男人天堂日韩,中文字幕18页,天天伊人网,成人性生交大片免费视频

數(shù)學等差數(shù)列教案

時間:2024-05-31 14:57:25 數(shù)學教案 我要投稿

數(shù)學等差數(shù)列教案

  作為一名默默奉獻的教育工作者,就不得不需要編寫教案,教案是教材及大綱與課堂教學的紐帶和橋梁。那么你有了解過教案嗎?下面是小編幫大家整理的數(shù)學等差數(shù)列教案,歡迎大家分享。

數(shù)學等差數(shù)列教案

數(shù)學等差數(shù)列教案1

  一、教學內(nèi)容分析

  本節(jié)課是《普通高中課程標準實驗教科書·數(shù)學5》(人教版)第二章數(shù)列第二節(jié)等差數(shù)列第一課時。

  數(shù)列是高中數(shù)學重要內(nèi)容之一,它不僅有著廣泛的實際應用,而且起著承前啟后的作用。一方面, 數(shù)列作為一種特殊的函數(shù)與函數(shù)思想密不可分;另一方面,學習數(shù)列也為進一步學習數(shù)列的極限等內(nèi)容做好準備。而等差數(shù)列是在學生學習了數(shù)列的有關(guān)概念和給出數(shù)列的兩種方法——通項公式和遞推公式的基礎(chǔ)上,對數(shù)列的知識進一步深入和拓廣。同時等差數(shù)列也為今后學習等比數(shù)列提供了“聯(lián)想”、“類比”的思想方法。

  二、學生學習情況分析

  教學內(nèi)容針對的`是高二的學生,經(jīng)過高中一年的學習,大部分學生知識經(jīng)驗已較為豐富,具備了較強的抽象思維能力和演繹推理能力,但也可能有一部分學生的基礎(chǔ)較弱,所以在授課時要從具體的生活實例出發(fā),使學生產(chǎn)生學習的興趣,注重引導、啟發(fā)學生的積極主動的去學習數(shù)學,從而促進思維能力的進一步提高。

  三、設(shè)計思想

  1.教法

 、耪T導思維法:這種方法有利于學生對知識進行主動建構(gòu);有利于突出重點,突破難點;有利于調(diào)動學生的主動性和積極性,發(fā)揮其創(chuàng)造性。

 、品纸M討論法:有利于學生進行交流,及時發(fā)現(xiàn)問題,解決問題,調(diào)動學生的積極性。

 、侵v練結(jié)合法:可以及時鞏固所學內(nèi)容,抓住重點,突破難點。 2.學法

  引導學生首先從四個現(xiàn)實問題(數(shù)數(shù)問題、女子舉重獎項設(shè)置問題、水庫水位問題、儲蓄問題)概括出數(shù)組特點并抽象出等差數(shù)列的概念;接著就等差數(shù)列概念的特點,推導出等差數(shù)列的通項公式;可以對各種能力的同學引導認識多元的推導思維方法。

  用多種方法對等差數(shù)列的通項公式進行推導。

  在引導分析時,留出“空白”,讓學生去聯(lián)想、探索,同時鼓勵學生大膽質(zhì)疑,圍繞中心各抒己見,把思路方法和需要解決的問題弄清。

  四、教學目標

  通過本節(jié)課的學習使學生能理解并掌握等差數(shù)列的概念,能用定義判斷一個數(shù)列是否為等差數(shù)列,引導學生了解等差數(shù)列的通項公式的推導過程及思想,掌握等差數(shù)列的通項公式與前 n 項和公式,并能解決簡單的實際問題;并在此過程中培養(yǎng)學生觀察、分析、歸納、推理的能力,在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學生的知識、方法遷移能力。

  五、教學重點與難點

  重點:

 、俚炔顢(shù)列的概念。

 、诘炔顢(shù)列的通項公式的推導過程及應用。

  難點:

 、倮斫獾炔顢(shù)列“等差”的特點及通項公式的含義。

 、诶斫獾炔顢(shù)列是一種函數(shù)模型。

  關(guān)鍵:

  等差數(shù)列概念的理解及由此得到的“性質(zhì)”的方法。

  六、教學過程(略)

數(shù)學等差數(shù)列教案2

  《等差數(shù)列》教案設(shè)計

  授課教師授課班級課題3.2.1等差數(shù)列(一)課型新授課教學目標知識目標等差數(shù)列的定義。

  等差數(shù)列的通項公式。能力目標明確等差數(shù)列的定義。

  掌握等差數(shù)列的通項公式,并能運用其解決問題。情感目標培養(yǎng)學生的觀察能力。

  進一步提高學生的推理、歸納能力。

  培養(yǎng)學生的應用意識。教學重點等差數(shù)列的定義的`理解和掌握。

  等差數(shù)列的通項公式的推導和應用。教學難點等差數(shù)列“等差”特點的理解、把握和應用。教學過程教學環(huán)節(jié)和教學內(nèi)容設(shè)計意圖【復習回顧】(2分鐘)

  數(shù)列的定義以及數(shù)列的通項公式和遞推公式。

  【引入】(3分鐘)

  某人要用彩燈裝飾圣誕樹,這個人做事喜歡按一定的規(guī)律去做,他在圣誕樹的頂尖裝上1個彩燈,在第一層裝上4個,第二層裝上7個,第三層裝上10個,第四層裝上13個。如果有第五層,你能猜得出他要裝上多少個彩燈嗎?他的規(guī)律是怎樣的?

  你能根據(jù)規(guī)律在( )內(nèi)填上合適的數(shù)嗎?

  (1)1,4,7,10,13,()

 。2)21,21.5,22,(),23,23.5,…

  (3)8,(),2,-1,-4,…

 。4)-7,-11,-15,(),-23

  共同特點:從第2項起,每一項與它的前一項的差等于同一個常數(shù)。這樣的數(shù)列叫做等差數(shù)列。

  【講授新課】(16分鐘)

  一、等差數(shù)列的定義:一般地,如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),這個數(shù)列就叫做等差數(shù)列。這個常數(shù)叫做等差數(shù)列的公差,公差通常用字母d表示。

  用符號表示:

  教師活動:分析定義,強調(diào)關(guān)鍵的地方,幫助學生理解和掌握。

  問題:1.數(shù)列(1)(2)(3)(4)的公差分別是多少?

  2、(5)1,3,5,7,9,2,4,6,8,10

  (6)5,5,5,5,5,5 ……是等差數(shù)列嗎?

  3、求等差數(shù)列1,4,7,10,13,16,…的第100項。

  師生一起討論回答。

  二、等差數(shù)列的通項公式

  如果等差數(shù)列的首項是,公差是d,則據(jù)其定義可得:

  即:

  即:

  即:

  由此歸納等差數(shù)列的通項公式可得:

  ∴已知一數(shù)列為等差數(shù)列,則只要知其首項和公差d,便可求得其通項

  思考:已知等差數(shù)列的第m項和公差d,這個等差數(shù)列的通項公式是?答:

  【例題講解】(8分鐘)

數(shù)學等差數(shù)列教案3

  一、教材分析

  1、教學目標:

  A.理解并掌握等差數(shù)列的概念;了解等差數(shù)列的通項公式的推導過程及思想;

  B.培養(yǎng)學生觀察、分析、歸納、推理的能力;在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,把研究函數(shù)的方法遷移來研究數(shù)列,培養(yǎng)學生的知識、方法遷移能力;通過階梯性練習,提高學生分析問題和解決問題的能力。

  C 通過對等差數(shù)列的研究,培養(yǎng)學生主動探索、勇于發(fā)現(xiàn)的求知精神;養(yǎng)成細心觀察、認真分析、善于總結(jié)的良好思維習慣。

  2、教學重點和難點

 、俚炔顢(shù)列的概念。

  ②等差數(shù)列的通項公式的推導過程及應用。用不完全歸納法推導等差數(shù)列的通項公式。

  二、教法分析

  采用啟發(fā)式、討論式以及講練結(jié)合的教學方法,通過問題激發(fā)學生求知欲,使學生主動參與數(shù)學實踐活動,以獨立思考和相互交流的形式,在教師的指導下發(fā)現(xiàn)、分析和解決問題。

  三、教學程序

  本節(jié)課的教學過程由(一)復習引入(二)新課探究(三)應用例解(四)反饋練習(五)歸納小結(jié)(六)布置作業(yè),六個教學環(huán)節(jié)構(gòu)成。

  (一)復習引入:

  1.全國統(tǒng)一鞋號中成年女鞋的各種尺碼(表示鞋底長,單位是c)分別是

  21,22,23,24,25,

  2.某劇場前10排的座位數(shù)分別是:

  38,40,42,44,46,48,50,52,54,56。

  3.某長跑運動員7天里每天的訓練量(單位:)是:

  7500,8000,8500,9000,9500,10000,10500。

  共同特點:

  從第2項起,每一項與前一項的差都等于同一個常數(shù)。

  (二) 新課探究

  1、給出等差數(shù)列的概念:

