男人天堂日韩,中文字幕18页,天天伊人网,成人性生交大片免费视频

數(shù)學(xué)知識點總結(jié)

時間:2022-11-12 15:04:11 知識點總結(jié) 我要投稿

數(shù)學(xué)知識點總結(jié)(15篇)

  總結(jié)是在某一時期、某一項目或某些工作告一段落或者全部完成后進(jìn)行回顧檢查、分析評價,從而得出教訓(xùn)和一些規(guī)律性認(rèn)識的一種書面材料,它是增長才干的一種好辦法,讓我們來為自己寫一份總結(jié)吧。那么總結(jié)應(yīng)該包括什么內(nèi)容呢?下面是小編幫大家整理的數(shù)學(xué)知識點總結(jié),希望對大家有所幫助。

數(shù)學(xué)知識點總結(jié)(15篇)

數(shù)學(xué)知識點總結(jié)1

  一、單項式

  1、都是數(shù)字與字母的乘積的代數(shù)式叫做單項式。

  2、單項式的數(shù)字因數(shù)叫做單項式的系數(shù)。

  3、單項式中所有字母的指數(shù)和叫做單項式的次數(shù)。

  4、單獨一個數(shù)或一個字母也是單項式。

  5、只含有字母因式的單項式的系數(shù)是1或―1。

  6、單獨的一個數(shù)字是單項式,它的系數(shù)是它本身。

  7、單獨的一個非零常數(shù)的次數(shù)是0。

  8、單項式中只能含有乘法或乘方運算,而不能含有加、減等其他運算。

  9、單項式的系數(shù)包括它前面的符號。

  10、單項式的系數(shù)是帶分?jǐn)?shù)時,應(yīng)化成假分?jǐn)?shù)。

  11、單項式的系數(shù)是1或―1時,通常省略數(shù)字“1”。

  12、單項式的次數(shù)僅與字母有關(guān),與單項式的系數(shù)無關(guān)。

  二、多項式

  1、幾個單項式的和叫做多項式。

  2、多項式中的每一個單項式叫做多項式的項。

  3、多項式中不含字母的項叫做常數(shù)項。

  4、一個多項式有幾項,就叫做幾項式。

  5、多項式的每一項都包括項前面的符號。

  6、多項式?jīng)]有系數(shù)的概念,但有次數(shù)的概念。

  7、多項式中次數(shù)的項的次數(shù),叫做這個多項式的次數(shù)。

  三、整式

  1、單項式和多項式統(tǒng)稱為整式。

  2、單項式或多項式都是整式。

  3、整式不一定是單項式。

  4、整式不一定是多項式。

  5、分母中含有字母的代數(shù)式不是整式;而是今后將要學(xué)習(xí)的分式。

  四、整式的加減

  1、整式加減的理論根據(jù)是:去括號法則,合并同類項法則,以及乘法分配率。

  2、幾個整式相加減,關(guān)鍵是正確地運用去括號法則,然后準(zhǔn)確合并同類項。

  3、幾個整式相加減的一般步驟:

  (1)列出代數(shù)式:用括號把每個整式括起來,再用加減號連接。

  (2)按去括號法則去括號。

  (3)合并同類項。

  4、代數(shù)式求值的一般步驟:

  (1)代數(shù)式化簡。

  (2)代入計算

  (3)對于某些特殊的代數(shù)式,可采用“整體代入”進(jìn)行計算。

  五、同底數(shù)冪的乘法

  1、n個相同因式(或因數(shù))a相乘,記作an,讀作a的n次方(冪),其中a為底數(shù),n為指數(shù),an的結(jié)果叫做冪。

  2、底數(shù)相同的冪叫做同底數(shù)冪。

  3、同底數(shù)冪乘法的運算法則:同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加。即:am﹒an=am+n。

  4、此法則也可以逆用,即:am+n=am﹒an。

  5、開始底數(shù)不相同的冪的乘法,如果可以化成底數(shù)相同的冪的乘法,先化成同底數(shù)冪再運用法則。

  六、冪的乘方

  1、冪的乘方是指幾個相同的冪相乘。(am)n表示n個am相乘。

  2、冪的乘方運算法則:冪的乘方,底數(shù)不變,指數(shù)相乘。(am)n=amn。

  3、此法則也可以逆用,即:amn=(am)n=(an)m。

  七、積的乘方

  1、積的乘方是指底數(shù)是乘積形式的乘方。

  2、積的乘方運算法則:積的乘方,等于把積中的每個因式分別乘方,然后把所得的冪相乘。即(ab)n=anbn。

  3、此法則也可以逆用,即:anbn=(ab)n。

  八、三種“冪的運算法則”異同點

  1、共同點:

  (1)法則中的底數(shù)不變,只對指數(shù)做運算。

  (2)法則中的底數(shù)(不為零)和指數(shù)具有普遍性,即可以是數(shù),也可以是式(單項式或多項式)。

  (3)對于含有3個或3個以上的運算,法則仍然成立。

  2、不同點:

  (1)同底數(shù)冪相乘是指數(shù)相加。

  (2)冪的乘方是指數(shù)相乘。

  (3)積的乘方是每個因式分別乘方,再將結(jié)果相乘。

  九、同底數(shù)冪的除法

  1、同底數(shù)冪的除法法則:同底數(shù)冪相除,底數(shù)不變,指數(shù)相減,即:am÷an=am-n(a≠0)。

  2、此法則也可以逆用,即:am-n=am÷an(a≠0)。

  十、零指數(shù)冪

  1、零指數(shù)冪的意義:任何不等于0的數(shù)的0次冪都等于1,即:a0=1(a≠0)。

  十一、負(fù)指數(shù)冪

  1、任何不等于零的數(shù)的―p次冪,等于這個數(shù)的p次冪的倒數(shù),即:

  注:在同底數(shù)冪的除法、零指數(shù)冪、負(fù)指數(shù)冪中底數(shù)不為0。

  十二、整式的乘法

  (一)單項式與單項式相乘

  1、單項式乘法法則:單項式與單項式相乘,把它們的系數(shù)、相同字母的冪分別相乘,其余字母連同它的指數(shù)不變,作為積的因式。

  2、系數(shù)相乘時,注意符號。

  3、相同字母的冪相乘時,底數(shù)不變,指數(shù)相加。

  4、對于只在一個單項式中含有的字母,連同它的指數(shù)一起寫在積里,作為積的因式。

  5、單項式乘以單項式的結(jié)果仍是單項式。

  6、單項式的乘法法則對于三個或三個以上的單項式相乘同樣適用。

  (二)單項式與多項式相乘

  1、單項式與多項式乘法法則:單項式與多項式相乘,就是根據(jù)分配率用單項式去乘多項式中的每一項,再把所得的積相加。即:m(a+b+c)=ma+mb+mc。

  2、運算時注意積的符號,多項式的每一項都包括它前面的符號。

  3、積是一個多項式,其項數(shù)與多項式的項數(shù)相同。

  4、混合運算中,注意運算順序,結(jié)果有同類項時要合并同類項,從而得到最簡結(jié)果。

  (三)多項式與多項式相乘

  1、多項式與多項式乘法法則:多項式與多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加。即:(m+n)(a+b)=ma+mb+na+nb。

  2、多項式與多項式相乘,必須做到不重不漏。相乘時,要按一定的順序進(jìn)行,即一個多項式的每一項乘以另一個多項式的每一項。在未合并同類項之前,積的項數(shù)等于兩個多項式項數(shù)的積。

  3、多項式的每一項都包含它前面的符號,確定積中每一項的符號時應(yīng)用“同號得正,異號得負(fù)”。

  4、運算結(jié)果中有同類項的要合并同類項。

  5、對于含有同一個字母的一次項系數(shù)是1的兩個一次二項式相乘時,可以運用下面的公式簡化運算:(x+a)(x+b)=x2+(a+b)x+ab。

數(shù)學(xué)知識點總結(jié)2

  1.角的定義:有公共端點的兩條射線組成的圖形叫角。這個公共端點是角的頂點,兩條射線為角的兩邊。

  2.角有以下的表示方法:

  (1)用三個大寫字母及符號“∠”表示.三個大寫字母分別是頂點和兩邊上的任意點,頂點的字母必須寫在中間。

  (2)用一個大寫字母表示.這個字母就是頂點.當(dāng)有兩個或兩個以上的角是同一個頂點時,不能用一個大寫字母表示。

  (3)用一個數(shù)字或一個希臘字母表示.在角的內(nèi)部靠近角的頂點處畫一弧線,寫上希臘字母或數(shù)字.如圖的兩個角,分別記作∠α、∠1。

  3.以度、分、秒為單位的角的度量制,叫做角度制。角的度、分、秒是60進(jìn)制的。1度=60分,1分=60秒,1周角=360度,1平角=180度。

  4.角的平分線:一般地,從一個角的頂點出發(fā),把這個角分成兩個相等的角的射線,叫做這個角的平分線。

  5.如果兩個角的和等于90度(直角),就說這兩個叫互為余角,即其中每一個角是另一個角的余角;如果兩個角的和等于180度(平角),就說這兩個叫互為補角,即其中每一個角是另一個角的補角。

  6.同角(等角)的補角相等;同角(等角)的余角相等。

數(shù)學(xué)知識點總結(jié)3

  集合具有某種特定性質(zhì)的事物的總體。這里的事物可以是人,物品,也可以是數(shù)學(xué)元素。

  例如:

  1、分散的人或事物聚集到一起;使聚集:緊急~。

  2、數(shù)學(xué)名詞。一組具有某種共同性質(zhì)的數(shù)學(xué)元素:有理數(shù)的~。

  3、口號等等。集合在數(shù)學(xué)概念中有好多概念,如集合論:集合是現(xiàn)代數(shù)學(xué)的基本概念,專門研究集合的理論叫做集合論。康托(Cantor,G、F、P、,1845年1918年,德國數(shù)學(xué)家先驅(qū),是集合論的,目前集合論的基本思想已經(jīng)滲透到現(xiàn)代數(shù)學(xué)的所有領(lǐng)域。

  集合,在數(shù)學(xué)上是一個基礎(chǔ)概念。

  什么叫基礎(chǔ)概念?基礎(chǔ)概念是不能用其他概念加以定義的概念。集合的概念,可通過直觀、公理的方法來下定義。

  集合是把人們的直觀的或思維中的某些確定的能夠區(qū)分的對象匯合在一起,使之成為一個整體(或稱為單體),這一整體就是集合。組成一集合的那些對象稱為這一集合的元素(或簡稱為元)。

  集合與集合之間的關(guān)系

  某些指定的對象集在一起就成為一個集合集合符號,含有有限個元素叫有限集,含有無限個元素叫無限集,空集是不含任何元素的集,記做?占侨魏渭系淖蛹,是任何非空集的真子集。任何集合是它本身的子集。子集,真子集都具有傳遞性。

