- 相關(guān)推薦
楊銘深度學(xué)習(xí)發(fā)展的新趨勢(shì)演講稿
地平線機(jī)器人聯(lián)合創(chuàng)始人 地平線機(jī)器人技術(shù)軟件副總裁
大家好,我是楊銘。非常榮幸有這樣的機(jī)會(huì)跟大家分享我們對(duì)深度學(xué)習(xí)研究發(fā)展新趨勢(shì)的一些思考和總結(jié),我們將這些新發(fā)展的首字母縮寫成一個(gè)單詞MARS。這是和我的同事黃暢博士共同的一些討論。
簡(jiǎn)單介紹一下,我是去年夏天加入地平線的,負(fù)責(zé)軟件工程。在此之前我在Facebook人工智能實(shí)驗(yàn)室負(fù)責(zé)人臉識(shí)別算法研究和后端系統(tǒng)開(kāi)發(fā),也曾在NEC美國(guó)實(shí)驗(yàn)室和徐偉一起工作,學(xué)到很多東西。
在談?wù)撋疃葘W(xué)習(xí)的新趨勢(shì)之前,我們應(yīng)該首先明確一下深度學(xué)習(xí)的定義和它現(xiàn)在的發(fā)展?fàn)顟B(tài)。非常幸運(yùn),學(xué)術(shù)圈對(duì)于深度學(xué)習(xí)的定義有比較清楚的共識(shí)。深度學(xué)習(xí)是指從原始的數(shù)據(jù)通過(guò)不斷地學(xué)習(xí)、不斷地抽象,得到這些數(shù)據(jù)的表達(dá)或描述。所以簡(jiǎn)單地說(shuō),深度學(xué)習(xí)是從原始數(shù)據(jù)(raw data)學(xué)習(xí)其表達(dá)(learning representations)。這些原始數(shù)據(jù)可能是圖像數(shù)據(jù),可能是語(yǔ)音,也可能是文字;這種表達(dá)就是一些簡(jiǎn)潔的數(shù)字化的表達(dá)。深度學(xué)習(xí)的關(guān)鍵就是怎么去學(xué)這個(gè)表達(dá)。這個(gè)表達(dá)是通過(guò)多層的非線性的復(fù)雜的結(jié)構(gòu)學(xué)習(xí)的,而這個(gè)結(jié)構(gòu)可能是神經(jīng)網(wǎng)絡(luò),也可能其他的結(jié)構(gòu)。關(guān)鍵是希望通過(guò)端到端的訓(xùn)練,從數(shù)據(jù)直接學(xué)習(xí)到到表達(dá)。
如果談到深度學(xué)習(xí)的起源還是要回到1957年,從一個(gè)非常簡(jiǎn)單的結(jié)構(gòu)單元——“感知機(jī)(perception)”開(kāi)始。一些輸入信號(hào)被權(quán)重加權(quán)后,和一個(gè)閾值比較得到輸出。為什么說(shuō)這是深度學(xué)習(xí)的起源?因?yàn)檫@些權(quán)重不是由規(guī)則預(yù)先設(shè)計(jì)的,而是訓(xùn)練學(xué)習(xí)得到的。最開(kāi)始的“感知機(jī)”是硬件設(shè)計(jì),這些連接就是物理連線,這些權(quán)重可能是通過(guò)調(diào)節(jié)電阻實(shí)現(xiàn)的。當(dāng)時(shí)媒體就預(yù)測(cè),這是一個(gè)智能計(jì)算機(jī)的雛形,能很快學(xué)會(huì)走路、說(shuō)話、看圖、寫作,甚至自我復(fù)制或者有自我意識(shí)。那么過(guò)了60年,目前進(jìn)展到看圖和寫作中間的階段,希望至少再需要至60年能學(xué)會(huì)自我復(fù)制。