  如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列, 這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強調(diào):

 、 “從第二項起”滿足條件;

 、诠頳一定是由后項減前項所得;

 、酃羁梢允钦龜(shù)、負數(shù),也可以是0。

  2、推導等差數(shù)列的通項公式

  若等差數(shù)列{an }的首項是 ,公差是d, 則據(jù)其定義可得:

  - =d 即: = +d

  – =d 即: = +d = +2d

  – =d 即: = +d = +3d

  進而歸納出等差數(shù)列的通項公式:

  = +(n-1)d

  此時指出:

  這種求通項公式的辦法叫不完全歸納法,這種導出公式的方法不夠嚴密,為了培養(yǎng)學生嚴謹?shù)膶W習態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項公式的辦法------迭加法:

  – =d

  – =d

  – =d

  – =d

  將這(n-1)個等式左右兩邊分別相加,就可以得到 – = (n-1) d即 = +(n-1) d

  當n=1時,上面等式兩邊均為 ,即等式也是成立的,這表明當n∈ 時上面公式都成立,因此它就是等差數(shù)列{an }的通項公式。

  接著舉例說明:若一個等差數(shù)列{ }的首項是1,公差是2,得出這個數(shù)列的通項公式是: =1+(n-1)×2 , 即 =2n-1 以此來鞏固等差數(shù)列通項公式運用

 。ㄈ⿷门e例

  這一環(huán)節(jié)是使學生通過例題和練習,增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。通過例1和例2向?qū)W生表明:要用運動變化的觀點看等差數(shù)列通項公式中的 、d、n、 這4個量之間的關(guān)系。當其中的部分量已知時,可根據(jù)該公式求出另一部分量。

  例1 (1)求等差數(shù)列8,5,2,…的第20項;

 。2)-401是不是等差數(shù)列-5,-9,-13,…的.項?如果是,是第幾項?

  第二問實際上是求正整數(shù)解的問題,而關(guān)鍵是求出數(shù)列的通項公式

  例2 在等差數(shù)列{an}中,已知 =10, =31,求首項 與公差d。

  在前面例1的基礎(chǔ)上將例2當作練習作為對通項公式的鞏固

  例3 梯子的最高一級寬33c,最低一級寬110c,中間還有10級,各級的寬度成等差數(shù)列。計算中間各級的寬度。

  (四)反饋練習

  1、小節(jié)后的練習中的第1題和第2題(要求學生在規(guī)定時間內(nèi)完成)。目的:使學生熟悉通項公式,對學生進行基本技能訓練。

  2、若數(shù)列{ } 是等差數(shù)列,若 = ,(為常數(shù))試證明:數(shù)列{ }是等差數(shù)列

  此題是對學生進行數(shù)列問題提高訓練,學習如何用定義證明數(shù)列問題同時強化了等差數(shù)列的概念。

 。ㄎ澹w納小結(jié) (由學生總結(jié)這節(jié)課的收獲)

  1.等差數(shù)列的概念及數(shù)學表達式.

  強調(diào)關(guān)鍵字:從第二項開始它的每一項與前一項之差都等于同一常數(shù)

  2.等差數(shù)列的通項公式 = +(n-1) d會知三求一

  (六) 布置作業(yè)

  必做題:課本P114 習題3.2第2,6 題

  選做題:已知等差數(shù)列{ }的首項 = -24,從第10項開始為正數(shù),求公差d的取值范圍。(目的:通過分層作業(yè),提高同學們的求知欲和滿足不同層次的學生需求)

  四、板書設(shè)計

  在板書中突出本節(jié)重點,將強調(diào)的地方如定義中,“從第二項起”及“同一常數(shù)”等幾個字用紅色粉筆標注,同時給學生留有作題的地方,整個板書充分體現(xiàn)了精講多練的教學方法。

數(shù)學等差數(shù)列教案4

  一、設(shè)計思想

  數(shù)學是思維的體操,是培養(yǎng)學生分析問題、解決問題的能力及創(chuàng)造能力的載體,新課程倡導:強調(diào)過程,強調(diào)學生探索新知識的經(jīng)歷和獲得新知的體驗,不能在讓教學脫離學生的內(nèi)心感受,必須讓學生追求過程的體驗;谝陨险J識,在設(shè)計本節(jié)課時,教師所考慮的不是簡單告訴學生等差數(shù)列的定義和通項公式,而是創(chuàng)造一些數(shù)學情境,讓學生自己去發(fā)現(xiàn)、證明。在這個過程中,學生在課堂上的主體地位得到充分發(fā)揮,極大的激發(fā)了學生的學習興趣,也提高了他們提出問題解決問題的能力,培養(yǎng)了他們的創(chuàng)造力。這正是新課程所倡導的數(shù)學理念。

  本節(jié)課借助多媒體輔助手段,創(chuàng)設(shè)問題的情境,讓探究式教學走進課堂,保障學生的主體地位,喚醒學生的主體意識,發(fā)展學生的主體能力,塑造學生的主體人格,讓學生在參與中學會學習、學會合作、學會創(chuàng)新。

  二、教材分析

  高中數(shù)學必修五第二章第二節(jié),等差數(shù)列,兩課時內(nèi)容,本節(jié)是第一課時。研究等差數(shù)列的定義、通項公式的推導,借助生活中豐富的典型實例,讓學生通過分析、推理、歸納等活動過程,從中了解和體驗等差數(shù)列的定義和通項公式。通過本節(jié)課的學習要求理解等差數(shù)列的概念,掌握等差數(shù)列的通項公式,并且了解等差數(shù)列與一次函數(shù)的關(guān)系。

  本節(jié)是第二章的基礎(chǔ),為以后學習等差數(shù)列的求和、等比數(shù)列奠定基礎(chǔ),是本章的重點內(nèi)容。在高考中也是重點考察內(nèi)容之一,并且在實際生活中有著廣泛的應用,它起著承前啟后的作用。同時也是培養(yǎng)學生數(shù)學能力的良好題材。等差數(shù)列是學生探究特殊數(shù)列的開始,它對后續(xù)內(nèi)容的學習,無論在知識上,還是在方法上都具有積極的意義。

  三、學情分析

  學生已經(jīng)具有一定的理性分析能力和概括能力,且對數(shù)列的知識有了初步的接觸和認識,對數(shù)學公式的運用已具備一定的技能,已經(jīng)熟悉由觀察到抽象的數(shù)學活動過程,對函數(shù)、方程思想體會逐漸深刻。他們的思維正從屬于經(jīng)驗性的邏輯思維向抽象思維發(fā)展,但仍需要依賴一定的具體形象的經(jīng)驗材料來理解抽象的邏輯關(guān)系。同時思維的嚴密性還有待加強。

  四、教學目標

  1.知識目標:理解等差數(shù)列概念,掌握等差數(shù)列的通項公式,了解等差數(shù)列與一次函數(shù)的關(guān)系。

  2.能力目標:培養(yǎng)學生觀察、歸納能力,應用數(shù)學公式的能力及滲透函數(shù)、方程的思想。

  3.情感目標:體驗從特殊到一般,又到特殊的認知規(guī)律,提高數(shù)學猜想、歸納的能力。

  五、重點、難點

  教學重點:等差數(shù)列的概念及通項公式的推導。

  教學難點:對等差數(shù)列概念的理解及學會通項公式的推導及應用。

  六、教學策略和手段

  數(shù)學教學是數(shù)學活動的教學,是師生之間、學生之間交往互動共同發(fā)展的過程,結(jié)合學生的實際情況,及本節(jié)內(nèi)容的特點,我采用的是“問題教學法”,其主導思想是以探究式教學思想為主導,由教師提出一系列精心設(shè)計的問題,在教師的啟發(fā)指導下,讓學生自己去分析、探索,在探索過程中研究和領(lǐng)悟得出的結(jié)論,從而使學生即獲得知識又發(fā)展智能的目的。

  教學手段:多媒體計算機和傳統(tǒng)黑板相結(jié)合。通過計算機模擬演示,使學生獲得感性知識的同時,為掌握理性知識創(chuàng)造條件,這樣做,可以使學生有興趣地學習,注意力也容易集中,符合教學論中的直觀性原則和可接受性原則。而保留使用黑板則能讓學生更好的經(jīng)歷整個教學過程。

  七、課前準備

  學生預習,教師做好課件并安裝好。

  八、教學過程

  創(chuàng)設(shè)情景,引入概念

  設(shè)計意圖:希望學生能通過日常生活中的實際問題的分析對比,建立等差數(shù)列模型,體驗數(shù)學發(fā)現(xiàn)和創(chuàng)造的過程。

  師生活動:

  情景1:

  師—把班上學生學號從小到大排成一列:

  學生:

  師—這是數(shù)列嗎?你能歸納出它的通項公式嗎?

  學生—是,師—把上面的數(shù)列各項依次記為,填空:

  學生—填空并歸納出一般規(guī)律:,( )

  師—上面這個規(guī)律還有其他形式嗎?

