+6和y=5x這兩個一次函數(shù)在增大;y=2x1和y=x+6在減小;影響這個變化的是x前面的系數(shù)k的符號:當(dāng)k為正數(shù)時,y隨x的增大而增大;當(dāng)k為負(fù)數(shù)時,y隨x的增大而減小。
師:當(dāng)k>0時,一次函數(shù)的圖象經(jīng)過哪些象限?
當(dāng)k<0時,一次函數(shù)的圖象經(jīng)過哪些象限?
一次函數(shù)課件 10
【教學(xué)目標(biāo)】
【知識目標(biāo)】
1、使學(xué)生初步理解二元一次方程與一次函數(shù)的關(guān)系
2、能根據(jù)一次函數(shù)的圖象求二元一次方程組的近似解.
3、能利用二元一次方程組確定一次函數(shù)的表達(dá)式
【能力目標(biāo)】
通過學(xué)生的思考和操作,在力圖提示出方程與圖象之間的關(guān)系,引入二元一次方程組圖象解法,同時培養(yǎng)了學(xué)生初步的數(shù)形結(jié)合的意識和能力.
【情感目標(biāo)】
通過學(xué)生的自主探索,提示出方程和圖象之間的對應(yīng)關(guān)系,加強了新舊知識的聯(lián)系,培養(yǎng)了學(xué)生的創(chuàng)新意識,激發(fā)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.
【教學(xué)重點】
1、二元一次方程和一次函數(shù)的關(guān)系
2、能根據(jù)一次函數(shù)的圖象求二元一次方程組的近似解
【教學(xué)難點】方程和函數(shù)之間的對應(yīng)關(guān)系即數(shù)形結(jié)合的意識和能力
知識點
一、學(xué)生起點分析:
學(xué)生的知識技能基礎(chǔ):學(xué)生能夠正確解方程(組),初步掌握了一次函數(shù)及其圖像的基礎(chǔ)知識,已經(jīng)具備了函數(shù)的初步思想,對于數(shù)形結(jié)合的數(shù)學(xué)思想也有所接觸。
學(xué)生的活動經(jīng)驗基礎(chǔ):學(xué)生能夠根據(jù)已知條件準(zhǔn)確畫出一次函數(shù)圖象,能夠認(rèn)識和接受函數(shù)解析式與二元一次方程之間的互相轉(zhuǎn)換.在過去已有經(jīng)驗基礎(chǔ)上能夠加深對“數(shù)”和“形”間的相互轉(zhuǎn)化的認(rèn)識,有小組合作學(xué)習(xí)經(jīng)驗.
二、學(xué)習(xí)任務(wù)分析:
本節(jié)課的主要內(nèi)容是二元一次方程(組)與一次函數(shù)及其圖像的綜合應(yīng)用.通過探索“方程”與“函數(shù)圖像”的關(guān)系,培養(yǎng)學(xué)生數(shù)學(xué)轉(zhuǎn)化的思想,通過學(xué)習(xí)二元一次方程方程組的解與直線交點坐標(biāo)之間的關(guān)系,使學(xué)生初步建立了“數(shù)”(二元一次方程)與“形”(一次函數(shù)的圖像)之間的對應(yīng)關(guān)系,進(jìn)一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識和能力.因此確定本節(jié)課的'教學(xué)目標(biāo)為:
1.初步理解二元一次方程和一次函數(shù)的關(guān)系;
2.掌握二元一次方程組和對應(yīng)的兩條直線之間的關(guān)系;
3.發(fā)展學(xué)生數(shù)形結(jié)合的意識和能力,使學(xué)生在自主探索中學(xué)會不同數(shù)學(xué)知識間可以互相轉(zhuǎn)化的數(shù)學(xué)思想和方法.
教學(xué)重點
二元一次方程和一次函數(shù)的關(guān)系;
教學(xué)難點
數(shù)形結(jié)合和數(shù)學(xué)轉(zhuǎn)化的思想意識.
四、教法學(xué)法
1.教法學(xué)法
啟發(fā)引導(dǎo)與自主探索相結(jié)合.
2.課前準(zhǔn)備
教具:多媒體課件、三角板.
學(xué)具:鉛筆、直尺、練習(xí)本、坐標(biāo)紙.