深度學(xué)習(xí)從出現(xiàn)之后,大體上經(jīng)過(guò)了兩個(gè)落起。一開(kāi)始大家非常樂(lè)觀,但很快發(fā)現(xiàn)有一些非常簡(jiǎn)單的問(wèn)題它解決不了。從2006年開(kāi)始,在Hinton/LeCun/Bengio/Ng等幾位教授的推動(dòng)下,深度學(xué)習(xí)得到了一種爆發(fā)式的發(fā)展,在圖像識(shí)別、語(yǔ)音識(shí)別、語(yǔ)義理解,和廣告推薦等問(wèn)題上,有一些突破性的提高。最新的進(jìn)展就是今年3月的AlphaGo圍棋比賽,以一種很直觀的方式讓社會(huì)大眾感受到了深度學(xué)習(xí)進(jìn)展。我們希望再過(guò)五年,深度學(xué)習(xí)的技術(shù)能夠真正用到千家萬(wàn)戶的日常生活中去,讓每個(gè)設(shè)備都可以運(yùn)行深度學(xué)習(xí)的模塊。
在這幾次起落中,深度學(xué)習(xí)基本的學(xué)習(xí)方式和網(wǎng)絡(luò)結(jié)構(gòu)其實(shí)沒(méi)有本質(zhì)性的變化,還是一種多級(jí)的人工神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)。像這幅圖中看到的,輸入層是一些原始數(shù)據(jù),并且有標(biāo)注。無(wú)論希望學(xué)到什么內(nèi)容,只要有個(gè)評(píng)價(jià)誤差的函數(shù)(cost function),評(píng)價(jià)神經(jīng)網(wǎng)絡(luò)的誤差是多少,那么有了這個(gè)輸入輸出之后,深度學(xué)習(xí)或者深度神經(jīng)網(wǎng)絡(luò)就可以作為一個(gè)黑盒子學(xué)習(xí)這個(gè)目標(biāo)。人工神經(jīng)網(wǎng)絡(luò)從結(jié)構(gòu)上講就是多層的神經(jīng)元和它們之間的連接,組合成很多層。開(kāi)始時(shí)可能有一個(gè)輸入和一個(gè)目標(biāo),比如你希望從人臉圖像識(shí)別出這個(gè)人是誰(shuí)。這時(shí)候神經(jīng)網(wǎng)絡(luò)肯定識(shí)別不出來(lái),因?yàn)樗鼜膩?lái)沒(méi)有見(jiàn)過(guò)。我們會(huì)給神經(jīng)網(wǎng)絡(luò)隨機(jī)設(shè)一些值,讓它預(yù)測(cè)這個(gè)識(shí)別結(jié)果,開(kāi)始最后輸出層幾乎肯定會(huì)是一個(gè)錯(cuò)誤的識(shí)別結(jié)果。這也沒(méi)有關(guān)系,我們把這個(gè)輸出層的誤差慢慢地反向傳播回去,一點(diǎn)點(diǎn)的修改這些神經(jīng)元的內(nèi)部參數(shù)和他們之間的連接。通過(guò)這種一點(diǎn)點(diǎn)地修改,慢慢通過(guò)大量的數(shù)據(jù),這個(gè)網(wǎng)絡(luò)就學(xué)會(huì)了一個(gè)非常復(fù)雜的函數(shù)功能。從八十年代到目前,這30年間,這個(gè)基本的結(jié)構(gòu)和學(xué)習(xí)算法是沒(méi)有變化。
從2006年開(kāi)始,深度學(xué)習(xí)有爆發(fā)式增長(zhǎng),歸結(jié)于下面幾個(gè)理由。首先是利用了海量的數(shù)據(jù),這些大數(shù)據(jù)的使用使得原來(lái)這種深度神經(jīng)網(wǎng)絡(luò)一些問(wèn)題,比如對(duì)噪聲數(shù)據(jù)敏感,容易在一個(gè)小的數(shù)據(jù)集性能很好,但無(wú)法泛化到大的數(shù)據(jù)集,這些問(wèn)題都不再是問(wèn)題了。能夠使用這些大數(shù)據(jù)學(xué)習(xí),需要很高的并行運(yùn)算的能力。