  學生—或者寫成,( )

  注:要對強調(diào),原因在于有意義。

  師—你能用普通語言概括上面的規(guī)律嗎?

  學生—自由發(fā)言,選擇最恰當?shù)恼Z言。

  上面的數(shù)列已找出這一特殊規(guī)律,下面再觀察一些數(shù)列并也找出它們的規(guī)律。

  情景2:看幻燈片上的實例

  (1)2008年北京奧運會,女子舉重共設(shè)置7個級別,其中較輕的4個級別體重組成數(shù)列(單位:kg):

  48,53,58,63

  (2)水庫的管理員為了保證優(yōu)質(zhì)魚類有良好的'生活環(huán)境,定期放水清庫的辦法清理水庫中的雜魚。如果一個水庫的水位18m,自然放水每天水位下降2.5m,最低降至5m。那么從開始放水算起,到可以進行清理工作的那天,水庫每天的水位組成數(shù)列(單位:m)

  18,15.5,13,10.5,8,5.5

  (3)我國現(xiàn)行儲蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本金計算下一期的利息。按照單利計算本利和的公式是:

  本利和=本金(1+利率存期)

  時間年初本金(元)年末本利和(元)第1年10000 10072第2年10000 10144第3年10000 10216第4年10000 10288第5年10000 10360例如,按活期存入10000元,年利率是0.72%,那么按照單利,5年內(nèi)各年末本利和分別是:如下表(假設(shè)5年既不加存款也不取款,且不扣利息稅)

  各年末本利和(單位:元)

  10072,10144,10216,10288,10360

  師:上面的三個數(shù)列又分別有什么規(guī)律呢?

  學生—(1),(2),(3),師—歸納上面數(shù)列的共同特征:

  (d是常數(shù)),師—滿足這種特征的數(shù)列很多,我們有必要為這樣的數(shù)列取一個名字?

  學生(共同)—等差數(shù)列。

  提出課題《等差數(shù)列》

  師—給出文字敘述的定義(學生敘述,板書定義):

  一般的,如果一個數(shù)列從第二項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫等差數(shù)列,d為公差,a1為數(shù)列的首項。

  對定義進行分析,強調(diào):= 1 GB3 ①同一個常數(shù);= 2 GB3 ②從第二項起。

  師—這樣的數(shù)列在生活中的例子,誰能再舉幾個?

  學生—某劇場前8排的座位數(shù)分別是

  52,50,48,46,44,42,40,38.

  學生—全國統(tǒng)一鞋號中成年女鞋的各種尺碼分別是

  21,21.5,22,22.5,23,23.5,24,24.5,25

  搶答:觀察下列數(shù)列是否為等差數(shù)列

  1,2,4,6,8,10,12,……

  0,1,2,3,4,5,6,……

  3,3,3,3,3,3,3……

  2,4,7,11,16,……

  -8,-6,-4,0,2,4,……

  3,0,-3,-6,-9,……

  注:常數(shù)列也是等差數(shù)列,公差是0。

  推進概念,發(fā)現(xiàn)性質(zhì)

  設(shè)計意圖:概括等差中項的概念。總結(jié)等差中項公式,用于發(fā)現(xiàn)等差數(shù)列的性質(zhì)。

  師生活動:

  師—想一想,一個等差數(shù)列最少有幾項?它們之間有什么關(guān)系?

  學生思考后回答,至少三項,然后老師引導學生概括等差中項的概念。

  設(shè)三個數(shù)成等差數(shù)列,則A叫a與b的等差中項。同時有A-a=b-A,說明:(1)上面式子反過來也成立。(2)等差數(shù)列中的任意連續(xù)三項都構(gòu)成等差數(shù)列,反之亦成立。

  (三)探究通項公式

  設(shè)計意圖:通過具體數(shù)列的通項公式,總結(jié)一般等差數(shù)列的通項公式,體會特殊到一般的數(shù)學思想方法。

  師生活動:

  師—對于一個數(shù)列,我們最關(guān)心的是每一項,而這就要求我們能知道它的通項公式。下面一起來研究等差數(shù)列的通項公式。

  先寫出上面引例中等差數(shù)列的通項公式。再推導一般等差數(shù)列的通項公式。

  師—若一個數(shù)列是等差數(shù)列,它的公差是d,那么數(shù)列的通項公式是什么?

  啟發(fā)學生:(歸納、猜想)可用首項與公差表示數(shù)列中任意一項。

  學生—即:

  即:

  即:

  由此可得:

  師—從第幾項開始歸納的?

  學生—第二項,所以n≥2。

  師—n=1時呢?

  學生—當n=1時,等式也是成立,因而等差數(shù)列的通項公式

  ( )

  師—很好!

數(shù)學等差數(shù)列教案5

  教學目標

  1.明確等差數(shù)列的定義.

  2.掌握等差數(shù)列的通項公式,會解決知道中的三個,求另外一個的問題

  3.培養(yǎng)學生觀察、歸納能力.

  教學重點

  1. 等差數(shù)列的概念;

  2. 等差數(shù)列的通項公式

  教學難點

  等差數(shù)列“等差”特點的理解、把握和應用

  教學方法

  啟發(fā)式數(shù)學

  教具準備

  投影片1張(內(nèi)容見下面)

  教學過程

  (I)復習回顧

  師:上兩節(jié)課我們共同學習了數(shù)列的定義及給出數(shù)列的兩種方法——通項公式和遞推公式。這兩個公式從不同的角度反映數(shù)列的特點,下面看一些例子。(放投影片)

  (Ⅱ)講授新課

  師:看這些數(shù)列有什么共同的特點?

  1,2,3,4,5,6; ①

  10,8,6,4,2,…; ②

  ③

  生:積極思考,找上述數(shù)列共同特點。

  對于數(shù)列① (1≤n≤6); (2≤n≤6)

  對于數(shù)列② -2n(n≥1)

 。╪≥2)

  對于數(shù)列③

 。╪≥1)

  (n≥2)

  共同特點:從第2項起,第一項與它的前一項的差都等于同一個常數(shù)。

  師:也就是說,這些數(shù)列均具有相鄰兩項之差“相等”的特點。具有這種特點的數(shù)列,我們把它叫做等差數(shù)。

  一、定義:

  等差數(shù)列:一般地,如果一個數(shù)列從第2項起,每一項與空的前一項的.差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d表示。

  如:上述3個數(shù)列都是等差數(shù)列,它們的公差依次是1,-2, 。

  二、等差數(shù)列的通項公式

  師:等差數(shù)列定義是由一數(shù)列相鄰兩項之間關(guān)系而得。若一等差數(shù)列 的首項是 ,公差是d,則據(jù)其定義可得:

  若將這n-1個等式相加,則可得:

  即:

  即:

  即:

  ……

  由此可得:

  師:看來,若已知一數(shù)列為等差數(shù)列,則只要知其首項 和公差d,便可求得其通項 。

  如數(shù)列① (1≤n≤6)

  數(shù)列②: (n≥1)

  數(shù)列③:

  (n≥1)

  由上述關(guān)系還可得:

  即:

  則: =

  如:

  三、例題講解

  例1:(1)求等差數(shù)列8,5,2…的第20項

 。2)-401是不是等差數(shù)列-5,-9,-13…的項?如果是,是第幾項?

  解:(1)由

  n=20,得

 。2)由

  得數(shù)列通項公式為:

  由題意可知,本題是要回答是否存在正整數(shù)n,使得-401=-5-4(n-1)成立解之得n=100,即-401是這個數(shù)列的第100項。

 。á螅┱n堂練習

  生:(口答)課本P118練習3

 。〞婢毩暎┱n本P117練習1

  師:組織學生自評練習(同桌討論)

 。á簦┱n時小結(jié)

  師:本節(jié)主要內(nèi)容為:①等差數(shù)列定義。

  即 (n≥2)

 、诘炔顢(shù)列通項公式 (n≥1)

  推導出公式:

 。╒)課后作業(yè)

  一、課本P118習題3.2 1,2

  二、1.預習內(nèi)容:課本P116例2—P117例4

  2.預習提綱:①如何應用等差數(shù)列的定義及通項公式解決一些相關(guān)問題?

 、诘炔顢(shù)列有哪些性質(zhì)?