 。ㄕf明一下:如果集合A的所有元素同時都是集合B的元素,則A稱作是B的子集,寫作AB。若A是B的子集,且A不等于B,則A稱作是B的真子集,一般寫作AB。中學(xué)教材課本里將符號下加了一個符號,不要混淆,考試時還是要以課本為準(zhǔn)。所有男人的集合是所有人的集合的真子集。)

數(shù)學(xué)知識點總結(jié)4

  圓的方程

  1、圓的定義:平面內(nèi)到一定點的距離等于定長的點的集合叫圓,定點為圓心,定長為圓的半徑。

  2、圓的方程

 。1)標(biāo)準(zhǔn)方程,圓心,半徑為r;

  (2)一般方程

  當(dāng)時,方程表示圓,此時圓心為,半徑為

  當(dāng)時,表示一個點;當(dāng)時,方程不表示任何圖形。

 。3)求圓方程的方法:

  一般都采用待定系數(shù)法:先設(shè)后求。確定一個圓需要三個獨立條件,若利用圓的標(biāo)準(zhǔn)方程,

  需求出a,b,r;若利用一般方程,需要求出D,E,F(xiàn);

  另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過原點,以此來確定圓心的位置。

  高中數(shù)學(xué)必修二知識點總結(jié):直線與圓的位置關(guān)系:

  直線與圓的位置關(guān)系有相離,相切,相交三種情況:

 。1)設(shè)直線,圓,圓心到l的距離為,則有;;

 。2)過圓外一點的切線:①k不存在,驗證是否成立②k存在,設(shè)點斜式方程,用圓心到該直線距離=半徑,求解k,得到方程【一定兩解】

 。3)過圓上一點的切線方程:圓(x—a)2+(y—b)2=r2,圓上一點為(x0,y0),則過此點的切線方程為(x0—a)(x—a)+(y0—b)(y—b)=r2

  4、圓與圓的位置關(guān)系:通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。

  設(shè)圓,

  兩圓的位置關(guān)系常通過兩圓半徑的和(差),與圓心距(d)之間的大小比較來確定。

  當(dāng)時兩圓外離,此時有公切線四條;

  當(dāng)時兩圓外切,連心線過切點,有外公切線兩條,內(nèi)公切線一條;

  當(dāng)時兩圓相交,連心線垂直平分公共弦,有兩條外公切線;

  當(dāng)時,兩圓內(nèi)切,連心線經(jīng)過切點,只有一條公切線;

  當(dāng)時,兩圓內(nèi)含;當(dāng)時,為同心圓。

  注意:已知圓上兩點,圓心必在中垂線上;已知兩圓相切,兩圓心與切點共線

  4、空間點、直線、平面的位置關(guān)系

  公理1:如果一條直線的兩點在一個平面內(nèi),那么這條直線是所有的點都在這個平面內(nèi)。

  應(yīng)用:判斷直線是否在平面內(nèi)

  用符號語言表示公理1:

  公理2:如果兩個不重合的平面有一個公共點,那么它們有且只有一條過該點的公共直線

  符號:平面α和β相交,交線是a,記作α∩β=a。

  符號語言:

  公理2的作用:

 、偎桥卸▋蓚平面相交的方法。

 、谒f明兩個平面的交線與兩個平面公共點之間的關(guān)系:交線必過公共點。

 、鬯梢耘袛帱c在直線上,即證若干個點共線的重要依據(jù)。

  公理3:經(jīng)過不在同一條直線上的三點,有且只有一個平面。

  推論:一直線和直線外一點確定一平面;兩相交直線確定一平面;兩平行直線確定一平面。

  公理3及其推論作用:①它是空間內(nèi)確定平面的依據(jù)②它是證明平面重合的依據(jù)

  公理4:平行于同一條直線的兩條直線互相平行

  空間直線與直線之間的位置關(guān)系

 、佼惷嬷本定義:不同在任何一個平面內(nèi)的兩條直線

  ②異面直線性質(zhì):既不平行,又不相交。

 、郛惷嬷本判定:過平面外一點與平面內(nèi)一點的直線與平面內(nèi)不過該店的直線是異面直線

 、墚惷嬷本所成角:作平行,令兩線相交,所得銳角或直角,即所成角。兩條異面直線所成角的范圍是(0°,90°],若兩條異面直線所成的角是直角,我們就說這兩條異面直線互相垂直。

  求異面直線所成角步驟:

  A、利用定義構(gòu)造角,可固定一條,平移另一條,或兩條同時平移到某個特殊的位置,頂點選在特殊的位置上。B、證明作出的角即為所求角C、利用三角形來求角

  (7)等角定理:如果一個角的兩邊和另一個角的兩邊分別平行,那么這兩角相等或互補。

  (8)空間直線與平面之間的位置關(guān)系

  直線在平面內(nèi)——有無數(shù)個公共點。

  三種位置關(guān)系的符號表示:aαa∩α=Aa‖α

  (9)平面與平面之間的位置關(guān)系:平行——沒有公共點;α‖β

  相交——有一條公共直線。α∩β=b

  5、空間中的平行問題

 。1)直線與平面平行的判定及其性質(zhì)

  線面平行的判定定理:平面外一條直線與此平面內(nèi)一條直線平行,則該直線與此平面平行。

  線線平行線面平行

  線面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,

  那么這條直線和交線平行。線面平行線線平行

  (2)平面與平面平行的判定及其性質(zhì)

  兩個平面平行的判定定理

  (1)如果一個平面內(nèi)的兩條相交直線都平行于另一個平面,那么這兩個平面平行

  (線面平行→面面平行),

  (2)如果在兩個平面內(nèi),各有兩組相交直線對應(yīng)平行,那么這兩個平面平行。

 。ň線平行→面面平行),

  (3)垂直于同一條直線的兩個平面平行,

  兩個平面平行的性質(zhì)定理

 。1)如果兩個平面平行,那么某一個平面內(nèi)的直線與另一個平面平行。(面面平行→線面平行)

  (2)如果兩個平行平面都和第三個平面相交,那么它們的交線平行。(面面平行→線線平行)

  7、空間中的垂直問題

 。1)線線、面面、線面垂直的定義

 、賰蓷l異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直。

  ②線面垂直:如果一條直線和一個平面內(nèi)的任何一條直線垂直,就說這條直線和這個平面垂直。

 、燮矫婧推矫娲怪保喝绻麅蓚平面相交,所成的二面角(從一條直線出發(fā)的兩個半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個平面垂直。

 。2)垂直關(guān)系的判定和性質(zhì)定理

 、倬面垂直判定定理和性質(zhì)定理

  判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直這個平面。

  性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。

 、诿婷娲怪钡呐卸ǘɡ砗托再|(zhì)定理

  判定定理:如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直。

  性質(zhì)定理:如果兩個平面互相垂直,那么在一個平面內(nèi)垂直于他們的交線的直線垂直于另一個平面。

  9、空間角問題

 。1)直線與直線所成的角

 、賰善叫兄本所成的角:規(guī)定為。

 、趦蓷l相交直線所成的角:兩條直線相交其中不大于直角的角,叫這兩條直線所成的角。

 、蹆蓷l異面直線所成的角:過空間任意一點O,分別作與兩條異面直線a,b平行的直線,形成兩條相交直線,這兩條相交直線所成的不大于直角的角叫做兩條異面直線所成的角。

 。2)直線和平面所成的角

 、倨矫娴钠叫芯與平面所成的角:規(guī)定為。②平面的垂線與平面所成的角:規(guī)定為。

 、燮矫娴男本與平面所成的角:平面的一條斜線和它在平面內(nèi)的射影所成的銳角,叫做這條直線和這個平面所成的角。

  求斜線與平面所成角的思路類似于求異面直線所成角:“一作,二證,三計算”。

  在“作角”時依定義關(guān)鍵作射影,由射影定義知關(guān)鍵在于斜線上一點到面的垂線,

  在解題時,注意挖掘題設(shè)中兩個主要信息:(1)斜線上一點到面的垂線;(2)過斜線上的一點或過斜線的平面與已知面垂直,由面面垂直性質(zhì)易得垂線。

  (3)二面角和二面角的平面角

 、俣娼堑亩x:從一條直線出發(fā)的兩個半平面所組成的圖形叫做二面角,這條直線叫做二面角的棱,這兩個半平面叫做二面角的面。

  ②二面角的平面角:以二面角的棱上任意一點為頂點,在兩個面內(nèi)分別作垂直于棱的兩條射線,這兩條射線所成的角叫二面角的平面角。

  ③直二面角:平面角是直角的二面角叫直二面角。

  兩相交平面如果所組成的二面角是直二面角,那么這兩個平面垂直;反過來,如果兩個平面垂直,那么所成的二面角為直二面角

 、芮蠖娼堑姆椒

  定義法:在棱上選擇有關(guān)點,過這個點分別在兩個面內(nèi)作垂直于棱的射線得到平面角

  垂面法:已知二面角內(nèi)一點到兩個面的垂線時,過兩垂線作平面與兩個面的交線所成的角為二面角的平面角

  數(shù)學(xué)的學(xué)習(xí)方法

  1、養(yǎng)成良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣。建立良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣,會使自己學(xué)習(xí)感到有序而輕松。高中數(shù)學(xué)的良好習(xí)慣應(yīng)是:多質(zhì)疑、勤思考、好動手、重歸納、注意應(yīng)用。學(xué)生在學(xué)習(xí)數(shù)學(xué)的過程中,要把教師所傳授的知識翻譯成為自己的特殊語言,并永久記憶在自己的腦海中。良好的學(xué)習(xí)數(shù)學(xué)習(xí)慣包括課前自學(xué)、專心上課、及時復(fù)習(xí)、獨立作業(yè)、解決疑難、系統(tǒng)小結(jié)和課外學(xué)習(xí)幾個方面。

  2、及時了解、掌握常用的數(shù)學(xué)思想和方法,學(xué)好高中數(shù)學(xué),需要我們從數(shù)學(xué)思想與方法高度來掌握它。中學(xué)數(shù)學(xué)學(xué)習(xí)要重點掌握的的數(shù)學(xué)思想有以上幾個:集合與對應(yīng)思想,分類討論思想,數(shù)形結(jié)合思想,運動思想,轉(zhuǎn)化思想,變換思想。

  3、逐步形成“以我為主”的學(xué)習(xí)模式數(shù)學(xué)不是靠老師教會的,而是在老師的引導(dǎo)下,靠自己主動的思維活動去獲取的。學(xué)習(xí)數(shù)學(xué)就要積極主動地參與學(xué)習(xí)過程,養(yǎng)成實事求是的科學(xué)態(tài)度,獨立思考、勇于探索的創(chuàng)新精神。