五、教學(xué)過程
本節(jié)課設(shè)計了六個教學(xué)環(huán)節(jié):第一環(huán)節(jié)設(shè)置問題情境,啟發(fā)引導(dǎo);第二環(huán)節(jié)自主探索,建立“方程與函數(shù)圖像”的模型;第三環(huán)節(jié)典型例題,探究方程與函數(shù)的相互轉(zhuǎn)化;第四環(huán)節(jié)反饋練習(xí);第五環(huán)節(jié)課堂小結(jié);第六環(huán)節(jié)作業(yè)布置.
同步練習(xí)
A,B兩地相距100千米,甲、乙兩人騎車同時分別從A,B兩地相向而行.假設(shè)他們都保持勻速行駛,則他們各自到A地的距離S(千米)都是騎車時間t(時)的一次函數(shù).1小時后乙距離A地80千米;2小時后甲距離A地30千米.問經(jīng)過多長時間兩人將相遇?
三典型例題,探究一次函數(shù)解析式的確定
內(nèi)容:例1某長途汽車客運站規(guī)定,乘客可以免費攜帶一定質(zhì)量的行李,但超過該質(zhì)量則需購買行李票,且行李費y(元)是行李質(zhì)量x(千克)的一次函數(shù).現(xiàn)知李明帶了60千克的行李,交了行李費5元,張華帶了90千克的行李,交了行李費10元.
(1)寫出y與x之間的函數(shù)表達(dá)式;
(2)旅客最多可免費攜帶多少千克的行李?
一次函數(shù)課件 11
一、教材分析
本節(jié)內(nèi)容共安排2個課時完成。該節(jié)內(nèi)容是二元一次方程(組)與一次函數(shù)及其圖像的綜合應(yīng)用。通過探索方程與函數(shù)圖像的關(guān)系,培養(yǎng)學(xué)生數(shù)學(xué)轉(zhuǎn)化的思想,通過二元一次方程方程組的圖像解法,使學(xué)生初步建立了數(shù)(二元一次方程)與形(一次函數(shù)的圖像(直線))之間的對應(yīng)關(guān)系,進(jìn)一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識和能力。本節(jié)要注意的是由兩條直線求交點,其交點的橫縱坐標(biāo)為二元一次方程組的近似解,要得到準(zhǔn)確的結(jié)果,應(yīng)從圖像中獲取信息,確立直線對應(yīng)的函數(shù)表達(dá)式即方程,再聯(lián)立方程應(yīng)用代數(shù)方法求解,其結(jié)果才是準(zhǔn)確的.
二、學(xué)情分析
學(xué)生已有了解方程(組)的基本能力和一次函數(shù)及其圖像的基本知識,學(xué)習(xí)本節(jié)知識困難不大,關(guān)鍵是讓學(xué)生理解二元一次方程和一次函數(shù)之間的內(nèi)在聯(lián)系,體會數(shù)和形間的相互轉(zhuǎn)化,從中使學(xué)生進(jìn)一步感受到數(shù)的問題可以通過形來解決,形的問題也可以通過數(shù)來解決.
三、目標(biāo)分析
1.教學(xué)目標(biāo)
知識與技能目標(biāo)
(1) 初步理解二元一次方程和一次函數(shù)的關(guān)系;
(2) 掌握二元一次方程組和對應(yīng)的兩條直線之間的關(guān)系;
(3) 掌握二元一次方程組的圖像解法.
過程與方法目標(biāo)
(1) 教材以問題串的形式,揭示方程與函數(shù)間的相互轉(zhuǎn)化,使學(xué)生在自主探索中學(xué)會不同數(shù)學(xué)知識間可以互相轉(zhuǎn)化的數(shù)學(xué)思想和方法;
(2) 通過做一做引入例1,進(jìn)一步發(fā)展學(xué)生數(shù)形結(jié)合的意識和能力.
(3) 情感與態(tài)度目標(biāo)
(1) 在探究二元一次方程和一次函數(shù)的對應(yīng)關(guān)系中,在體會近似解與準(zhǔn)確解中,培養(yǎng)學(xué)生勤于思考、精益求精的精神.
(2) 在經(jīng)歷同一數(shù)學(xué)知識可用不同的數(shù)學(xué)方法解決的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識和變式能力.
2.教學(xué)重點
(1)二元一次方程和一次函數(shù)的關(guān)系;
(2)二元一次方程組和對應(yīng)的兩條直線的關(guān)系.
3.教學(xué)難點
數(shù)形結(jié)合和數(shù)學(xué)轉(zhuǎn)化的思想意識.
四、教法學(xué)法
1.教法學(xué)法
啟發(fā)引導(dǎo)與自主探索相結(jié)合.