  板書設(shè)計

  課題

  一、定義

  1.(n≥2)

  一、通項公式

  2.公式推導過程

  例題

  教學后記

數(shù)學等差數(shù)列教案6

  [教學目標]

  1.知識與技能目標:掌握等差數(shù)列的概念;理解等差數(shù)列的通項公式的推導過程;了解等差數(shù)列的函數(shù)特征;能用等差數(shù)列的通項公式解決相應的一些問題。

  2.過程與方法目標:讓學生親身經(jīng)歷“從特殊入手,研究對象的性質(zhì),再逐步擴大到一般”這一研究過程,培養(yǎng)他們觀察、分析、歸納、推理的能力。通過階梯性的強化練習,培養(yǎng)學生分析問題解決問題的能力。

  3.情感態(tài)度與價值觀目標:通過對等差數(shù)列的研究,培養(yǎng)學生主動探索、勇于發(fā)現(xiàn)的求索精神;使學生逐步養(yǎng)成細心觀察、認真分析、及時總結(jié)的好習慣。

  [教學重難點]

  1.教學重點:等差數(shù)列的概念的理解,通項公式的推導及應用。

  2.教學難點:

  (1)對等差數(shù)列中“等差”兩字的把握;

  (2)等差數(shù)列通項公式的推導。

  [教學過程]

  一.課題引入

  創(chuàng)設(shè)情境引入課題:(這節(jié)課我們將學習一類特殊的數(shù)列,下面我們看這樣一些例子)

  二、新課探究

  (一)等差數(shù)列的定義

  1、等差數(shù)列的定義

  如果一個數(shù)列從第二項起,每一項與前一項的.差等于同一個常數(shù),那么這個數(shù)列就叫等差數(shù)列。這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。

  (1)定義中的關(guān)健詞有哪些?

  (2)公差d是哪兩個數(shù)的差?

  (二)等差數(shù)列的通項公式

  探究1:等差數(shù)列的通項公式(求法一)

  如果等差數(shù)列首項是,公差是,那么這個等差數(shù)列如何表示?呢?

  根據(jù)等差數(shù)列的定義可得:

  因此等差數(shù)列的通項公式就是:,

  探究2:等差數(shù)列的通項公式(求法二)

  根據(jù)等差數(shù)列的定義可得:

  將以上-1個式子相加得等差數(shù)列的通項公式就是:,

  三、應用與探索

  例1、(1)求等差數(shù)列8,5,2,…,的第20項。

  (2)等差數(shù)列-5,-9,-13,…,的第幾項是–401?

  (2)、分析:要判斷-401是不是數(shù)列的項,關(guān)鍵是求出通項公式,并判斷是否存在正整數(shù)n,使得成立,實質(zhì)上是要求方程的正整數(shù)解。

  例2、在等差數(shù)列中,已知=10,=31,求首項與公差d.

  解:由,得。

  在應用等差數(shù)列的通項公式an=a1+(n-1)d過程中,對an,a1,n,d這四個變量,知道其中三個量就可以求余下的一個量,這是一種方程的思想。

  鞏固練習

  1.等差數(shù)列{an}的前三項依次為a-6,-3a-5,-10a-1,則a=()。

  2.一張?zhí)葑幼罡咭患墝?3cm,最低一級寬110cm,中間還有10級,各級的寬度成等差數(shù)列。求公差d。

  四、小結(jié)

  1.等差數(shù)列的通項公式:

  公差;

  2.等差數(shù)列的計算問題,通常知道其中三個量就可以利用通項公式an=a1+(n-1)d,求余下的一個量;

  3.判斷一個數(shù)列是否為等差數(shù)列只需看是否為常數(shù)即可;

  4.利用從特殊到一般的思維去發(fā)現(xiàn)數(shù)學系規(guī)律或解決數(shù)學問題.

  五、作業(yè):

  1、必做題:課本第40頁習題2.2第1,3,5題

  2、選做題:如何以最快的速度求:1+2+3+???+100=

數(shù)學等差數(shù)列教案7

  一、知識與技能

  1.了解公差的概念,明確一個數(shù)列是等差數(shù)列的限定條件,能根據(jù)定義判斷一個數(shù)列是等差數(shù)列;

  2.正確認識使用等差數(shù)列的各種表示法,能靈活運用通項公式求等差數(shù)列的首項、公差、項數(shù)、指定的項.

  二、過程與方法

  1.通過對等差數(shù)列通項公式的推導培養(yǎng)學生:的觀察力及歸納推理能力;

  2.通過等差數(shù)列變形公式的教學培養(yǎng)學生:思維的深刻性和靈活性.

  三、情感態(tài)度與價值觀

  通過等差數(shù)列概念的歸納概括,培養(yǎng)學生:的觀察、分析資料的能力,積極思維,追求新知的創(chuàng)新意識.

  教學過程

  導入新課

  師:上兩節(jié)課我們學習了數(shù)列的定義以及給出數(shù)列和表示數(shù)列的幾種方法——列舉法、通項公式、遞推公式、圖象法.這些方法從不同的角度反映數(shù)列的特點.下面我們看這樣一些數(shù)列的例子:(課本P41頁的4個例子)

  (1)0,5,10,15,20,25,…;

  (2)48,53,58,63,…;

  (3)18,15.5,13,10.5,8,5.5…;

  (4)10 072,10 144,10 216,10 288,10 366,….

  請你們來寫出上述四個數(shù)列的第7項.

  生:第一個數(shù)列的第7項為30,第二個數(shù)列的第7項為78,第三個數(shù)列的第7項為3,第四個數(shù)列的第7項為10 510.

  師:我來問一下,你依據(jù)什么寫出了這四個數(shù)列的第7項呢?以第二個數(shù)列為例來說一說.

  生:這是由第二個數(shù)列的后一項總比前一項多5,依據(jù)這個規(guī)律性我得到了這個數(shù)列的第7項為78.

  師:說得很有道理!我再請同學們仔細觀察一下,看看以上四個數(shù)列有什么共同特征?我說的是共同特征.

  生:1每相鄰兩項的差相等,都等于同一個常數(shù).

  師:作差是否有順序,誰與誰相減?

  生:1作差的順序是后項減前項,不能顛倒.

  師:以上四個數(shù)列的共同特征:從第二項起,每一項與它前面一項的差等于同一個常數(shù)(即等差);我們給具有這種特征的數(shù)列起一個名字叫——等差數(shù)列.

  這就是我們這節(jié)課要研究的內(nèi)容.

  推進新課

  等差數(shù)列的定義:一般地,如果一個數(shù)列從第二項起,每一項與它前一項的差等于同一個常數(shù),這個數(shù)列就叫做等差數(shù)列,這個常數(shù)就叫做等差數(shù)列的公差(常用字母“d”表示).

 。1)公差d一定是由后項減前項所得,而不能用前項減后項來求;

 。2)對于數(shù)列{an},若an-a n-1=d(與n無關(guān)的`數(shù)或字母),n≥2,n∈N*,則此數(shù)列是等差數(shù)列,d叫做公差.

  師:定義中的關(guān)鍵字是什么?(學生:在學習中經(jīng)常遇到一些概念,能否抓住定義中的關(guān)鍵字,是能否正確地、深入的理解和掌握概念的重要條件,更是學好數(shù)學及其他學科的重要一環(huán).因此教師:應該教會學生:如何深入理解一個概念,以培養(yǎng)學生:分析問題、認識問題的能力)

  生:從“第二項起”和“同一個常數(shù)”.

  師::很好!

  師:請同學們思考:數(shù)列(1)、(2)、(3)、(4)的通項公式存在嗎?如果存在,分別是什么?

  生:數(shù)列(1)通項公式為5n-5,數(shù)列(2)通項公式為5n+43,數(shù)列(3)通項公式為2.5n-15.5,….

  師:好,這位同學用上節(jié)課學到的知識求出了這幾個數(shù)列的通項公式,實質(zhì)上這幾個通項公式有共同的特點,無論是在求解方法上,還是在所求的結(jié)果方面都存在許多共性,下面我們來共同思考.

 。酆献魈骄浚

  等差數(shù)列的通項公式

  師:等差數(shù)列定義是由一數(shù)列相鄰兩項之間關(guān)系而得到的,若一個等差數(shù)列{an}的首項是a1,公差是d,則據(jù)其定義可得什么?

  生:a2-a1=d,即a2=a1+d.

  師:對,繼續(xù)說下去!

  生:a3-a2=d,即a3=a2+d=a1+2d;

  a4-a3=d,即a4=a3+d=a1+3d;

  ……

  師:好!規(guī)律性的東西讓你找出來了,你能由此歸納出等差數(shù)列的通項公式嗎?

  生:由上述各式可以歸納出等差數(shù)列的通項公式是an=a1+(n-1)d.

  師:很好!這樣說來,若已知一數(shù)列為等差數(shù)列,則只要知其首項a1和公差d,便可求得其通項an了.需要說明的是:此公式只是等差數(shù)列通項公式的猜想,你能證明它嗎?

  生:前面已學過一種方法叫迭加法,我認為可以用.證明過程是這樣的:

  因為a2-a1=d,a3-a2=d,a4-a3=d,…,an-an-1=d.將它們相加便可以得到:an=a1+(n-1)d.

  師:太好了!真是活學活用啊!這樣一來我們通過證明就可以放心使用這個通項公式了.

 。劢處煟壕v]

  由上述關(guān)系還可得:am=a1+(m-1)d,

  即a1=am-(m-1)d.

  則an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d,

  即等差數(shù)列的第二通項公式an=am+(n-m)d.(這是變通的通項公式)

  由此我們還可以得到.