  4、記數(shù)學(xué)筆記,特別是對概念理解的不同側(cè)面和數(shù)學(xué)規(guī)律,教師在課堂中拓展的課外知識。記錄下來本章你覺得最有價值的思想方法或例題,以及你還存在的未解決的問題,以便今后將其補上。

  高中數(shù)學(xué)知識點有哪些

  1、混淆命題的否定與否命題

  命題的“否定”與命題的“否命題”是兩個不同的概念,命題p的否定是否定命題所作的判斷,而“否命題”是對“若p,則q”形式的命題而言,既要否定條件也要否定結(jié)論。

  2、忽視集合元素的三性致誤

  集合中的元素具有確定性、無序性、互異性,集合元素的三性中互異性對解題的影響最大,特別是帶有字母參數(shù)的集合,實際上就隱含著對字母參數(shù)的一些要求。

  3、判斷函數(shù)奇偶性忽略定義域致誤

  判斷函數(shù)的奇偶性,首先要考慮函數(shù)的定義域,一個函數(shù)具備奇偶性的必要條件是這個函數(shù)的定義域關(guān)于原點對稱,如果不具備這個條件,函數(shù)一定是非奇非偶函數(shù)。

  4、函數(shù)零點定理使用不當(dāng)致誤

  如果函數(shù)y=f(x)在區(qū)間[a,b]上的圖像是一條連續(xù)的曲線,并且有f(a)f(b)<0,那么,函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點,但f(a)f(b)>0時,不能否定函數(shù)y=f(x)在(a,b)內(nèi)有零點。函數(shù)的零點有“變號零點”和“不變號零點”,對于“不變號零點”函數(shù)的零點定理是“無能為力”的,在解決函數(shù)的零點問題時要注意這個問題。

  5、函數(shù)的單調(diào)區(qū)間理解不準(zhǔn)致誤

  在研究函數(shù)問題時要時時刻刻想到“函數(shù)的圖像”,學(xué)會從函數(shù)圖像上去分析問題、尋找解決問題的方法。對于函數(shù)的幾個不同的單調(diào)遞增(減)區(qū)間,切忌使用并集,只要指明這幾個區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。

  6、三角函數(shù)的單調(diào)性判斷致誤

  對于函數(shù)y=Asin(ωx+φ)的單調(diào)性,當(dāng)ω>0時,由于內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞增的,所以該函數(shù)的單調(diào)性和y=sin x的單調(diào)性相同,故可完全按照函數(shù)y=sin x的單調(diào)區(qū)間解決;但當(dāng)ω<0時,內(nèi)層函數(shù)u=ωx+φ是單調(diào)遞減的,此時該函數(shù)的單調(diào)性和函數(shù)y=sinx的單調(diào)性相反,就不能再按照函數(shù)y=sinx的單調(diào)性解決,一般是根據(jù)三角函數(shù)的奇偶性將內(nèi)層函數(shù)的系數(shù)變?yōu)檎龜?shù)后再加以解決。對于帶有絕對值的三角函數(shù)應(yīng)該根據(jù)圖像,從直觀上進(jìn)行判斷。

  7、向量夾角范圍不清致誤

  解題時要全面考慮問題。數(shù)學(xué)試題中往往隱含著一些容易被考生所忽視的因素,能不能在解題時把這些因素考慮到,是解題成功的關(guān)鍵,如當(dāng)a·b<0時,a與b的夾角不一定為鈍角,要注意θ=π的情況。

  8、忽視零向量致誤

  零向量是向量中最特殊的向量,規(guī)定零向量的長度為0,其方向是任意的,零向量與任意向量都共線。它在向量中的位置正如實數(shù)中0的位置一樣,但有了它容易引起一些混淆,稍微考慮不到就會出錯,考生應(yīng)給予足夠的重視。

  9、對數(shù)列的定義、性質(zhì)理解錯誤

  等差數(shù)列的前n項和在公差不為零時是關(guān)于n的常數(shù)項為零的二次函數(shù);一般地,有結(jié)論“若數(shù)列{an}的前n項和Sn=an2+bn+c(a,b,c∈R),則數(shù)列{an}為等差數(shù)列的充要條件是c=0”;在等差數(shù)列中,Sm,S2m—Sm,S3m—S2m(m∈Nx)是等差數(shù)列。

  10、an與Sn關(guān)系不清致誤

  在數(shù)列問題中,數(shù)列的通項an與其前n項和Sn之間存在下列關(guān)系:an=S1,n=1,Sn—Sn—1,n≥2。這個關(guān)系對任意數(shù)列都是成立的,但要注意的是這個關(guān)系式是分段的,在n=1和n≥2時這個關(guān)系式具有完全不同的表現(xiàn)形式,這也是解題中經(jīng)常出錯的一個地方,在使用這個關(guān)系式時要牢牢記住其“分段”的特點。

  11、錯位相減求和項處理不當(dāng)致誤

  錯位相減求和法的適用條件:數(shù)列是由一個等差數(shù)列和一個等比數(shù)列對應(yīng)項的乘積所組成的,求其前n項和;痉椒ㄊ窃O(shè)這個和式為Sn,在這個和式兩端同時乘以等比數(shù)列的公比得到另一個和式,這兩個和式錯一位相減,就把問題轉(zhuǎn)化為以求一個等比數(shù)列的前n項和或前n—1項和為主的求和問題。這里最容易出現(xiàn)問題的就是錯位相減后對剩余項的處理。

  12、不等式性質(zhì)應(yīng)用不當(dāng)致誤

  在使用不等式的基本性質(zhì)進(jìn)行推理論證時一定要準(zhǔn)確,特別是不等式兩端同時乘以或同時除以一個數(shù)式、兩個不等式相乘、一個不等式兩端同時n次方時,一定要注意使其能夠這樣做的條件,如果忽視了不等式性質(zhì)成立的前提條件就會出現(xiàn)錯誤。

  13、數(shù)列中的最值錯誤

  數(shù)列問題中其通項公式、前n項和公式都是關(guān)于正整數(shù)n的函數(shù),要善于從函數(shù)的觀點認(rèn)識和理解數(shù)列問題。數(shù)列的通項an與前n項和Sn的關(guān)系是高考的命題重點,解題時要注意把n=1和n≥2分開討論,再看能不能統(tǒng)一。在關(guān)于正整數(shù)n的二次函數(shù)中其取最值的點要根據(jù)正整數(shù)距離二次函數(shù)的對稱軸的遠(yuǎn)近而定。

  14、不等式恒成立問題致誤

  解決不等式恒成立問題的常規(guī)求法是:借助相應(yīng)函數(shù)的單調(diào)性求解,其中的主要方法有數(shù)形結(jié)合法、變量分離法、主元法。通過最值產(chǎn)生結(jié)論。應(yīng)注意恒成立與存在性問題的區(qū)別,如對任意x∈[a,b]都有f(x)≤g(x)成立,即f(x)—g(x)≤0的恒成立問題,但對存在x∈[a,b],使f(x)≤g(x)成立,則為存在性問題,即f(x)min≤g(x)max,應(yīng)特別注意兩函數(shù)中的最大值與最小值的關(guān)系。

  15、忽視三視圖中的實、虛線致誤

  三視圖是根據(jù)正投影原理進(jìn)行繪制,嚴(yán)格按照“長對正,高平齊,寬相等”的規(guī)則去畫,若相鄰兩物體的表面相交,表面的交線是它們的原分界線,且分界線和可視輪廓線都用實線畫出,不可見的輪廓線用虛線畫出,這一點很容易疏忽。

  16、面積體積計算轉(zhuǎn)化不靈活致誤

  面積、體積的計算既需要學(xué)生有扎實的基礎(chǔ)知識,又要用到一些重要的思想方法,是高考考查的重要題型。因此要熟練掌握以下幾種常用的思想方法。(1)還臺為錐的思想:這是處理臺體時常用的思想方法。(2)割補法:求不規(guī)則圖形面積或幾何體體積時常用。(3)等積變換法:充分利用三棱錐的任意一個面都可作為底面的特點,靈活求解三棱錐的體積。(4)截面法:尤其是關(guān)于旋轉(zhuǎn)體及與旋轉(zhuǎn)體有關(guān)的組合問題,常畫出軸截面進(jìn)行分析求解。

  17、忽視基本不等式應(yīng)用條件致誤

  利用基本不等式a+b≥2ab以及變式ab≤a+b22等求函數(shù)的最值時,務(wù)必注意a,b為正數(shù)(或a,b非負(fù)),ab或a+b其中之一應(yīng)是定值,特別要注意等號成立的條件。對形如y=ax+bx(a,b>0)的函數(shù),在應(yīng)用基本不等式求函數(shù)最值時,一定要注意ax,bx的符號,必要時要進(jìn)行分類討論,另外要注意自變量x的取值范圍,在此范圍內(nèi)等號能否取到。

數(shù)學(xué)知識點總結(jié)5

  1.我們把實物中抽象的各種圖形統(tǒng)稱為幾何圖形。

  2.有些幾何圖形(如長方體.正方體.圓柱.圓錐.球等)的各部分不都在同一平面內(nèi),它們是立體圖形。

  3.有些幾何圖形(如線段.角.三角形.長方形.圓等)的各部分都在同一平面內(nèi),它們是平面圖形。

  4.將由平面圖形圍成的立體圖形表面適當(dāng)剪開,可以展開成平面圖形,這樣的平面圖形稱為相應(yīng)立體圖形的展開圖。

  5.幾何體簡稱為體。

  6.包圍著體的是面,面有平的面和曲的面兩種。

  7.面與面相交的地方形成線,線和線相交的地方是點。

  8.點動成面,面動成線,線動成體。

  9.經(jīng)過探究可以得到一個基本事實:經(jīng)過兩點有一條直線,并且只有一條直線。簡述為:兩點確定一條直線(公理)。

  10.當(dāng)兩條不同的直線有一個公共點時,我們就稱這兩條直線相交,這個公共點叫做它們的交點。

  11.點M把線段AB分成相等的兩條線段AM和MB,點M叫做線段AB的中點。

  12.經(jīng)過比較,我們可以得到一個關(guān)于線段的基本事實:兩點的所有連線中,線段最短。簡單說成:兩點之間,線段最短。(公理)

  13.連接兩點間的線段的長度,叫做這兩點的距離。

數(shù)學(xué)知識點總結(jié)6

  付正軍:高考數(shù)學(xué)中有函數(shù)、數(shù)列、三角函數(shù)、平面向量、不等式、立體幾何等九大章節(jié),主要是考函數(shù)和導(dǎo)數(shù),這是我們整個高中階段里最核心的板塊,在這個板塊里,重點考察兩個方面:第一個函數(shù)的性質(zhì),包括函數(shù)的單調(diào)性、奇偶性;第二是函數(shù)的解答題,重點考察的是二次函數(shù)和高次函數(shù),分函數(shù)和它的一些分布問題,但是這個分布重點還包含兩個分析就是二次方程的分布的問題,這是第一個板塊。