當(dāng)然,也有算法上的改進(jìn),比如dropout、batch normalization、residual networks等,能避免過(guò)擬合梯度消失這些問(wèn)題。但本質(zhì)上這次深度學(xué)習(xí)的爆發(fā)發(fā)展還是通過(guò)大數(shù)據(jù)和計(jì)算能力實(shí)現(xiàn)的。之前說(shuō)神經(jīng)網(wǎng)絡(luò)本身像黑盒子,結(jié)構(gòu)設(shè)定沒(méi)有很好的指導(dǎo)意見(jiàn),這個(gè)目前還是這個(gè)現(xiàn)狀。
深度學(xué)習(xí)為什么這幾年能得到這么大的關(guān)注?關(guān)鍵原因是性能準(zhǔn)確度是隨著數(shù)據(jù)的增長(zhǎng)而增加的。其他的機(jī)器學(xué)習(xí)的方法可能隨著數(shù)據(jù)的增加,性能提高到某一個(gè)點(diǎn)就飽和了。但目前為止對(duì)于深度學(xué)習(xí)我們還沒(méi)有觀察到這點(diǎn),這可能是它最值得關(guān)注的一點(diǎn)。目前深度學(xué)習(xí)也取得很多成功,比如如何做好圖像分類的問(wèn)題。對(duì)于一個(gè)1000類圖像分類測(cè)試,經(jīng)過(guò)大概不到五年的時(shí)間,錯(cuò)誤率從25%降到3.5%的水平,已經(jīng)比人類的識(shí)別準(zhǔn)確率還要高。這就是我們目前深度學(xué)習(xí)或者深度神經(jīng)網(wǎng)絡(luò)取得的主要的成功點(diǎn),即學(xué)會(huì)了如何識(shí)別、如何分類。
回到我們的正題,目前深度學(xué)習(xí)研究的新趨勢(shì)?我們總結(jié)了四個(gè)方向。首先是學(xué)習(xí)如何記憶(memory networks);第二是學(xué)習(xí)如何關(guān)注與取舍(attention model),把注意力集中到需要關(guān)心的細(xì)節(jié)上;第三個(gè)是增強(qiáng)學(xué)習(xí)(reinforcement learning),學(xué)習(xí)如何控制主動(dòng)行動(dòng);第四個(gè)整體學(xué)習(xí)任務(wù)結(jié)構(gòu)上的新趨勢(shì),就是序列化(Sequentialization)。我們?nèi)∈鬃帜,縮寫成MARS。
第一個(gè)是學(xué)習(xí)然如何記憶。常規(guī)的前向神經(jīng)網(wǎng)絡(luò)有一個(gè)特點(diǎn):你每次輸入和輸出是確定的關(guān)系,對(duì)于一副圖像,無(wú)論何時(shí)輸入進(jìn)神經(jīng)網(wǎng)絡(luò),我們一層一層計(jì)算后就會(huì)得到一個(gè)確定的結(jié)果,這是跟上下文不相關(guān)的。我們?nèi)绾伟延洃浀哪芰σ氲缴窠?jīng)網(wǎng)絡(luò)中去?最簡(jiǎn)單的一個(gè)思路是,在神經(jīng)網(wǎng)絡(luò)中加入一些狀態(tài),讓它能記住一點(diǎn)事情。它的輸出不僅取決于它的輸入,也取決于它本身的狀態(tài)。這是一個(gè)最基本的遞歸神經(jīng)網(wǎng)絡(luò)的思路。輸出取決于本身的狀態(tài),我們也可以將其展開(kāi)成一個(gè)時(shí)序系列的結(jié)構(gòu),就是說(shuō)當(dāng)前狀態(tài)的輸入不僅包括現(xiàn)在輸入,也包含上一時(shí)刻的輸出,這樣就會(huì)構(gòu)成一個(gè)非常深的網(wǎng)絡(luò)。