 。劾}剖析]

  【例1】(1)求等差數(shù)列8,5,2,…的第20項;

  (2)-401是不是等差數(shù)列-5,-9,-13…的項?如果是,是第幾項?

  師:這個等差數(shù)列的首項和公差分別是什么?你能求出它的第20項嗎?

  生:1這題太簡單了!首項和公差分別是a1=8,d=5-8=2-5=-3.又因為n=20,所以由等差數(shù)列的通項公式,得a20=8+(20-1)×(-3)=-49.

  師:好!下面我們來看看第(2)小題怎么做.

  生:2由a1=-5,d=-9-(-5)=-4得數(shù)列通項公式為an=-5-4(n-1).

  由題意可知,本題是要回答是否存在正整數(shù)n,使得-401=-5-4(n-1)成立,解之,得n=100,即-401是這個數(shù)列的第100項.

  師:剛才兩個同學將問題解決得很好,我們做本例的目的是為了熟悉公式,實質(zhì)上通項公式就是an,a1,d,n組成的方程(獨立的量有三個).

  說明:(1)強調(diào)當數(shù)列{an}的項數(shù)n已知時,下標應是確切的數(shù)字;(2)實際上是求一個方程的正整數(shù)解的問題.這類問題學生:以前見得較少,可向?qū)W生:著重點出本問題的實質(zhì):要判斷-401是不是數(shù)列的項,關(guān)鍵是求出數(shù)列的通項公式an,判斷是否存在正整數(shù)n,使得an=-401成立.

  【例2】已知數(shù)列{an}的通項公式an=pn+q,其中p、q是常數(shù),那么這個數(shù)列是否一定是等差數(shù)列?若是,首項與公差分別是什么?

  例題分析:

  師:由等差數(shù)列的定義,要判定{an}是不是等差數(shù)列,只要根據(jù)什么?

  生:只要看差an-an-1(n≥2)是不是一個與n無關(guān)的常數(shù).

  師:說得對,請你來求解.

  生:當n≥2時,〔取數(shù)列{an}中的任意相鄰兩項an-1與an(n≥2)〕

  an-an-1=(pn+1)-[p(n-1)+q]=pn+q-(pn-p+q)=p為常數(shù),

  所以我們說{an}是等差數(shù)列,首項a1=p+q,公差為p.

  師:這里要重點說明的是:

  (1)若p=0,則{an}是公差為0的等差數(shù)列,即為常數(shù)列q,q,q,….

  (2)若p≠0,則an是關(guān)于n的一次式,從圖象上看,表示數(shù)列的各點(n,an)均在一次函數(shù)y=px+q的圖象上,一次項的系數(shù)是公差p,直線在y軸上的截距為q.

  (3)數(shù)列{an}為等差數(shù)列的充要條件是其通項an=pn+q(p、q是常數(shù)),稱其為第3通項公式.課堂練習

  (1)求等差數(shù)列3,7,11,…的第4項與第10項.

  分析:根據(jù)所給數(shù)列的前3項求得首項和公差,寫出該數(shù)列的通項公式,從而求出所┣笙.

  解:根據(jù)題意可知a1=3,d=7-3=4.∴該數(shù)列的通項公式為an=3+(n-1)×4,即an=4n-1(n≥1,n∈N*).∴a4=4×4-1=15,a 10=4×10-1=39.

  評述:關(guān)鍵是求出通項公式.

  (2)求等差數(shù)列10,8,6,…的第20項.

  解:根據(jù)題意可知a1=10,d=8-10=-2.

  所以該數(shù)列的通項公式為an=10+(n-1)×(-2),即an=-2n+12,所以a20=-2×20+12=-28.

  評述:要求學生:注意解題步驟的規(guī)范性與準確性.

  (3)100是不是等差數(shù)列2,9,16,…的項?如果是,是第幾項?如果不是,請說明理由.

  分析:要想判斷一個數(shù)是否為某一個數(shù)列的其中一項,其關(guān)鍵是要看是否存在一個正整數(shù)n值,使得an等于這個數(shù).

  解:根據(jù)題意可得a1=2,d=9-2=7.因而此數(shù)列通項公式為an=2+(n-1)×7=7n-5.

  令7n-5=100,解得n=15.所以100是這個數(shù)列的第15項.

  (4)-20是不是等差數(shù)列0,,-7,…的項?如果是,是第幾項?如果不是,請說明理由.

  解:由題意可知a1=0,,因而此數(shù)列的通項公式為.

  令,解得.因為沒有正整數(shù)解,所以-20不是這個數(shù)列的項.

  課堂小結(jié)

  師:(1)本節(jié)課你們學了什么?(2)要注意什么?(3)在生:活中能否運用?(讓學生:反思、歸納、總結(jié),這樣來培養(yǎng)學生:的概括能力、表達能力)

  生:通過本課時的學習,首先要理解和掌握等差數(shù)列的定義及數(shù)學表達式a n-a n-1=d(n≥2);其次要會推導等差數(shù)列的通項公式an=a1+(n-1)d(n≥1).

數(shù)學等差數(shù)列教案8

  教學目的:

  1.明確等差數(shù)列的定義,掌握等差數(shù)列的通項公式。

  2.會解決知道中的三個,求另外一個的問題。

  教學重點:等差數(shù)列的概念,等差數(shù)列的通項公式。

  教學難點等差數(shù)列的性質(zhì)

  教學過程:

  一、復習引入:(課件第一頁)

  二、講解新課:

  1.等差數(shù)列:一般地,如果一個數(shù)列從第二項起,每一項與它前一項的 差等于同一個常數(shù),這個數(shù)列就叫做等差數(shù)列,這個常數(shù)就叫做等差數(shù)列的公差(常用字母“d”表示)。

  (課件第二頁)

 、牛頳一定是由后項減前項所得,而不能用前項減后項來求;

  ⑵.對于數(shù)列{ },若 - =d (與n無關(guān)的數(shù)或字母),n≥2,n∈n ,則此數(shù)列是等差數(shù)列,d 為公差。

  2.等差數(shù)列的通項公式: 【或 】等差數(shù)列定義是由一數(shù)列相鄰兩項之間關(guān)系而得。若一等差數(shù)列 的首項是 ,公差是d,則據(jù)其定義可得: 即: 即: 即: …… 由此歸納等差數(shù)列的通項公式可得: (課件第二頁) 第二通項公式 (課件第二頁)

  三、例題講解

  例1 ⑴求等差數(shù)列8,5,2…的第20項(課本p111) ⑵ -401是不是等差數(shù)列-5,-9,-13…的項?如果是,是第幾項?

  例2 在等差數(shù)列 中,已知 , ,求 , ,

  例3將一個等差數(shù)列的`通項公式輸入計算器數(shù)列 中,設(shè)數(shù)列的第s項和第t項分別為 和 ,計算 的值,你能發(fā)現(xiàn)什么結(jié)論?并證明你的結(jié)論。

  小結(jié):①這就是第二通項公式的變形,②幾何特征,直線的斜率

  例4 梯子最高一級寬33cm,最低一級寬為110cm,中間還有10級,各級的寬度成等差數(shù)列,計算中間各級的寬度。(課本p112例3)

  例5 已知數(shù)列{ }的通項公式 ,其中 、 是常數(shù),那么這個數(shù)列是否一定是等差數(shù)列?若是,首項與公差分別是什么?(課本p113例4)

  分析:由等差數(shù)列的定義,要判定 是不是等差數(shù)列,只要看 (n≥2)是不是一個與n無關(guān)的常數(shù)。

  注:①若p=0,則{ }是公差為0的等差數(shù)列,即為常數(shù)列q,q,q,… ②若p≠0, 則{ }是關(guān)于n的一次式,從圖象上看,表示數(shù)列的各點均在一次函數(shù)y=px+q的圖象上,一次項的系數(shù)是公差,直線在y軸上的截距為q. ③數(shù)列{ }為等差數(shù)列的充要條件是其通項 =pn+q (p、q是常數(shù))。稱其為第3通項公式④判斷數(shù)列是否是等差數(shù)列的方法是否滿足3個通項公式中的一個。

  例6.成等差數(shù)列的四個數(shù)的和為26,第二項與第三項之積為40,求這四個數(shù).

  四、練習:

  1.(1)求等差數(shù)列3,7,11,……的第4項與第10項.

 。2)求等差數(shù)列10,8,6,……的第20項.

 。3)100是不是等差數(shù)列2,9,16,……的項?如果是,是第幾項?如果不是,說明理由.

 。4)-20是不是等差數(shù)列0,-3 ,-7,……的項?如果是,是第幾項?如果不是,說明理由.

  2.在等差數(shù)列{ }中,

 。1)已知 =10, =19,求 與d;

  五、課后作業(yè):

  習題3.2 1(2),(4) 2.(2), 3, 4, 5, 6 . 8. 9.