  第二個是平面向量和三角函數(shù)。重點考察三個方面:一個是劃減與求值,第一,重點掌握公式,重點掌握五組基本公式。第二,是三角函數(shù)的圖像和性質(zhì),這里重點掌握正弦函數(shù)和余弦函數(shù)的性質(zhì),第三,正弦定理和余弦定理來解三角形。難度比較小。

  第三,是數(shù)列,數(shù)列這個板塊,重點考兩個方面:一個通項;一個是求和。

  第四,空間向量和立體幾何。在里面重點考察兩個方面:一個是證明;一個是計算。

  第五,概率和統(tǒng)計,這一板塊主要是屬于數(shù)學(xué)應(yīng)用問題的范疇,當(dāng)然應(yīng)該掌握下面幾個方面,第一等可能的概率,第二事件,第三是獨立事件,還有獨立重復(fù)事件發(fā)生的概率。

  第六,解析幾何,這是我們比較頭疼的問題,是整個試卷里難度比較大,計算量最高的題,當(dāng)然這一類題,我總結(jié)下面五類?嫉念}型,包括第一類所講的直線和曲線的位置關(guān)系,這是考試最多的內(nèi)容?忌鷳(yīng)該掌握它的通法,第二類我們所講的動點問題,第三類是弦長問題,第四類是對稱問題,這也是20xx年高考已經(jīng)考過的一點,第五類重點問題,這類題時往往覺得有思路,但是沒有答案,當(dāng)然這里我相等的是,這道題盡管計算量很大,但是造成計算量大的原因,往往有這個原因,我們所選方法不是很恰當(dāng),因此,在這一章里我們要掌握比較好的算法,來提高我們做題的準(zhǔn)確度,這是我們所講的第六大板塊。

  第七,押軸題,考生在備考復(fù)習(xí)時,應(yīng)該重點不等式計算的方法,雖然說難度比較大,我建議考生,采取分部得分整個試卷不要留空白。這是高考所考的七大板塊核心的考點。

數(shù)學(xué)知識點總結(jié)7

  直線和平面垂直

  直線和平面垂直的'定義:如果一條直線a和一個平面內(nèi)的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。

  直線與平面垂直的判定定理:如果一條直線和一個平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個平面。

  直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個平面,那么這兩條直線平行。③直線和平面平行——沒有公共點

  直線和平面平行的定義:如果一條直線和一個平面沒有公共點,那么我們就說這條直線和這個平面平行。

  直線和平面平行的判定定理:如果平面外一條直線和這個平面內(nèi)的一條直線平行,那么這條直線和這個平面平行。

  直線和平面平行的性質(zhì)定理:如果一條直線和一個平面平行,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行。

  多面體

  1、棱柱

  棱柱的定義:有兩個面互相平行,其余各面都是四邊形,并且每兩個四邊形的公共邊都互相平行,這些面圍成的幾何體叫做棱柱。

  棱柱的性質(zhì)

  (1)側(cè)棱都相等,側(cè)面是平行四邊形

  (2)兩個底面與平行于底面的截面是全等的多邊形

  (3)過不相鄰的兩條側(cè)棱的截面(對角面)是平行四邊形

  2、棱錐

  棱錐的定義:有一個面是多邊形,其余各面都是有一個公共頂點的三角形,這些面圍成的幾何體叫做棱錐

  棱錐的性質(zhì):

  (1)側(cè)棱交于一點。側(cè)面都是三角形

  (2)平行于底面的截面與底面是相似的多邊形。且其面積比等于截得的棱錐的高與遠(yuǎn)棱錐高的比的平方

  3、正棱錐

  正棱錐的定義:如果一個棱錐底面是正多邊形,并且頂點在底面內(nèi)的射影是底面的中心,這樣的棱錐叫做正棱錐。

  正棱錐的性質(zhì):

  (1)各側(cè)棱交于一點且相等,各側(cè)面都是全等的等腰三角形。各等腰三角形底邊上的高相等,它叫做正棱錐的斜高。

  (3)多個特殊的直角三角形

  a、相鄰兩側(cè)棱互相垂直的正三棱錐,由三垂線定理可得頂點在底面的射影為底面三角形的垂心。

  b、四面體中有三對異面直線,若有兩對互相垂直,則可得第三對也互相垂直。且頂點在底面的射影為底面三角形的垂心。

數(shù)學(xué)知識點總結(jié)8

  1:一般式:Ax+By+C=0(A、B不同時為0)適用于所有直線

  K=-A/B,b=-C/B

  A1/A2=B1/B2≠C1/C2←→兩直線平行

  A1/A2=B1/B2=C1/C2←→兩直線重合

  橫截距a=-C/A

  縱截距b=-C/B

  2:點斜式:y-y0=k(x-x0)適用于不垂直于x軸的直線

  表示斜率為k,且過(x0,y0)的直線

  3:截距式:x/a+y/b=1適用于不過原點或不垂直于x軸、y軸的直線

  表示與x軸、y軸相交,且x軸截距為a,y軸截距為b的直線

  4:斜截式:y=kx+b適用于不垂直于x軸的直線

  表示斜率為k且y軸截距為b的直線

  5:兩點式:適用于不垂直于x軸、y軸的直線

  表示過(x1,y1)和(x2,y2)的直線

  (y-y1)/(y2-y1)=(x-x1)/(x2-x1)(x1≠x2,y1≠y2)

  6:交點式:f1(x,y)m+f2(x,y)=0適用于任何直線

  表示過直線f1(x,y)=0與直線f2(x,y)=0的交點的直線

  7:點平式:f(x,y)-f(x0,y0)=0適用于任何直線

  表示過點(x0,y0)且與直線f(x,y)=0平行的直線

  8:法線式:x·cosα+ysinα-p=0適用于不平行于坐標(biāo)軸的直線

  過原點向直線做一條的垂線段,該垂線段所在直線的傾斜角為α,p是該線段的長度

  9:點向式:(x-x0)/u=(y-y0)/v(u≠0,v≠0)適用于任何直線

  表示過點(x0,y0)且方向向量為(u,v)的直線

  10:法向式:a(x-x0)+b(y-y0)=0適用于任何直線

  表示過點(x0,y0)且與向量(a,b)垂直的直線

  11:點到直線距離

  點P(x0,y0)到直線Ι:Ax+By+C=0的距離

  d=|Ax0+By0+C|/√A2+B2

  兩平行線之間距離

  若兩平行直線的方程分別為:

  Ax+By+C1=OAx+By+C2=0則

  這兩條平行直線間的距離d為:

  d=丨C1-C2丨/√(A2+B2)

  12:各種不同形式的直線方程的局限性:

  (1)點斜式和斜截式都不能表示斜率不存在的直線;

  (2)兩點式不能表示與坐標(biāo)軸平行的直線;

  (3)截距式不能表示與坐標(biāo)軸平行或過原點的直線;

  (4)直線方程的一般式中系數(shù)A、B不能同時為零.

  13:位置關(guān)系

  若直線L1:A1x+B1y+C1=0與直線L2:A2x+B2y+C2=0

  1.當(dāng)A1B2-A2B1≠0時,相交

  2.A1/A2=B1/B2≠C1/C2,平行

  3.A1/A2=B1/B2=C1/C2,重合

  4.A1A2+B1B2=0,垂直

數(shù)學(xué)知識點總結(jié)9

  一、直線與圓:

  1、直線的傾斜角 的范圍是

  在平面直角坐標(biāo)系中,對于一條與 軸相交的直線 ,如果把 軸繞著交點按逆時針方向轉(zhuǎn)到和直線 重合時所轉(zhuǎn)的最小正角記為, 就叫做直線的傾斜角。當(dāng)直線 與 軸重合或平行時,規(guī)定傾斜角為0;

  2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα.

  過兩點(x1,y1),(x2,y2)的直線的斜率k=( y2-y1)/(x2-x1),另外切線的斜率用求導(dǎo)的方法。

  3、直線方程:⑴點斜式:直線過點 斜率為 ,則直線方程為 ,

 、菩苯厥剑褐本在 軸上的截距為 和斜率,則直線方程為

  4、 , ,① ∥ , ; ② .

  直線 與直線 的位置關(guān)系:

  (1)平行 A1/A2=B1/B2 注意檢驗(2)垂直 A1A2+B1B2=0

  5、點 到直線 的距離公式 ;

  兩條平行線 與 的距離是

  6、圓的標(biāo)準(zhǔn)方程: .⑵圓的一般方程:

  注意能將標(biāo)準(zhǔn)方程化為一般方程

  7、過圓外一點作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線.

  8、直線與圓的位置關(guān)系,通常轉(zhuǎn)化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構(gòu)造直角三角形解決弦長問題.① 相離 ② 相切 ③ 相交

  9、解決直線與圓的關(guān)系問題時,要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長、弦心距構(gòu)成直角三角形) 直線與圓相交所得弦長

  二、圓錐曲線方程:

  1、橢圓: ①方程 (a>b>0)注意還有一個;②定義: PF1+PF2=2a>2c; ③ e= ④長軸長為2a,短軸長為2b,焦距為2c; a2=b2+c2 ;

  2、雙曲線:①方程 (a,b>0) 注意還有一個;②定義: PF1-PF2=2a<2c; ③e= ;④實軸長為2a,虛軸長為2b,焦距為2c;漸進(jìn)線 或 c2=a2+b2

  3、拋物線 :①方程y2=2px注意還有三個,能區(qū)別開口方向; ②定義:PF=d焦點F( ,0),準(zhǔn)線x=- ;③焦半徑 ; 焦點弦=x1+x2+p;

  4、直線被圓錐曲線截得的弦長公式:

  5、注意解析幾何與向量結(jié)合問題:1、 , . (1) ;(2) .

  2、數(shù)量積的定義:已知兩個非零向量a和b,它們的夾角為θ,則數(shù)量abcosθ叫做a與b的數(shù)量積,記作a·b,即

  3、模的計算:a= . 算模可以先算向量的平方

  4、向量的運算過程中完全平方公式等照樣適用:

  三、直線、平面、簡單幾何體:

  1、學(xué)會三視圖的分析:

  2、斜二測畫法應(yīng)注意的地方:

  (1)在已知圖形中取互相垂直的軸Ox、Oy。畫直觀圖時,把它畫成對應(yīng)軸 o'x'、o'y'、使∠x'o'y'=45°(或135° ); (2)平行于x軸的線段長不變,平行于y軸的線段長減半.(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.