這種辦法可以讓神經(jīng)網(wǎng)絡(luò)記住一些之前的狀態(tài)。那么輸出就取決于在這些狀態(tài)和現(xiàn)在的輸入的結(jié)合。但是這個(gè)方法有一個(gè)局限:這些記憶不會(huì)很長(zhǎng)久,很快就會(huì)被后面的數(shù)據(jù)沖掉了。之后的深度學(xué)習(xí)的發(fā)展就是長(zhǎng)時(shí)短時(shí)記憶,提出了一個(gè)記憶單元(memory cell)的概念,這個(gè)單元中加入了三個(gè)個(gè)門,一個(gè)輸入門,一個(gè)輸出門,一個(gè)遺忘門。輸入門可以控制你的輸入是否影響你的記憶當(dāng)中的內(nèi)容。輸出門是影響你的記憶是否被輸出出來(lái)影響將來(lái)。遺忘門是來(lái)看你的記憶是否自我更新保持下去。這種方式使你的記憶得到靈活的保持,而控制記憶如何保持的這些門本身是通過(guò)學(xué)習(xí)得到的,通過(guò)不同的任務(wù)學(xué)習(xí)如何去控制這些門。這個(gè)長(zhǎng)短時(shí)記憶單元是1999年提出的,近幾年又有一些新的改進(jìn)如Gated Recurrent Unit,簡(jiǎn)化成只有兩個(gè)門,一個(gè)是更新門,一個(gè)重置們,控制記憶內(nèi)容是否能繼續(xù)保存下去。
這些方法其實(shí)可以把記憶保存得更長(zhǎng)一點(diǎn),但實(shí)際上還是很有限。更新的一些研究方法提出了一種神經(jīng)圖靈機(jī)(Neural Turning Machine)的概念:有一個(gè)永久的的內(nèi)存模塊,有一個(gè)控制模塊去控制如何根據(jù)輸入去讀取存儲(chǔ)這些內(nèi)存,并轉(zhuǎn)換成輸出。這個(gè)控制模塊,可以用神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)。舉個(gè)例子,比如做排序的工作,有一些亂序的數(shù)字,希望把它排成順序的序列。我們之前需要設(shè)計(jì)不同的排序算法,而這個(gè)神經(jīng)圖靈機(jī)的思路是我們給定這些輸入輸出,讓這個(gè)神經(jīng)網(wǎng)絡(luò)自己去學(xué)習(xí)如何把這些數(shù)字通過(guò)儲(chǔ)存和取出來(lái)排序。某種意義上,讓神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)如何實(shí)現(xiàn)編程實(shí)現(xiàn)任務(wù)。這也是一個(gè)類似的工作,記憶網(wǎng)絡(luò)(Memory Network),學(xué)習(xí)去管理這種長(zhǎng)時(shí)間的記憶,在應(yīng)用于問(wèn)答系統(tǒng)后,可以學(xué)到一些推理的能力。
第二個(gè)方向是把注意力模型(Attention Model),動(dòng)態(tài)的將注意力集中到某些細(xì)節(jié),提高識(shí)別性能。比如,看圖說(shuō)話圖像理解,你可以根據(jù)一幅圖生成一句話,很可能是非常宏觀的。如果我們能夠把注意力聚焦在這個(gè)機(jī)制的從引入到識(shí)別的過(guò)程中,根據(jù)目前的識(shí)別結(jié)果,動(dòng)態(tài)一步一步調(diào)整聚焦到圖像的細(xì)節(jié),那么可以生成一些更合理或者更精細(xì)的表達(dá),比如在圖像中,關(guān)注一個(gè)飛碟,我們可以調(diào)整關(guān)注區(qū)域在圖像中把飛碟的找出來(lái),提取它的特征進(jìn)行識(shí)別,得到圖像的更準(zhǔn)確的文字描述。