數(shù)學等差數(shù)列教案9

  教學目標:

  1.知識與技能目標:理解等差數(shù)列的概念,了解等差數(shù)列的通項公式的推導過程及思想,掌握并會用等差數(shù)列的通項公式,初步引入“數(shù)學建模”的思想方法并能運用。

  2.過程與方法目標:培養(yǎng)學生觀察分析、猜想歸納、應用公式的能力;在領(lǐng)會函數(shù)與數(shù)列關(guān)系的前提下,滲透函數(shù)、方程的思想。

  3.情感態(tài)度與價值觀目標:通過對等差數(shù)列的研究培養(yǎng)學生主動探索、勇于發(fā)現(xiàn)的求知的精神;養(yǎng)成細心觀察、認真分析、善于總結(jié)的良好思維習慣。

  教學重點:

  等差數(shù)列的概念及通項公式。

  教學難點:

  (1)理解等差數(shù)列“等差”的特點及通項公式的含義。

  (2)等差數(shù)列的通項公式的推導過程及應用。

  教具:多媒體、實物投影儀

  教學過程:

  一、復習引入:

  1.回憶上一節(jié)課學習數(shù)列的定義,請舉出一個具體的例子。表示數(shù)列有哪幾種方法——列舉法、通項公式、遞推公式。我們這節(jié)課接著學習一類特殊的數(shù)列——等差數(shù)列。

  2.由生活中具體的數(shù)列實例引入

  (1).國際奧運會早期,撐桿跳高的記錄近似的由下表給出:

  你能看出這4次撐桿條跳世界記錄組成的數(shù)列,它的各項之間有什么關(guān)系嗎?

  (2)某劇場前10排的座位數(shù)分別是:

  48、46、44、42、40、38、36、34、32、30

  引導學生觀察:數(shù)列①、②有何規(guī)律?

  引導學生發(fā)現(xiàn)這些數(shù)字相鄰兩個數(shù)字的差總是一個常數(shù),數(shù)列①先左到右相差0.2,數(shù)列②從左到右相差-2。

  二.新課探究,推導公式

  1.等差數(shù)列的概念

  如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。

  強調(diào)以下幾點:

 、 “從第二項起”滿足條件;

 、诠頳一定是由后項減前項所得;

 、勖恳豁椗c它的前一項的差必須是同一個常數(shù)(強調(diào)“同一個常數(shù)” );

  所以上面的2、3都是等差數(shù)列,他們的公差分別為0.20,-2。

  在學生對等差數(shù)列有了直觀認識的基礎(chǔ)上,我將給出練習題,以鞏固知識的學習。

  [練習一]判斷下列各組數(shù)列中哪些是等差數(shù)列,哪些不是?如果是,寫出首項a1和公差d,如果不是,說明理由。

  1.3,5,7,…… √ d=2

  2.9,6,3,0,-3,…… √ d=-3

  3. 0,0,0,0,0,0,…….; √ d=0

  4. 1,2,3,2,3,4,……;×

  5. 1,0,1,0,1,……×

  在這個過程中我將采用邊引導邊提問的方法,以充分調(diào)動學生學習的積極性。

  2.等差數(shù)列通項公式

  如果等差數(shù)列{an}首項是a1,公差是d,那么根據(jù)等差數(shù)列的定義可得:

  a2 - a1 =d即:a2 =a1 +d

  a3 – a2 =d即:a3 =a2 +d = a1 +2d

  a4 – a3 =d即:a4 =a3 +d = a1 +3d

  ……

  猜想: a40 = a1 +39d

  進而歸納出等差數(shù)列的`通項公式:an=a1+(n-1)d

  此時指出:這種求通項公式的辦法叫不完全歸納法,這種導出公式的方法不夠嚴密,為了培養(yǎng)學生嚴謹?shù)膶W習態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項公式的辦法------迭加法:

  n=a1+(n-1)d

  a2-a1=d

  a3-a2=d

  a4-a3 =d

  ……

  an –a(n-1) =d

  將這(n-1)個等式左右兩邊分別相加,就可以得到

  an-a1=(n-1)d

  即an=a1+(n-1)d (Ⅰ)

  當n=1時,(Ⅰ)也成立,所以對一切n∈N﹡,上面的公式(Ⅰ)都成立,因此它就是等差數(shù)列{an}的通項公式。

  三.應用舉例

  例1求等差數(shù)列,12,8,4,0,…的第10項;20項;第30項;

  例2 -401是不是等差數(shù)列-5,-9,-13,…的項?如果是,是第幾項?

  四.反饋練習

  1.P293練習A組第1題和第2題(要求學生在規(guī)定時間內(nèi)做完上述題目,教師提問)。目的:使學生熟悉通項公式對學生進行基本技能訓練。

  五.歸納小結(jié)提煉精華

  (由學生總結(jié)這節(jié)課的收獲)

  1.等差數(shù)列的概念及數(shù)學表達式.

  強調(diào)關(guān)鍵字:從第二項開始它的每一項與前一項之差都等于同一常數(shù)

  2.等差數(shù)列的通項公式an= a1+(n-1) d會知三求一

  六.課后作業(yè)運用鞏固

  必做題:課本P284習題A組第3,4,5題

數(shù)學等差數(shù)列教案10

  教學理念:數(shù)學教學是思維過程的教學,如何引導學生參與到教學過程中來,尤其是在思維上深層次的參與,是促進學生良好的認知結(jié)構(gòu),培養(yǎng)能力,全面提高素質(zhì)的關(guān)鍵。數(shù)學教學中的探究式對培養(yǎng)和提高學生的自主性、能動性和創(chuàng)造性有著非常重要的意義。

  設(shè)計思想:本節(jié)借助多媒體輔助手段,創(chuàng)設(shè)問題的情境,讓探究式教學走進課堂,保障學生的主體地位,喚醒學生的主體意識,發(fā)展學生的主體能力,塑造學生的主體人格,讓學生在參與中學會學習、學會合作、學會創(chuàng)新。

  一、教材分析:

  教學內(nèi)容:

  高中數(shù)學必修第五模塊第二章第二節(jié),等差數(shù)列,兩課時內(nèi)容,本節(jié)是第一課時,研究等差數(shù)列的定義、通項公式的推導,借助生活中豐富的典型實例,讓學生通過分析、推理、歸納等活動過程,從中了解和體驗等差數(shù)列的定義和通項公式。

  教學地位:

  本節(jié)是第二章的基礎(chǔ),為以后學習等差數(shù)列的求和、等比數(shù)列奠定基礎(chǔ),是本章的重點內(nèi)容。在高考中也是重點考察內(nèi)容之一,并且在實際生活中有著廣泛的應用,它起著承前啟后的作用。同時也是培養(yǎng)學生數(shù)學能力的良好題材。等差數(shù)列是學生探究特殊數(shù)列的開始,它對后續(xù)內(nèi)容的學習,無論在知識上,還是在方法上都具有積極的意義。

  教學重點:

  理解等差數(shù)列概念,探索并掌握等差數(shù)列的通項公式,會用公式解決一些簡單的問題,體會等差數(shù)列與一次函數(shù)之間的關(guān)系。

  教學難點:

  對等差數(shù)列概念的.理解及從函數(shù)、方程角度理解通項公式,概括通項公式推導過程中體現(xiàn)出的數(shù)學思想方法。

  二、學習者分析:

  高二學生已經(jīng)具有一定的理性分析能力和概括能力,且對數(shù)列的知識有了初步的接觸和認識,對數(shù)學公式的運用已具備一定的技能,已經(jīng)熟悉由觀察到抽象的數(shù)學活動過程,對函數(shù)、方程思想體會逐漸深刻。他們的思維正從屬于經(jīng)驗性的邏輯思維向抽象思維發(fā)展,但仍需要依賴一定的具體形象的經(jīng)驗材料來理解抽象的邏輯關(guān)系。

  三、教學目標:

  知識目標:

  理解等差數(shù)列定義,掌握等差數(shù)列的通項公式。

  能力目標:

  培養(yǎng)學生觀察、歸納能力,在學習過程中,體會數(shù)形結(jié)合思想、歸納思想和化歸思想并加深認識;通過概念的引入與通項公式的推導,培養(yǎng)學生分析探索能力,增強運用公式解決實際問題的能力。

  情感目標:

 、偻ㄟ^個性化的學習增強學生的自信心和意志力。

 、谕ㄟ^師生、生生的合作學習,增強學生團隊協(xié)作能力的培養(yǎng),增強主動與他人合作交流的意識。

 、垠w驗從特殊到一般,又到特殊的認知規(guī)律,培養(yǎng)學生勇于創(chuàng)新的科學精神。

  四、教法和學法的分析:

  通過探究式教學方法充分利用現(xiàn)實情景,盡可能的增加教學過程的趣味性、實踐性。利用多媒體課件和實例等豐富學生的學習資源,強調(diào)學生動手操作試驗和主動參與,在教師的啟發(fā)指導下,讓學生自己去分析、探索,在探索過程中研究和領(lǐng)悟得出的結(jié)論,從而使學生即獲得知識又發(fā)展智能的目的。