  3、表(側(cè))面積與體積公式:

 、胖w:①表面積:S=S側(cè)+2S底;②側(cè)面積:S側(cè)= ;③體積:V=S底h

 、棋F體:①表面積:S=S側(cè)+S底;②側(cè)面積:S側(cè)= ;③體積:V= S底h:

 、桥_體①表面積:S=S側(cè)+S上底S下底②側(cè)面積:S側(cè)=

 、惹蝮w:①表面積:S= ;②體積:V=

  4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書寫

  (1)直線與平面平行:①線線平行線面平行;②面面平行 線面平行。

  (2)平面與平面平行:①線面平行面面平行。

  (3)垂直問題:線線垂直 線面垂直 面面垂直。核心是線面垂直:垂直平面內(nèi)的兩條相交直線

  5、求角:(步驟-------Ⅰ.找或作角;Ⅱ.求角)

  ⑴異面直線所成角的求法:平移法:平移直線,構(gòu)造三角形;

  ⑵直線與平面所成的角:直線與射影所成的角

  四、導(dǎo)數(shù):

  1、導(dǎo)數(shù)的定義: 在點 處的導(dǎo)數(shù)記作 .

  2. 導(dǎo)數(shù)的幾何物理意義:曲線 在點 處切線的斜率

  ①k=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t) 表示即時速度。a=v/(t) 表示加速度。

  3.常見函數(shù)的導(dǎo)數(shù)公式: ① ;② ;③ ;

  4.導(dǎo)數(shù)的四則運算法則:

  5.導(dǎo)數(shù)的應(yīng)用:

  (1)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù) 在某個區(qū)間內(nèi)可導(dǎo),如果 ,那么 為增函數(shù);如果 ,那么為減函數(shù);

  注意:如果已知 為減函數(shù)求字母取值范圍,那么不等式 恒成立。

  (2)求極值的步驟:

 、偾髮(dǎo)數(shù) ;

 、谇蠓匠 的根;

 、哿斜恚簷z驗 在方程 根的左右的符號,如果左正右負(fù),那么函數(shù) 在這個根處取得極大值;如果左負(fù)右正,那么函數(shù) 在這個根處取得極小值;

  (3)求可導(dǎo)函數(shù)最大值與最小值的步驟:

  ?求 的根; ?把根與區(qū)間端點函數(shù)值比較,最大的為最大值,最小的是最小值。

  五、常用邏輯用語:

  1、四種命題:

  ⑴原命題:若p則q;⑵逆命題:若q則p;⑶否命題:若 p則 q;⑷逆否命題:若 q則 p

  注:

  1、原命題與逆否命題等價;逆命題與否命題等價。判斷命題真假時注意轉(zhuǎn)化。

  2、注意命題的否定與否命題的區(qū)別:命題否定形式是 ;否命題是 .命題“ 或 ”的否定是“ 且 ”;“ 且 ”的否定是“ 或 ”.

  3、邏輯聯(lián)結(jié)詞:

 、徘(and) :命題形式 p q; p q p q p q p

 、苹(or):命題形式 p q; 真 真 真 真 假

  ⑶非(not):命題形式 p . 真 假 假 真 假

  假 真 假 真 真

  假 假 假 假 真

  “或命題”的真假特點是“一真即真,要假全假”;

  “且命題”的真假特點是“一假即假,要真全真”;

  “非命題”的真假特點是“一真一假”

  4、充要條件

  由條件可推出結(jié)論,條件是結(jié)論成立的充分條件;由結(jié)論可推出條件,則條件是結(jié)論成立的必要條件。

  5、全稱命題與特稱命題:

  短語“所有”在陳述中表示所述事物的全體,邏輯中通常叫做全稱量詞,并用符號表示。含有全體量詞的命題,叫做全稱命題。

  短語“有一個”或“有些”或“至少有一個”在陳述中表示所述事物的個體或部分,邏輯中通常叫做存在量詞,并用符號 表示,含有存在量詞的命題,叫做存在性命題。

  全稱命題p: ; 全稱命題p的否定 p:。

  特稱命題p: ; 特稱命題p的否定 p:

數(shù)學(xué)知識點總結(jié)10

  內(nèi)容子交并補集,還有冪指對函數(shù)。性質(zhì)奇偶與增減,觀察圖象最明顯。

  復(fù)合函數(shù)式出現(xiàn),性質(zhì)乘法法則辨,若要詳細(xì)證明它,還須將那定義抓。

  指數(shù)與對數(shù)函數(shù),初中學(xué)習(xí)方法,兩者互為反函數(shù)。底數(shù)非1的正數(shù),1兩邊增減變故。

  函數(shù)定義域好求。分母不能等于0,偶次方根須非負(fù),零和負(fù)數(shù)無對數(shù);

  正切函數(shù)角不直,余切函數(shù)角不平;其余函數(shù)實數(shù)集,多種情況求交集。

  兩個互為反函數(shù),單調(diào)性質(zhì)都相同;圖象互為軸對稱,Y=X是對稱軸;

  求解非常有規(guī)律,反解換元定義域;反函數(shù)的定義域,原來函數(shù)的值域。

  冪函數(shù)性質(zhì)易記,指數(shù)化既約分?jǐn)?shù);函數(shù)性質(zhì)看指數(shù),奇母奇子奇函數(shù),

  奇母偶子偶函數(shù),偶母非奇偶函數(shù);圖象第一象限內(nèi),函數(shù)增減看正負(fù)。

  形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。

  自變量x的取值范圍是不等于0的一切實數(shù)。

  反比例函數(shù)圖像性質(zhì):

  反比例函數(shù)的圖像為雙曲線。

  由于反比例函數(shù)屬于奇函數(shù),有f(-x)=-f(x),圖像關(guān)于原點對稱。

  另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點,向兩個坐標(biāo)軸作垂線,高中地理,這點、兩個垂足及原點所圍成的矩形面積是定值,為?k?。

  如圖,上面給出了k分別為正和負(fù)(2和-2)時的函數(shù)圖像。

  當(dāng)K>0時,反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)

  當(dāng)K<0時,反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)

  反比例函數(shù)圖像只能無限趨向于坐標(biāo)軸,無法和坐標(biāo)軸相交。

  知識點:

  1.過反比例函數(shù)圖象上任意一點作兩坐標(biāo)軸的垂線段,這兩條垂線段與坐標(biāo)軸圍成的矩形的面積為k。

  2.對于雙曲線y=k/x,若在分母上加減任意一個實數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當(dāng)于將雙曲線圖象向左或右平移一個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移)

數(shù)學(xué)知識點總結(jié)11

  歸納1

  1、“包含”關(guān)系—子集

  注意:有兩種可能(1)A是B的一部分,;(2)A與B是同一集合。

  反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA

  2、“相等”關(guān)系(5≥5,且5≤5,則5=5)

  實例:設(shè)A={x|x2—1=0}B={—1,1}“元素相同”

  結(jié)論:對于兩個集合A與B,如果集合A的任何一個元素都是集合B的元素,同時,集合B的任何一個元素都是集合A的元素,我們就說集合A等于集合B,即:A=B

 、偃魏我粋集合是它本身的子集。AíA

 、谡孀蛹喝绻鸄íB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)

 、廴绻鸄íB,BíC,那么AíC

  ④如果AíB同時BíA那么A=B

  3、不含任何元素的集合叫做空集,記為Φ

  規(guī)定:空集是任何集合的子集,空集是任何非空集合的真子集。

  歸納2

  形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。

  自變量x的取值范圍是不等于0的一切實數(shù)。

  反比例函數(shù)圖像性質(zhì):

  反比例函數(shù)的圖像為雙曲線。

  由于反比例函數(shù)屬于奇函數(shù),有f(—x)=—f(x),圖像關(guān)于原點對稱。

  另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點,向兩個坐標(biāo)軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

  上面給出了k分別為正和負(fù)(2和—2)時的函數(shù)圖像。

  當(dāng)K>0時,反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)

  當(dāng)K<0時,反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)

  反比例函數(shù)圖像只能無限趨向于坐標(biāo)軸,無法和坐標(biāo)軸相交。

  知識點:

  1、過反比例函數(shù)圖象上任意一點作兩坐標(biāo)軸的垂線段,這兩條垂線段與坐標(biāo)軸圍成的矩形的面積為|k|。

  2、對于雙曲線y=k/x,若在分母上加減任意一個實數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當(dāng)于將雙曲線圖象向左或右平移一個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移)

  歸納3

  方程的根與函數(shù)的零點

  1、函數(shù)零點的概念:對于函數(shù),把使成立的實數(shù)叫做函數(shù)的零點。

  2、函數(shù)零點的意義:函數(shù)的零點就是方程實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標(biāo)。即:方程有實數(shù)根,函數(shù)的圖象與坐標(biāo)軸有交點,函數(shù)有零點。

  3、函數(shù)零點的求法:

  (1)(代數(shù)法)求方程的實數(shù)根;

 。2)(幾何法)對于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來,并利用函數(shù)的性質(zhì)找出零點。

  4、二次函數(shù)的零點:

  (1)△>0,方程有兩不等實根,二次函數(shù)的圖象與軸有兩個交點,二次函數(shù)有兩個零點。

  (2)△=0,方程有兩相等實根(二重根),二次函數(shù)的圖象與軸有一個交點,二次函數(shù)有一個二重零點或二階零點。

  (3)△<0,方程無實根,二次函數(shù)的圖象與軸無交點,二次函數(shù)無零點。

  歸納3

  形如y=k/x(k為常數(shù)且k≠0)的函數(shù),叫做反比例函數(shù)。

  自變量x的取值范圍是不等于0的一切實數(shù)。

  反比例函數(shù)圖像性質(zhì):

  反比例函數(shù)的圖像為雙曲線。

  由于反比例函數(shù)屬于奇函數(shù),有f(—x)=—f(x),圖像關(guān)于原點對稱。

  另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點,向兩個坐標(biāo)軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。

  如圖,上面給出了k分別為正和負(fù)(2和—2)時的函數(shù)圖像。

  當(dāng)K>0時,反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)

  當(dāng)K<0時,反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)

  反比例函數(shù)圖像只能無限趨向于坐標(biāo)軸,無法和坐標(biāo)軸相交。

  知識點:

  1、過反比例函數(shù)圖象上任意一點作兩坐標(biāo)軸的垂線段,這兩條垂線段與坐標(biāo)軸圍成的矩形的面積為|k|。

  2、對于雙曲線y=k/x,若在分母上加減任意一個實數(shù)(即y=k/(x±m(xù))m為常數(shù)),就相當(dāng)于將雙曲線圖象向左或右平移一個單位。(加一個數(shù)時向左平移,減一個數(shù)時向右平移)