第三個(gè)就是增強(qiáng)學(xué)習(xí)(Reinforcement Learning)。在增強(qiáng)學(xué)習(xí)的框架中有兩個(gè)部分,一部分是自主控制的單元(agent),一部分是環(huán)境(environment)。自主控制單元是通過(guò)選擇不同的策略或者行為,希望能夠最大化自己的長(zhǎng)期預(yù)期收益,得到獎(jiǎng)勵(lì);而環(huán)境將接收策略行為,修改狀態(tài),反饋出獎(jiǎng)勵(lì)。在這個(gè)增強(qiáng)學(xué)習(xí)的框架中有兩個(gè)部分,一個(gè)部分是如何選擇這些行為(policy function),另外一部分是如何評(píng)價(jià)評(píng)估自己可能取得的這些收益(value function)。這個(gè)增強(qiáng)學(xué)習(xí)框架本身已經(jīng)存在很多年了,和深度學(xué)習(xí)的結(jié)合就是指如何選擇策略行為的函數(shù),以及如何評(píng)估預(yù)期獎(jiǎng)勵(lì)的函數(shù),由深度神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)得到,例如AlphaGo圍棋中的走棋網(wǎng)絡(luò)(policy network)和評(píng)價(jià)網(wǎng)絡(luò)(value networks)。
總而言之,從研究角度,深度學(xué)習(xí)正從有監(jiān)督的學(xué)習(xí)慢慢向這種互動(dòng)式的學(xué)習(xí)發(fā)展;網(wǎng)絡(luò)結(jié)構(gòu)由先向網(wǎng)絡(luò)向有遞歸方式、考慮記憶、考慮時(shí)序的網(wǎng)絡(luò)發(fā);同時(shí)內(nèi)容從靜態(tài)的輸入到動(dòng)態(tài)的輸入,在預(yù)測(cè)方式方面是從同時(shí)的預(yù)測(cè)慢慢變成一步一步序列化的預(yù)測(cè)。從2014年和2015年的發(fā)展情況來(lái)看,深度學(xué)習(xí)現(xiàn)在的非常簡(jiǎn)化的思路是,如果有個(gè)比較新的問(wèn)題,要做的事情首先是把問(wèn)題描述好,保證輸入到最終的目的這個(gè)過(guò)程每步是可微分的,然后把其中最難的部分插入深度神經(jīng)網(wǎng)絡(luò),實(shí)現(xiàn)端對(duì)端的學(xué)習(xí)。之前提到的幾個(gè)新趨勢(shì),大體上都是這種思路。
無(wú)論是社會(huì)大眾還是媒體,或者是研究人員自己,我們可能對(duì)深度學(xué)習(xí)還有一些不同角度的認(rèn)識(shí)。我個(gè)人認(rèn)為這是計(jì)算機(jī)科學(xué)領(lǐng)域非常純粹的計(jì)算問(wèn)題,探索如何把這些數(shù)據(jù)本質(zhì)的內(nèi)容和結(jié)構(gòu)抽象理解得更好。希望今天提到的一些深度學(xué)習(xí)的新趨勢(shì),對(duì)大家有所幫助和借鑒。謝謝大家!
【楊銘深度學(xué)習(xí)發(fā)展的新趨勢(shì)演講稿】相關(guān)文章:
最新酒店業(yè)發(fā)展新趨勢(shì)教案06-16
陋室銘的文章學(xué)習(xí)06-16
學(xué)習(xí)楊善洲精神作文06-06
陋室銘的銘06-10
《學(xué)歷案與深度學(xué)習(xí)》學(xué)習(xí)心得體會(huì)08-05
《鐵笛道人自傳》《楊廉夫維禎墓志銘》的對(duì)比閱讀及答案07-02
數(shù)學(xué)深度學(xué)習(xí)培訓(xùn)心得(通用26篇)07-21
陋室銘中銘的翻譯05-06