  2、在學法上,引導學生多角度,多層面認識事物,學會探究。教師是學生的學習的組織者、促進著、合作者,在本節(jié)課的備課和教學過程中,為學生的動手實踐,自主探索與合作交流的機會搭建平臺,鼓勵學生提出自己的見解,學會提出問題解決問題,通過恰當?shù)慕虒W方式讓學生學會自我調(diào)適,自我選擇。

  五、教學媒體和教學技術(shù)的選用

  多媒體計算機和幾何畫板

  通過計算機模擬演示,使學生獲得感性知識的同時,為掌握理性知識創(chuàng)造條件,這樣做,可以使學生有興趣地學習,注意力也容易集中,符合教學論中的直觀性原則和可接受性原則。本節(jié)課打破傳統(tǒng)的一言堂的格局代之以人為本、民主、開放、特色和建立在信息網(wǎng)絡平臺上的現(xiàn)代教學格局。

  六、教學程序:

  (一)設(shè)置問題,引導發(fā)現(xiàn)形成概念w。

  師:看大屏幕。

  情景1(播放奧運會女子舉重場面)

  2008年北京奧運會,女子舉重共設(shè)置7個級別,其中較輕的4個級別體重組成數(shù)列(單位:kg):

  48,53,58,63

  情景2水庫的管理員為了保證優(yōu)質(zhì)魚類有良好的生活環(huán)境,定期放水清庫的辦法清理水庫中的雜魚。如果一個水庫的水位18m,自然放水每天水位下降2.5m,最低降至5m。那么從開始放水算起,到可以進行清理工作的那天,水庫每天的水位組成數(shù)列(單位:m)

  18,15.5,13,10.5,8,5.5

  情景3我國現(xiàn)行儲蓄制度規(guī)定銀行支付存款利息的方式為單利,即不把利息加入本金計算下一期的利息。按照單利計算本利和的公式是:

  本利和=本金(1+利率存期)

  時間年初本金(元)年末本利和(元)第1年10000 10072第2年10000 10144第3年10000 10216第4年10000 10288第5年10000 10360例如,按活期存入10000元,年利率是0.72%,那么按照單利,5年內(nèi)各年末本利和分別是:如下表(假設(shè)5年既不加存款也不取款,且不扣利息稅)

  各年末本利和(單位:元)

  10072,10144,10216,10288,10360

  師:思考上述各組數(shù)據(jù)反映了什么樣的信息?

  每行數(shù)有何共同特點?請同學們互相討論。

  (學生紛紛議論,有的幾個人在一起商量)

  (從宏觀上:情景1讓學生體驗成功申辦奧運會的喜悅心情,激發(fā)勇于拼搏的堅強意志;情景2讓學生認識到保護水資源,保護生態(tài)平衡的意識;情景3倡導節(jié)約意識,納稅意識。)

  從微觀上,數(shù)學研究的對象是數(shù),我們拋開具體的背景,從表格中抽象出一般數(shù)列。

  48 53 58 63 18 15.5 13 10.5 8 5.5 10072 10144 10216 10288 10360

  師:(啟發(fā)學生)你能用數(shù)學語言來描述上述數(shù)列的共同特征嗎?

  學生1:后一項與它的前一項的差等于常數(shù)。

  師:反例:1,3,5,6,12,這樣的數(shù)列特征和上述數(shù)列的特征一樣嗎?

  學生1:不一樣,要加上同一個常數(shù)。

  學生2:每一項與它的前一項的差等于同一個常數(shù)。

  師:反例:1,3,4,5,6,7,這樣的數(shù)列特征和上述數(shù)列的特征一樣嗎?

  學生2:不一樣,必須從第二項開始。

  學生3:從第二項起,每一項與它的前一項的差等于同一個常數(shù)。

  (教師把學生的回答寫在黑板上,通過反例,使學生深刻理解幾組數(shù)列的共同特征:

  = 1 GB3 ①同一個常數(shù);= 2 GB3 ②從第二項起)

  師:能不能用數(shù)學語言表示?

  學生4:

  師:等價嗎?

  學生4:應加上(d是常數(shù)),.

  (讓學生充分討論,注意文字語言與數(shù)學符號語言的轉(zhuǎn)化的嚴謹性)

  師:對式子進行變形可得。

  這樣的數(shù)列在生活中的例子,誰能再舉幾個?

  學生5:某劇場前8排的座位數(shù)分別是

  52,50,48,46,44,42,40,38.

  學生6:全國統(tǒng)一鞋號中成年女鞋的各種尺碼分別是

  21,21.5,22,22.5,23,23.5,24,24.5,25

  學生7:馬路邊的路燈,相鄰兩盞之間的距離構(gòu)成的數(shù)列。

  師:如何用數(shù)列表示?

  學生8:設(shè)相鄰兩盞之間的距離為a,該數(shù)列為

  a,a,a,a,……,為常數(shù)列,即常數(shù)列都具有這種特征。

  (讓學生舉例,加深感性認識)

  師:滿足這種特征的數(shù)列很多,我們有必要為這樣的數(shù)列取一個名字?

  學生(共同):等差數(shù)列。

  師:(學生敘述,板書定義)

  一般的,如果一個數(shù)列從第二項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫等差數(shù)列,d為公差,a1為數(shù)列的首相。

  提出課題《等差數(shù)列》

  對定義進行分析,強調(diào):= 1 GB3 ①同一個常數(shù);= 2 GB3 ②從第二項起。注意對概念嚴謹性的分析。

  師:回到表格中,分別說出它們的公差。

  學生9:依次是d=7,d=1,d=8,d=-6,d=5,d=-2.5,d=72.

  師:在計算年末本利和的問題中求時,能不能不按本利和=本金(1+利率存期)

  求而按數(shù)列的特征求呢?

  學生:若能求得通項公式,問題就很好解決。

  (再提出問題,引導發(fā)現(xiàn)求通項公式的必要性)

  (二)啟發(fā)、引導推出等差數(shù)列的通項公式

  師:把問題推廣到一般情況。若一個數(shù)列是等差數(shù)列,它的公差是d,那么數(shù)列的通項公式是什么?

  啟發(fā)學生:(歸納、猜想)可用首相與公差表示數(shù)列中任意一項。

  學生10:即:

  即:

  即:

  由此可得:

  師:從第幾項開始歸納的?

  學生10:第二項,所以n≥2。

  師:n=1時呢?

數(shù)學等差數(shù)列教案11

  一、等差數(shù)列

  1、定義

  注:“從第二項起”及

  “同一常數(shù)”用紅色粉筆標注

  二、等差數(shù)列的通項公式

  (一)例題與練習

  通過練習2和3 引出兩個具體的等差數(shù)列,初步認識等差數(shù)列的特征,為后面的概念學習建立基礎(chǔ),為學習新知識創(chuàng)設(shè)問題情境,激發(fā)學生的求知欲。由學生觀察兩個數(shù)列特點,引出等差數(shù)列的概念,對問題的總結(jié)又培養(yǎng)學生由具體到抽象、由特殊到一般的認知能力。

  (二)新課探究

  1、由引入自然的給出等差數(shù)列的概念:

  如果一個數(shù)列,從第二項開始它的每一項與前一項之差都等于同一常數(shù),這個數(shù)列就叫等差數(shù)列, 這個常數(shù)叫做等差數(shù)列的公差,通常用字母d來表示。強調(diào):

 、 “從第二項起”滿足條件; f

 、诠頳一定是由后項減前項所得;

 、勖恳豁椗c它的前一項的差必須是同一個常數(shù)(強調(diào)“同一個常數(shù)” );

  在理解概念的基礎(chǔ)上,由學生將等差數(shù)列的文字語言轉(zhuǎn)化為數(shù)學語言,歸納出數(shù)學表達式:

  an+1—an=d (n≥1) ;h4z+0"6vG

  同時為了配合概念的理解,我找了5組數(shù)列,由學生判斷是否為等差數(shù)列,是等差數(shù)列的找出公差。

  1。 9 ,8,7,6,5,4,……;√ d=—1

  2。 0。70,0。71,0。72,0。73,0。74……;√ d=0。01

  3。 0,0,0,0,0,0,……。; √ d=0

  4。 1,2,3,2,3,4,……;×

  5。 1,0,1,0,1,……×

  其中第一個數(shù)列公差<0,>0,第三個數(shù)列公差=0

  由此強調(diào):公差可以是正數(shù)、負數(shù),也可以是0

  2、第二個重點部分為等差數(shù)列的通項公式

  在歸納等差數(shù)列通項公式中,我采用討論式的教學方法。給出等差數(shù)列的首項 ,公差d,由學生研究分組討論a4 的通項公式。通過總結(jié)a4的通項公式由學生猜想a40的通項公式,進而歸納an的通項公式。整個過程由學生完成,通過互相討論的方式既培養(yǎng)了學生的協(xié)作意識又化解了教學難點。