  歸納4

  冪函數(shù)的性質(zhì):

  對于a的取值為非零有理數(shù),有必要分成幾種情況來討論各自的特性:

  首先我們知道如果a=p/q,q和p都是整數(shù),則x^(p/q)=q次根號(x的p次方),如果q是奇數(shù),函數(shù)的定義域是R,如果q是偶數(shù),函數(shù)的定義域是[0,+∞)。當(dāng)指數(shù)n是負(fù)整數(shù)時,設(shè)a=—k,則x=1/(x^k),顯然x≠0,函數(shù)的定義域是(—∞,0)∪(0,+∞)、因此可以看到x所受到的限制來源于兩點,一是有可能作為分母而不能是0,一是有可能在偶數(shù)次的根號下而不能為負(fù)數(shù),那么我們就可以知道:

  排除了為0與負(fù)數(shù)兩種可能,即對于x>0,則a可以是任意實數(shù);

  排除了為0這種可能,即對于x<0x="">0的所有實數(shù),q不能是偶數(shù);

  排除了為負(fù)數(shù)這種可能,即對于x為大于且等于0的所有實數(shù),a就不能是負(fù)數(shù)。

  總結(jié)起來,就可以得到當(dāng)a為不同的數(shù)值時,冪函數(shù)的定義域的不同情況如下:如果a為任意實數(shù),則函數(shù)的定義域為大于0的所有實數(shù);

  如果a為負(fù)數(shù),則x肯定不能為0,不過這時函數(shù)的定義域還必須根據(jù)q的奇偶性來確定,即如果同時q為偶數(shù),則x不能小于0,這時函數(shù)的定義域為大于0的所有實數(shù);如果同時q為奇數(shù),則函數(shù)的定義域為不等于0的所有實數(shù)。

  在x大于0時,函數(shù)的值域總是大于0的實數(shù)。

  在x小于0時,則只有同時q為奇數(shù),函數(shù)的值域為非零的實數(shù)。

  而只有a為正數(shù),0才進(jìn)入函數(shù)的值域。

  由于x大于0是對a的任意取值都有意義的,因此下面給出冪函數(shù)在第一象限的各自情況、

  可以看到:

 。1)所有的圖形都通過(1,1)這點。

 。2)當(dāng)a大于0時,冪函數(shù)為單調(diào)遞增的,而a小于0時,冪函數(shù)為單調(diào)遞減函數(shù)。

  (3)當(dāng)a大于1時,冪函數(shù)圖形下凹;當(dāng)a小于1大于0時,冪函數(shù)圖形上凸。

 。4)當(dāng)a小于0時,a越小,圖形傾斜程度越大。

 。5)a大于0,函數(shù)過(0,0);a小于0,函數(shù)不過(0,0)點。

 。6)顯然冪函數(shù)無界。

  解題方法:換元法

  解數(shù)學(xué)題時,把某個式子看成一個整體,用一個變量去代替它,從而使問題得到簡化,這種方法叫換元法,換元的實質(zhì)是轉(zhuǎn)化,關(guān)鍵是構(gòu)造元和設(shè)元,理論依據(jù)是等量代換,目的是變換研究對象,將問題移至新對象的知識背景中去研究,從而使非標(biāo)準(zhǔn)型問題標(biāo)準(zhǔn)化、復(fù)雜問題簡單化,變得容易處理。

  換元法又稱輔助元素法、變量代換法。通過引進(jìn)新的變量,可以把分散的條件聯(lián)系起來,隱含的條件顯露出來,或者把條件與結(jié)論聯(lián)系起來;蛘咦?yōu)槭煜さ男问,把?fù)雜的計算和推證簡化。

  它可以化高次為低次、化分式為整式、化無理式為有理式、化超越式為代數(shù)式,在研究方程、不等式、函數(shù)、數(shù)列、三角等問題中有廣泛的應(yīng)用。

數(shù)學(xué)知識點總結(jié)12

  知識點一橢圓的定義

  平面內(nèi)到兩個定點的距離之和等于常數(shù)(大于)的點的集合叫做橢圓。兩個定點叫做橢圓的焦點,兩焦點間的距離叫做橢圓的焦距。

  根據(jù)橢圓的定義可知:橢圓上的點M滿足集合,,且都為常數(shù)。

  當(dāng)即時,集合P為橢圓。

  當(dāng)即時,集合P為線段。

  當(dāng)即時,集合P為空集。

  知識點二橢圓的標(biāo)準(zhǔn)方程

  (1),焦點在軸上時,焦點為,焦點。

  (2),焦點在軸上時,焦點為,焦點。

  知識點三橢圓方程的一般式

  這種形式的方程在課本中雖然沒有明確給出,但在應(yīng)用中有時比較方便,在此提供出來,作為參考:

  (其中為同號且不為零的常數(shù),),它包含焦點在軸或軸上兩種情形。方程可變形為。

  當(dāng)時,橢圓的焦點在軸上;當(dāng)時,橢圓的焦點在軸上。

  一般式,通常也設(shè)為,應(yīng)特別注意均大于0,標(biāo)準(zhǔn)方程為。

  知識點四橢圓標(biāo)準(zhǔn)方程的求法

  1.定義法

  橢圓標(biāo)準(zhǔn)方程可由定義直接求得,這是求橢圓方程中很重要的方法之一,當(dāng)問題是以實際問題給出時,一定要注意使實際問題有意義,因此要恰當(dāng)?shù)乇硎緳E圓的范圍。

  例1、在△ABC中,A、B、C所對三邊分別為,且B(-1,0)C(1,0),求滿足,且成等差數(shù)列時,頂點A的曲線方程。

  變式練習(xí)1.在△ABC中,點B(-6,0)、C(0,8),且成等差數(shù)列。

  (1)求證:頂點A在一個橢圓上運動。

  (2)指出這個橢圓的焦點坐標(biāo)以及焦距。

  2.待定系數(shù)法

  首先確定標(biāo)準(zhǔn)方程的類型,并將其用有關(guān)參數(shù)表示出來,然后結(jié)合問題的條件,建立參數(shù)滿足的等式,求得的值,再代入所設(shè)方程,即一定性,二定量,最后寫方程。

  例2、已知橢圓的中心在原點,且經(jīng)過點P(3,0),=3b,求橢圓的標(biāo)準(zhǔn)方程。

  例3、已知橢圓的中心在原點,以坐標(biāo)軸為對稱軸,且經(jīng)過兩點,求橢圓方程。

  變式練習(xí)2.求適合下列條件的橢圓的方程;

  (1)兩個焦點分別是(-3,0),(3,0)且經(jīng)過點(5,0).

  (2)兩焦點在坐標(biāo)軸上,兩焦點的中點為坐標(biāo)原點,焦距為8,橢圓上一點到兩焦點的距離之和為12.

  3.已知橢圓經(jīng)過點和點,求橢圓的標(biāo)準(zhǔn)方程。

  4.求中心在原點,焦點在坐標(biāo)軸上,且經(jīng)過兩點的橢圓標(biāo)準(zhǔn)方程。

  知識點五共焦點的橢圓方程的求解

  一般地,與橢圓共焦點的橢圓可設(shè)其方程為。

  例4、過點(-3,2)且與有相同焦點的橢圓的方程為()

  A.B.C.D.

  變式練習(xí)5.求經(jīng)過點(2,-3)且橢圓有共同焦點的橢圓方程。

  知識點六與橢圓有關(guān)的軌跡問題的求解方法

  與橢圓有關(guān)的軌跡方程的求解是一種很重要的題型,教材中的例題就是利用代入求球軌。跡,其基本思路是設(shè)出軌跡上一點和已知曲線上一點,建立其關(guān)系,再代入。

  例5、已知圓,從這個圓上任意一點向軸作垂線段,點在上,并且,求點的軌跡。

  知識點七與弦的中點有關(guān)問題的求解方法

  直線與橢圓相交于兩點、,稱線段為橢圓的相交弦。與這個弦中點有點的軌跡問題是一類綜合性很強的題目,因此解此類問題必須選擇一個合理的方法,如“設(shè)而不求”法,其主要特點是巧代線段的斜率。其方程具體是:設(shè)直線與橢圓相交于兩點,坐標(biāo)分別為、,線段的中點為,則有

 、偈-②式,得,即

  ∴

  通常將此方程用于求弦中點的軌跡方程。

  例6.已知:橢圓,求:

  (1)以P(2,-1)為中點的弦所在直線的方程;

  (2)斜率為2的相交弦中點的軌跡方程;

  (3)過Q(8,2)的直線被橢圓截得的弦中點的軌跡方程。

  第二部分:鞏固練習(xí)

  1.設(shè)為橢圓的焦點,P為橢圓上一點,則的周長是()

  A.16B.8C.D.無法確定

  2.橢圓的兩個焦點之間的距離為()

  A.12B.4C.3D.2

  3.橢圓的一個焦點是(0,2),那么等于()

  A.-1B.1C.D.-

  4.已知橢圓的焦點是,P是橢圓上的一個動點,如果延長到,使得,那么動點的軌跡是()

  A.圓B.橢圓C.雙曲線的一支D.拋物線

  5.已知橢圓的焦點在軸上,則的取值范圍是__________.

  6.橢圓的焦點坐標(biāo)是___________.

  7.橢圓的焦距為2,則正數(shù)的值____________.