2.課前準(zhǔn)備
教具:多媒體課件、三角板.
學(xué)具:鉛筆、直尺、練習(xí)本、坐標(biāo)紙.
五、教學(xué)過程
本節(jié)課設(shè)計了六個教學(xué)環(huán)節(jié):第一環(huán)節(jié) 設(shè)置問題情境,啟發(fā)引導(dǎo);第二環(huán)節(jié) 自主探索,建立方程與函數(shù)圖像的模型;第三環(huán)節(jié) 典型例題,探究方程與函數(shù)的相互轉(zhuǎn)化;第四環(huán)節(jié) 反饋練習(xí);第五環(huán)節(jié) 課堂小結(jié);第六環(huán)節(jié) 作業(yè)布置.
第一環(huán)節(jié): 設(shè)置問題情境,啟發(fā)引導(dǎo)
內(nèi)容:1.方程x+y=5的解有多少個? 是這個方程的解嗎?
2.點(0,5),(5,0),(2,3)在一次函數(shù)y= 的圖像上嗎?
3.在一次函數(shù)y= 的圖像上任取一點,它的坐標(biāo)適合方程x+y=5嗎?
4.以方程x+y=5的解為坐標(biāo)的所有點組成的圖像與一次函數(shù)y= 的圖像相同嗎?
由此得到本節(jié)課的第一個知識點:
二元一次方程和一次函數(shù)的圖像有如下關(guān)系:
(1) 以二元一次方程的解為坐標(biāo)的點都在相應(yīng)的函數(shù)圖像上;
(2) 一次函數(shù)圖像上的點的坐標(biāo)都適合相應(yīng)的二元一次方程.
意圖:通過設(shè)置問題情景,讓學(xué)生感受方程x+y=5和一次函數(shù)y= 相互轉(zhuǎn)化,啟發(fā)引導(dǎo)學(xué)生總結(jié)二元一次方程與一次函數(shù)的對應(yīng)關(guān)系.
效果:以問題串的形式,啟發(fā)引導(dǎo)學(xué)生探索知識的形成過程,培養(yǎng)了學(xué)生數(shù)學(xué)轉(zhuǎn)化的思想意識.
前面研究了一個二元一次方程和相應(yīng)的一個一次函數(shù)的關(guān)系,現(xiàn)在來研究兩個二元一次方程組成的方程組和相應(yīng)的兩個一次函數(shù)的關(guān)系.順其自然進(jìn)入下一環(huán)節(jié).
第二環(huán)節(jié) 自主探索方程組的解與圖像之間的關(guān)系
內(nèi)容:1.解方程組
2.上述方程移項變形轉(zhuǎn)化為兩個一次函數(shù)y= 和y=2x ,在同一直角坐標(biāo)系內(nèi)分別作出這兩個函數(shù)的圖像.
3.方程組的解和這兩個函數(shù)的圖像的交點坐標(biāo)有什么關(guān)系?由此得到本節(jié)課的第2個知識點:二元一次方程和相應(yīng)的兩條直線的關(guān)系以及二元一次方程組的圖像解法;
(1) 求二元一次方程組的解可以轉(zhuǎn)化為求兩條直線的交點的橫縱坐標(biāo);
(2) 求兩條直線的交點坐標(biāo)可以轉(zhuǎn)化為求這兩條直線對應(yīng)的函數(shù)表達(dá)式聯(lián)立的二元一次方程組的解.
(3) 解二元一次方程組的方法有:代入消元法、加減消元法和圖像法三種.
注意:利用圖像法求二元一次方程組的解是近似解,要得到準(zhǔn)確解,一般還是用代入消元法和加減消元法解方程組.
意圖:通過自主探索,使學(xué)生初步體會數(shù)(二元一次方程)與形(兩條直線)之間的對應(yīng)關(guān)系,為求兩條直線的交點坐標(biāo)打下基礎(chǔ).
效果:由學(xué)生自主學(xué)習(xí),十分自然地建立了數(shù)形結(jié)合的.意識,學(xué)生初步感受到了數(shù)的問題可以轉(zhuǎn)化為形來處理,反之形的問題可以轉(zhuǎn)化成數(shù)來處理,培養(yǎng)了學(xué)生的創(chuàng)新意識和變式能力.
第三環(huán)節(jié) 典型例題
探究方程與函數(shù)的相互轉(zhuǎn)化
內(nèi)容:例1 用作圖像的方法解方程組
例2 如圖,直線 與 的交點坐標(biāo)是 .