  若一等差數(shù)列{an }的首項是a1,公差是d,

  則據(jù)其定義可得:

  a2 — a1 =d 即: a2 =a1 +d

  a3 – a2 =d 即: a3 =a2 +d = a1 +2d

  a4 – a3 =d 即: a4 =a3 +d = a1 +3d

  ……

  猜想: a40 = a1 +39d

  進而歸納出等差數(shù)列的通項公式:

  an=a1+(n—1)d

  此時指出: 這種求通項公式的辦法叫不完全歸納法,這種導出公式的'方法不夠嚴密,為了培養(yǎng)學生嚴謹?shù)膶W習態(tài)度,在這里向?qū)W生介紹另外一種求數(shù)列通項公式的辦法——————迭加法:

  a2 – a1 =d

  a3 – a2 =d

  a4 – a3 =d

  ……

  an+1 – an=d

  將這(n—1)個等式左右兩邊分別相加,就可以得到 an– a1= (n—1) d即 an= a1+(n—1) d (1)

  當n=1時,(1)也成立,

  所以對一切n∈N﹡,上面的公式都成立

  因此它就是等差數(shù)列{an}的通項公式。

  在迭加法的證明過程中,我采用啟發(fā)式教學方法。

  利用等差數(shù)列概念啟發(fā)學生寫出n—1個等式。

  對照已歸納出的通項公式啟發(fā)學生想出將n—1個等式相加。證出通項公式。

  在這里通過該知識點引入迭加法這一數(shù)學思想,逐步達到“注重方法,凸現(xiàn)思想” 的教學要求

  接著舉例說明:若一個等差數(shù)列{an}的首項是1,公差是2,得出這個數(shù)列的通項公式是:an=1+(n—1)×2 , 即an=2n—1 以此來鞏固等差數(shù)列通項公式運用

  同時要求畫出該數(shù)列圖象,由此說明等差數(shù)列是關(guān)于正整數(shù)n一次函數(shù),其圖像是均勻排開的無窮多個孤立點。用函數(shù)的思想來研究數(shù)列,使數(shù)列的性質(zhì)顯現(xiàn)得更加清楚。

  (三)應用舉例

  這一環(huán)節(jié)是使學生通過例題和練習,增強對通項公式含義的理解以及對通項公式的運用,提高解決實際問題的能力。通過例1和例2向?qū)W生表明:要用運動變化的觀點看等差數(shù)列通項公式中的a1、d、n、an這4個量之間的關(guān)系。當其中的部分量已知時,可根據(jù)該公式求出另一部分量。

  例1 (1)求等差數(shù)列8,5,2,…的第20項;第30項;第40項

  (2)—401是不是等差數(shù)列—5,—9,—13,…的項?如果是,是第幾項?

  在第一問中我添加了計算第30項和第40項以加強鞏固等差數(shù)列通項公式;第二問實際上是求正整數(shù)解的問題,而關(guān)鍵是求出數(shù)列的通項公式an

  例2 在等差數(shù)列{an}中,已知a5=10,a12 =31,求首項a1與公差d。

  在前面例1的基礎(chǔ)上將例2當作練習作為對通項公式的鞏固

  例3 是一個實際建模問題

  建造房屋時要設(shè)計樓梯,已知某大樓第2層的樓底離地面的高度為3米,第三層離地面5。8米,若樓梯設(shè)計為等高的16級臺階,問每級臺階高為多少米?

  這道題我采用啟發(fā)式和討論式相結(jié)合的教學方法。啟發(fā)學生注意每級臺階“等高”使學生想到每級臺階離地面的高度構(gòu)成等差數(shù)列,引導學生將該實際問題轉(zhuǎn)化為數(shù)學模型——————等差數(shù)列:(學生討論分析,分別演板,教師評析問題。問題可能出現(xiàn)在:項數(shù)學生認為是16項,應明確a1為第2層的樓底離地面的高度,a2表示第一級臺階離地面的高度而第16級臺階離地面高度為a17,可用展示實際樓梯圖以化解難點)

  設(shè)置此題的目的:

  1。加強同學們對應用題的綜合分析能力,

  2。通過數(shù)學實際問題引出等差數(shù)列問題,激發(fā)了學生的興趣;

  3。再者通過數(shù)學實例展示了“從實際問題出發(fā)經(jīng)抽象概括建立數(shù)學模型,最后還原說明實際問題的“數(shù)學建模”的數(shù)學思想方法

  (四)反饋練習

  1、小節(jié)后的練習中的第1題和第2題(要求學生在規(guī)定時間內(nèi)完成)。目的:使學生熟悉通項公式,對學生進行基本技能訓練。

  2、書上例3)梯子的最高一級寬33c,最低一級寬110c,中間還有10級,各級的寬度成等差數(shù)列。計算中間各級的寬度。

  目的:對學生加強建模思想訓練。

  3、若數(shù)例{an} 是等差數(shù)列,若 bn = an ,(為常數(shù))試證明:數(shù)列{bn}是等差數(shù)列

  此題是對學生進行數(shù)列問題提高訓練,學習如何用定義證明數(shù)列問題同時強化了等差數(shù)列的概念。

  (五)歸納小結(jié) (由學生總結(jié)這節(jié)課的收獲)

  1。等差數(shù)列的概念及數(shù)學表達式.

  強調(diào)關(guān)鍵字:從第二項開始它的每一項與前一項之差都等于同一常數(shù)

  2。等差數(shù)列的通項公式 an= a1+(n—1) d會知三求一

  3.用“數(shù)學建!彼枷敕椒ń鉀Q實際問題

  (六)布置作業(yè)

  必做題:課本P114 習題3。2第2,6 題

  選做題:已知等差數(shù)列{an}的首項a1= —24,從第10項開始為正數(shù),求公差d的取值范圍。(目的:通過分層作業(yè),提高同學們的求知欲和滿足不同層次的學生需求)

  五、板書設(shè)計

  在板書中突出本節(jié)重點,將強調(diào)的地方如定義中,“從第二項起”及“同一常數(shù)”等幾個字用紅色粉筆標注,同時給學生留有作題的地方,整個板書充分體現(xiàn)了精講多練的教學方法。

數(shù)學等差數(shù)列教案12

  2。2。1等差數(shù)列學案

  一、預習問題:

  1、等差數(shù)列的定義:一般地,如果一個數(shù)列從 起,每一項與它的前一項的差等于同一個 ,那么這個數(shù)列就叫等差數(shù)列,這個常數(shù)叫做等差數(shù)列的` , 通常用字母 表示。

  2、等差中項:若三個數(shù) 組成等差數(shù)列,那么A叫做 與 的 ,

  即 或 。

  3、等差數(shù)列的單調(diào)性:等差數(shù)列的公差 時,數(shù)列為遞增數(shù)列; 時,數(shù)列為遞減數(shù)列; 時,數(shù)列為常數(shù)列;等差數(shù)列不可能是 。

  4、等差數(shù)列的通項公式: 。

  5、判斷正誤:

 、1,2,3,4,5是等差數(shù)列; ( )

 、1,1,2,3,4,5是等差數(shù)列; ( )

  ③數(shù)列6,4,2,0是公差為2的等差數(shù)列; ( )

 、軘(shù)列 是公差為 的等差數(shù)列; ( )

 、輸(shù)列 是等差數(shù)列; ( )

 、奕 ,則 成等差數(shù)列; ( )

 、呷 ,則數(shù)列 成等差數(shù)列; ( )

 、嗟炔顢(shù)列是相鄰兩項中后項與前項之差等于非零常數(shù)的數(shù)列; ( )

  ⑨等差數(shù)列的公差是該數(shù)列中任何相鄰兩項的差。 ( )

  6、思考:如何證明一個數(shù)列是等差數(shù)列。

  二、實戰(zhàn)操作:

  例1、(1)求等差數(shù)列8,5,2,的第20項。

 。2) 是不是等差數(shù)列 中的項?如果是,是第幾項?

 。3)已知數(shù)列 的公差 則

  例2、已知數(shù)列 的通項公式為 ,其中 為常數(shù),那么這個數(shù)列一定是等差數(shù)列嗎?

  例3、已知5個數(shù)成等差數(shù)列,它們的和為5,平方和為 求這5個數(shù)。

【數(shù)學等差數(shù)列教案】相關(guān)文章:

數(shù)學等差數(shù)列教案02-25

數(shù)學等差數(shù)列教案(精選10篇)11-04

數(shù)學等差數(shù)列教案9篇02-25

優(yōu)秀高一數(shù)學等差數(shù)列教案(通用12篇)10-21

高一數(shù)學《等差數(shù)列》說課稿12-08

高一數(shù)學:等差數(shù)列說課稿12-06

高一數(shù)學等差數(shù)列說課稿07-28

高一數(shù)學《等差數(shù)列》說課稿3篇12-08

《等差數(shù)列》說課稿11-03

等差數(shù)列的說課稿12-05