  數(shù)學(xué)學(xué)習(xí)方法

  1、建立數(shù)學(xué)糾錯本。做作業(yè)或復(fù)習(xí)時做錯了題,一旦搞明白,決不放過,建立一本錯誤登記本,以降低重復(fù)性錯誤,不怕第一次不會,不怕第一次出錯,就怕下一次還犯同樣的錯誤把平時容易出現(xiàn)錯誤的知識或推理記載下來,以防再犯。爭取做到:找錯、析錯、改錯、

  防錯。達(dá)到:平時作業(yè)、課外做題及考試中,對出錯的數(shù)學(xué)題建立錯題集很有必要。

  2、記憶數(shù)學(xué)規(guī)律和數(shù)學(xué)小結(jié)論。

  3、經(jīng)常進(jìn)行一題多解,一題多變,從多側(cè)面、多角度思考問題,挖掘問題的實質(zhì)。

  4、經(jīng)常在做題后進(jìn)行一定的“反思”,思考一下本題所用的基礎(chǔ)知識,數(shù)學(xué)思想方法是什么,為什么要這樣想,本題的分析方法與解法,在解其它問題時,是否也用到過。無論是作業(yè)還是測驗,都應(yīng)把準(zhǔn)確性放在第一位,通法放在第一位。

  5、理解和弄懂所學(xué)的數(shù)學(xué)知識,知其然并知其所以然。學(xué)習(xí)不僅要理解和記住概念、定理、公式、法則等,而且還要想一想它們是如何得來的,與前面的知識是怎樣聯(lián)系著的,表達(dá)中省略了什么,關(guān)鍵在哪里,對知識是否有新的認(rèn)識,有否想到其他的解法等等。這樣細(xì)加分析、考慮后,就會對內(nèi)容增添某些注解,補充一些新的解法或產(chǎn)生新的認(rèn)識等。

  6、把學(xué)過內(nèi)容貫串起來,加以融會貫通,提煉出它的精神實質(zhì),抓住重點、線索和基本思想方法,組織整理成精煉的內(nèi)容。這時由于知識出現(xiàn)高度概括,就更能促進(jìn)知識的遷移,也更有利于進(jìn)一步學(xué)習(xí)。

  怎么樣才能打好數(shù)學(xué)基礎(chǔ)

  第一,重視數(shù)學(xué)公式。有很多同學(xué)數(shù)學(xué)學(xué)不好就是因為對概念和公式不夠重視,具體的表現(xiàn)為對數(shù)學(xué)概念的理解只是停留在表明,不去挖掘引申的含義,對數(shù)學(xué)概念的特殊情況不明白。還有對數(shù)學(xué)概念和公式有的學(xué)生只是死記硬背,學(xué)生缺乏對概念的理解。

  還有一部分同學(xué)不重視對數(shù)學(xué)公式的記憶。其實記憶是理解的基礎(chǔ)。我們設(shè)想如果你不能將數(shù)學(xué)公式爛熟于心,那么又怎么能夠在數(shù)學(xué)題目中熟練的應(yīng)用呢?

  第二,就是總結(jié)那些相似的數(shù)學(xué)題目。當(dāng)我們養(yǎng)成了總結(jié)歸納的習(xí)慣,那么的學(xué)生就會知道自己在解決數(shù)學(xué)題目的時候哪些是自己比較擅長的,哪些是自己還不足的。

  同時善于總結(jié)也會明白自己掌握哪些數(shù)學(xué)的解題方法,只有這樣你才能夠真正掌握了數(shù)學(xué)的解題技巧。其實,做到總結(jié)和歸納是學(xué)會數(shù)學(xué)的關(guān)鍵,如果學(xué)生不會做到這一點那么久而久之,不會的數(shù)學(xué)題目還是不會。

數(shù)學(xué)知識點總結(jié)13

  集合的有關(guān)概念

  1)集合(集):某些指定的對象集在一起就成為一個集合(集).其中每一個對象叫元素

  注意:①集合與集合的元素是兩個不同的概念,教科書中是通過描述給出的,這與平面幾何中的點與直線的概念類似。

  ②集合中的元素具有確定性(a?A和a?A,二者必居其一)、互異性(若a?A,b?A,則a≠b)和無序性({a,b}與{b,a}表示同一個集合)。

 、奂暇哂袃煞矫娴囊饬x,即:凡是符合條件的對象都是它的元素;只要是它的元素就必須符號條件

  2)集合的表示方法:常用的有列舉法、描述法和圖文法

  3)集合的分類:有限集,無限集,空集。

  4)常用數(shù)集:N,Z,Q,R,N

  子集、交集、并集、補集、空集、全集等概念

  1)子集:若對x∈A都有x∈B,則AB(或AB);

  2)真子集:AB且存在x0∈B但x0A;記為AB(或,且)

  3)交集:A∩B={x|x∈A且x∈B}

  4)并集:A∪B={x|x∈A或x∈B}

  5)補集:CUA={x|xA但x∈U}

  注意:A,若A≠?,則?A;

  若且,則A=B(等集)

  集合與元素

  掌握有關(guān)的術(shù)語和符號,特別要注意以下的符號:(1)與、?的區(qū)別;(2)與的區(qū)別;(3)與的區(qū)別。

  子集的幾個等價關(guān)系

 、貯∩B=AAB;②A∪B=BAB;③ABCuACuB;

  ④A∩CuB=空集CuAB;⑤CuA∪B=IAB。

  交、并集運算的性質(zhì)

 、貯∩A=A,A∩?=?,A∩B=B∩A;②A∪A=A,A∪?=A,A∪B=B∪A;

  ③Cu(A∪B)=CuA∩CuB,Cu(A∩B)=CuA∪CuB;

  有限子集的個數(shù):

  設(shè)集合A的元素個數(shù)是n,則A有2n個子集,2n-1個非空子集,2n-2個非空真子集。

  練習(xí)題:

  已知集合M={x|x=m+,m∈Z},N={x|x=,n∈Z},P={x|x=,p∈Z},則M,N,P滿足關(guān)系()

  A)M=NPB)MN=PC)MNPD)NPM

  分析一:從判斷元素的共性與區(qū)別入手。

  解答一:對于集合M:{x|x=,m∈Z};對于集合N:{x|x=,n∈Z}

  對于集合P:{x|x=,p∈Z},由于3(n-1)+1和3p+1都表示被3除余1的數(shù),而6m+1表示被6除余1的數(shù),所以MN=P,故選B。

數(shù)學(xué)知識點總結(jié)14

  三角函數(shù)關(guān)系

  倒數(shù)關(guān)系

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  商的關(guān)系

  sinα/cosα=tanα=secα/cscα

  cosα/sinα=cotα=cscα/secα

  平方關(guān)系

  sin^2(α)+cos^2(α)=1

  1+tan^2(α)=sec^2(α)

  1+cot^2(α)=csc^2(α)

  同角三角函數(shù)關(guān)系六角形記憶法

  構(gòu)造以"上弦、中切、下割;左正、右余、中間1"的正六邊形為模型。

  倒數(shù)關(guān)系

  對角線上兩個函數(shù)互為倒數(shù);

  商數(shù)關(guān)系

  六邊形任意一頂點上的函數(shù)值等于與它相鄰的兩個頂點上函數(shù)值的乘積。(主要是兩條虛線兩端的三角函數(shù)值的乘積,下面4個也存在這種關(guān)系。)。由此,可得商數(shù)關(guān)系式。

  平方關(guān)系

  在帶有陰影線的三角形中,上面兩個頂點上的三角函數(shù)值的平方和等于下面頂點上的三角函數(shù)值的平方。

  銳角三角函數(shù)定義

  銳角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的銳角三角函數(shù)。

  正弦(sin)等于對邊比斜邊;sinA=a/c

  余弦(cos)等于鄰邊比斜邊;cosA=b/c

  正切(tan)等于對邊比鄰邊;tanA=a/b

  余切(cot)等于鄰邊比對邊;cotA=b/a

  正割(sec)等于斜邊比鄰邊;secA=c/b

  余割(csc)等于斜邊比對邊。cscA=c/a

  互余角的三角函數(shù)間的關(guān)系

  sin(90°-α)=cosα,cos(90°-α)=sinα,

  tan(90°-α)=cotα,cot(90°-α)=tanα.

  平方關(guān)系:

  sin^2(α)+cos^2(α)=1

  tan^2(α)+1=sec^2(α)

  cot^2(α)+1=csc^2(α)

  積的關(guān)系:

  sinα=tanα·cosα

  cosα=cotα·sinα

  tanα=sinα·secα

  cotα=cosα·cscα

  secα=tanα·cscα

  cscα=secα·cotα

  倒數(shù)關(guān)系:

  tanα·cotα=1

  sinα·cscα=1

  cosα·secα=1

  中考數(shù)學(xué)知識點

  1、反比例函數(shù)的概念

  一般地,函數(shù)(k是常數(shù),k0)叫做反比例函數(shù)。反比例函數(shù)的解析式也可以寫成的形式。自變量x的取值范圍是x0的一切實數(shù),函數(shù)的取值范圍也是一切非零實數(shù)。

  2、反比例函數(shù)的圖像

  反比例函數(shù)的圖像是雙曲線,它有兩個分支,這兩個分支分別位于第一、三象限,或第二、四象限,它們關(guān)于原點對稱。由于反比例函數(shù)中自變量x0,函數(shù)y0,所以,它的圖像與x軸、y軸都沒有交點,即雙曲線的兩個分支無限接近坐標(biāo)軸,但永遠(yuǎn)達(dá)不到坐標(biāo)軸。

  3、反比例函數(shù)的性質(zhì)

  反比例函數(shù)k的符號k>0k<0圖像yO xyO x性質(zhì)①x的取值范圍是x0,

  y的取值范圍是y0;

 、诋(dāng)k>0時,函數(shù)圖像的兩個分支分別

  在第一、三象限。在每個象限內(nèi),y

  隨x 的增大而減小。

 、賦的取值范圍是x0,

  y的取值范圍是y0;

 、诋(dāng)k<0時,函數(shù)圖像的兩個分支分別

  在第二、四象限。在每個象限內(nèi),y

  隨x 的增大而增大。

  4、反比例函數(shù)解析式的確定

  確定及誒是的方法仍是待定系數(shù)法。由于在反比例函數(shù)中,只有一個待定系數(shù),因此只需要一對對應(yīng)值或圖像上的一個點的坐標(biāo),即可求出k的值,從而確定其解析式。

  5、反比例函數(shù)的幾何意義

  設(shè)是反比例函數(shù)圖象上任一點,過點P作軸、軸的垂線,垂足為A,則

  (1)△OPA的面積.

  (2)矩形OAPB的面積。這就是系數(shù)的幾何意義.并且無論P怎樣移動,△OPA的面積和矩形OAPB的面積都保持不變。

  矩形PCEF面積=,平行四邊形PDEA面積=

數(shù)學(xué)知識點總結(jié)15

  高考數(shù)學(xué)知識點:軌跡方程的求解

  符合一定條件的動點所形成的圖形,或者說,符合一定條件的點的全體所組成的集合,叫做滿足該條件的點的軌跡.

  軌跡,包含兩個方面的問題:凡在軌跡上的點都符合給定的條件,這叫做軌跡的純粹性(也叫做必要性);凡不在軌跡上的點都不符合給定的條件,也就是符合給定條件的點必在軌跡上,這叫做軌跡的完備性(也叫做充分性).