意圖:設(shè)計例1進(jìn)一步揭示數(shù)的問題可以轉(zhuǎn)化成形來處理,但所求解為近似解.通過例2,讓學(xué)生深刻感受到由形來處理的困難性,由此自然想到求這兩條直線對應(yīng)的函數(shù)表達(dá)式,把形的問題轉(zhuǎn)化成數(shù)來處理.這兩例充分展示了數(shù)形結(jié)合的思想方法,為下一課時解決實際問題作了很好的鋪墊.
效果:進(jìn)一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識和能力,充分展示了方程與函數(shù)的相互轉(zhuǎn)化.
第四環(huán)節(jié) 反饋練習(xí)
內(nèi)容:1.已知一次函數(shù) 與 的圖像的交點為 ,則 .
2.已知一次函數(shù) 與 的圖像都經(jīng)過點A(2,0),且與 軸分別交于B,C兩點,則 的面積為( ).
(A)4 (B)5 (C)6 (D)7
3.求兩條直線 與 和 軸所圍成的三角形面積.
4.如圖,兩條直線 與 的交點坐標(biāo)可以看作哪個方程組的解?
意圖:4個練習(xí),意在及時檢測學(xué)生對本節(jié)知識的掌握情況.
效果:加深了兩條直線交點的坐標(biāo)就是對應(yīng)的函數(shù)表達(dá)式所組成的方程組的解的印象,培養(yǎng)了學(xué)生的計算能力和數(shù)學(xué)轉(zhuǎn)化的能力,使學(xué)生進(jìn)一步領(lǐng)悟到應(yīng)用數(shù)形結(jié)合的思想方法解題的重要性.
第五環(huán)節(jié) 課堂小結(jié)
內(nèi)容:以問題串的形式,要求學(xué)生自主總結(jié)有關(guān)知識、方法:
1.二元一次方程和一次函數(shù)的圖像的關(guān)系;
(1) 以二元一次方程的解為坐標(biāo)的點都在相應(yīng)的函數(shù)圖像上;
(2) 一次函數(shù)圖像上的點的坐標(biāo)都適合相應(yīng)的二元一次方程.
2.方程組和對應(yīng)的兩條直線的關(guān)系:
(1) 方程組的解是對應(yīng)的兩條直線的交點坐標(biāo);
(2) 兩條直線的交點坐標(biāo)是對應(yīng)的方程組的解;
3.解二元一次方程組的方法有3種:
(1)代入消元法;
(2)加減消元法;
(3)圖像法. 要強調(diào)的是由于作圖的不準(zhǔn)確性,由圖像法求得的解是近似解.
意圖:旨在使本節(jié)課的知識點系統(tǒng)化、結(jié)構(gòu)化,只有結(jié)構(gòu)化的知識才能形成能力;使學(xué)生進(jìn)一步明確學(xué)什么,學(xué)了有什么用.
第六環(huán)節(jié) 作業(yè)布置
習(xí)題7.7
附: 板書設(shè)計
六、教學(xué)反思
本節(jié)課在學(xué)生已有了解方程(組)的基本能力和一次函數(shù)及其圖像的基本知識的基礎(chǔ)上,通過教師啟發(fā)引導(dǎo)和學(xué)生自主學(xué)習(xí)探索相結(jié)合的方法,進(jìn)一步揭示了二元一次方程和函數(shù)圖像之間的對應(yīng)關(guān)系,從而引出了二元一次方程組的圖像解法,以及應(yīng)用代數(shù)方法解決有關(guān)圖像問題,培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識和能力,充分展示了方程與函數(shù)的相互轉(zhuǎn)化.教學(xué)過程中教師一定要講清楚圖像解法的局限性,這是由于畫圖的不準(zhǔn)確性,所求的解往往是近似解.因此為了準(zhǔn)確地解決有關(guān)圖像問題常常把它轉(zhuǎn)化為代數(shù)問題來處理,如例2及反饋練習(xí)中的4個問題.
【一次函數(shù)課件】相關(guān)文章:
一次函數(shù)教案03-07
《太陽》課件03-08
《風(fēng)雨》課件08-24
挑山工的課件08-23
春曉課件09-24
一次函數(shù)說課稿07-16
一次函數(shù)的試題及講解09-24
《一次函數(shù)》教學(xué)設(shè)計12-06
關(guān)于讀書的課件03-07