  【軌跡方程】就是與幾何軌跡對應(yīng)的代數(shù)描述。

  一、求動點的軌跡方程的基本步驟

 、苯⑦m當(dāng)?shù)淖鴺?biāo)系,設(shè)出動點M的坐標(biāo);

 、矊懗鳇cM的集合;

  ⒊列出方程=0;

  ⒋化簡方程為最簡形式;

 、禉z驗。

  二、求動點的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點法、參數(shù)法和交軌法等。

 、敝弊g法:直接將條件翻譯成等式,整理化簡后即得動點的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。

 、捕x法:如果能夠確定動點的軌跡滿足某種已知曲線的定義,則可利用曲線的定義寫出方程,這種求軌跡方程的方法叫做定義法。

 、诚嚓P(guān)點法:用動點Q的坐標(biāo)x,y表示相關(guān)點P的坐標(biāo)x0、y0,然后代入點P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡便得到動點Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點法。

  ⒋參數(shù)法:當(dāng)動點坐標(biāo)x、y之間的直接關(guān)系難以找到時,往往先尋找x、y與某一變數(shù)t的關(guān)系,得再消去參變數(shù)t,得到方程,即為動點的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。

 、到卉壏ǎ簩蓜忧方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動曲線交點的軌跡方程,這種求軌跡方程的方法叫做交軌法。

  .直譯法:求動點軌跡方程的一般步驟

 、俳ㄏ怠⑦m當(dāng)?shù)淖鴺?biāo)系;

 、谠O(shè)點——設(shè)軌跡上的任一點P(x,y);

 、哿惺健谐鰟狱cp所滿足的關(guān)系式;

  ④代換——依條件的特點,選用距離公式、斜率公式等將其轉(zhuǎn)化為關(guān)于X,Y的方程式,并化簡;

 、葑C明——證明所求方程即為符合條件的動點軌跡方程。

  高考數(shù)學(xué)知識點:排列組合公式

  排列組合公式/排列組合計算公式

  排列P------和順序有關(guān)

  組合C-------不牽涉到順序的問題

  排列分順序,組合不分

  例如把5本不同的書分給3個人,有幾種分法."排列"

  把5本書分給3個人,有幾種分法"組合"

  1.排列及計算公式

  從n個不同元素中,任取m(m≤n)個元素按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列;從n個不同元素中取出m(m≤n)個元素的所有排列的個數(shù),叫做從n個不同元素中取出m個元素的排列數(shù),用符號p(n,m)表示.

  p(n,m)=n(n-1)(n-2)……(n-m+1)=n!/(n-m)!(規(guī)定0!=1).

  2.組合及計算公式

  從n個不同元素中,任取m(m≤n)個元素并成一組,叫做從n個不同元素中取出m個元素的一個組合;從n個不同元素中取出m(m≤n)個元素的所有組合的個數(shù),叫做從n個不同元素中取出m個元素的組合數(shù).用符號

  c(n,m)表示.

  c(n,m)=p(n,m)/m!=n!/((n-m)!.m!);c(n,m)=c(n,n-m);

  3.其他排列與組合公式

  從n個元素中取出r個元素的循環(huán)排列數(shù)=p(n,r)/r=n!/r(n-r)!.

  n個元素被分成k類,每類的個數(shù)分別是n1,n2,...nk這n個元素的全排列數(shù)為

  n!/(n1!.n2!.....nk!).

  k類元素,每類的個數(shù)無限,從中取出m個元素的組合數(shù)為c(m+k-1,m).

  排列(Pnm(n為下標(biāo),m為上標(biāo)))

  Pnm=n×(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是階乘符號);Pnn(兩個n分別為上標(biāo)和下標(biāo))=n!;0!=1;Pn1(n為下標(biāo)1為上標(biāo))=n

  組合(Cnm(n為下標(biāo),m為上標(biāo)))

  Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(兩個n分別為上標(biāo)和下標(biāo))=1;Cn1(n為下標(biāo)1為上標(biāo))=n;Cnm=Cnn-m

  20xx-07-0813:30

  公式P是指排列,從N個元素取R個進(jìn)行排列。公式C是指組合,從N個元素取R個,不進(jìn)行排列。N-元素的總個數(shù)R參與選擇的元素個數(shù)!-階乘,如9!=9.8.7.6.5.4.3.2.1

  從N倒數(shù)r個,表達(dá)式應(yīng)該為n.(n-1).(n-2)..(n-r+1);

  因為從n到(n-r+1)個數(shù)為n-(n-r+1)=r

  舉例:

  Q1:有從1到9共計9個號碼球,請問,可以組成多少個三位數(shù)?

  A1:123和213是兩個不同的排列數(shù)。即對排列順序有要求的,既屬于“排列P”計算范疇。

  上問題中,任何一個號碼只能用一次,顯然不會出現(xiàn)988,997之類的組合,我們可以這么看,百位數(shù)有9種可能,十位數(shù)則應(yīng)該有9-1種可能,個位數(shù)則應(yīng)該只有9-1-1種可能,最終共有9.8.7個三位數(shù)。計算公式=P(3,9)=9.8.7,(從9倒數(shù)3個的乘積)

  Q2:有從1到9共計9個號碼球,請問,如果三個一組,代表“三國聯(lián)盟”,可以組合成多少個“三國聯(lián)盟”?

  A2:213組合和312組合,代表同一個組合,只要有三個號碼球在一起即可。即不要求順序的,屬于“組合C”計算范疇。

  上問題中,將所有的包括排列數(shù)的個數(shù)去除掉屬于重復(fù)的個數(shù)即為最終組合數(shù)C(3,9)=9.8.7/3.2.1

  排列、組合的概念和公式典型例題分析

  例1設(shè)有3名學(xué)生和4個課外小組.(1)每名學(xué)生都只參加一個課外小組;(2)每名學(xué)生都只參加一個課外小組,而且每個小組至多有一名學(xué)生參加.各有多少種不同方法?

  解(1)由于每名學(xué)生都可以參加4個課外小組中的任何一個,而不限制每個課外小組的人數(shù),因此共有種不同方法.

  (2)由于每名學(xué)生都只參加一個課外小組,而且每個小組至多有一名學(xué)生參加,因此共有種不同方法.

  點評由于要讓3名學(xué)生逐個選擇課外小組,故兩問都用乘法原理進(jìn)行計算.

  例2排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少種?

  解依題意,符合要求的排法可分為第一個排、、中的某一個,共3類,每一類中不同排法可采用畫“樹圖”的方式逐一排出:

  ∴符合題意的不同排法共有9種.

  點評按照分“類”的思路,本題應(yīng)用了加法原理.為把握不同排法的規(guī)律,“樹圖”是一種具有直觀形象的有效做法,也是解決計數(shù)問題的一種數(shù)學(xué)模型.

  例3判斷下列問題是排列問題還是組合問題?并計算出結(jié)果.

  (1)高三年級學(xué)生會有11人:①每兩人互通一封信,共通了多少封信?②每兩人互握了一次手,共握了多少次手?

  (2)高二年級數(shù)學(xué)課外小組共10人:①從中選一名正組長和一名副組長,共有多少種不同的選法?②從中選2名參加省數(shù)學(xué)競賽,有多少種不同的選法?

  (3)有2,3,5,7,11,13,17,19八個質(zhì)數(shù):①從中任取兩個數(shù)求它們的商可以有多少種不同的商?②從中任取兩個求它的積,可以得到多少個不同的積?

  (4)有8盆花:①從中選出2盆分別給甲乙兩人每人一盆,有多少種不同的選法?②從中選出2盆放在教室有多少種不同的選法?

  分析(1)①由于每人互通一封信,甲給乙的信與乙給甲的信是不同的兩封信,所以與順序有關(guān)是排列;②由于每兩人互握一次手,甲與乙握手,乙與甲握手是同一次握手,與順序無關(guān),所以是組合問題.其他類似分析.

  (1)①是排列問題,共用了封信;②是組合問題,共需握手(次).

  (2)①是排列問題,共有(種)不同的選法;②是組合問題,共有種不同的選法.

  (3)①是排列問題,共有種不同的商;②是組合問題,共有種不同的積.

  (4)①是排列問題,共有種不同的選法;②是組合問題,共有種不同的選法.

  例4證明.

  證明左式

  右式.

  ∴等式成立.

  點評這是一個排列數(shù)等式的證明問題,選用階乘之商的形式,并利用階乘的性質(zhì),可使變形過程得以簡化.

  例5化簡.

  解法一原式

  解法二原式

  點評解法一選用了組合數(shù)公式的階乘形式,并利用階乘的性質(zhì);解法二選用了組合數(shù)的兩個性質(zhì),都使變形過程得以簡化.

  例6解方程:(1);(2).

  解(1)原方程

  解得.

  (2)原方程可變?yōu)?/p>

  ∵,,

  ∴原方程可化為.

  即,解得

  高三數(shù)學(xué)三角函數(shù)公式

  銳角三角函數(shù)公式

  sin α=∠α的對邊 / 斜邊

  cos α=∠α的鄰邊 / 斜邊

  tan α=∠α的對邊 / ∠α的鄰邊

  cot α=∠α的鄰邊 / ∠α的對邊

  倍角公式

  Sin2A=2SinA?CosA

  Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1

  tan2A=(2tanA)/(1-tanA^2)

  (注:SinA^2 是sinA的平方 sin2(A) )

  三倍角公式

  sin3α=4sinα·sin(π/3+α)sin(π/3-α)

  cos3α=4cosα·cos(π/3+α)cos(π/3-α)

  tan3a = tan a · tan(π/3+a)· tan(π/3-a)

  三倍角公式推導(dǎo)

  sin3a

  =sin(2a+a)

  =sin2acosa+cos2asina

  輔助角公式

  Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中

  sint=B/(A^2+B^2)^(1/2)

  cost=A/(A^2+B^2)^(1/2)

  tant=B/A

  Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B

  降冪公式

  sin^2(α)=(1-cos(2α))/2=versin(2α)/2

  cos^2(α)=(1+cos(2α))/2=covers(2α)/2

  tan^2(α)=(1-cos(2α))/(1+cos(2α))

  推導(dǎo)公式

  tanα+cotα=2/sin2α

  tanα-cotα=-2cot2α

  1+cos2α=2cos^2α

  1-cos2α=2sin^2α

  1+sinα=(sinα/2+cosα/2)^2

  =2sina(1-sin2a)+(1-2sin2a)sina

  =3sina-4sin3a

  cos3a

  =cos(2a+a)

  =cos2acosa-sin2asina

  =(2cos2a-1)cosa-2(1-sin2a)cosa

  =4cos3a-3cosa

  sin3a=3sina-4sin3a

  =4sina(3/4-sin2a)

  =4sina[(√3/2)2-sin2a]

  =4sina(sin260°-sin2a)

  =4sina(sin60°+sina)(sin60°-sina)

  =4sina.2sin[(60+a)/2]cos[(60°-a)/2].2sin[(60°-a)/2]cos[(60°-a)/2]

  =4sinasin(60°+a)sin(60°-a)

  cos3a=4cos3a-3cosa

  =4cosa(cos2a-3/4)

  =4cosa[cos2a-(√3/2)2]

  =4cosa(cos2a-cos230°)

  =4cosa(cosa+cos30°)(cosa-cos30°)

  =4cosa.2cos[(a+30°)/2]cos[(a-30°)/2].{-2sin[(a+30°)/2]sin[(a-30°)/2]}

  =-4cosasin(a+30°)sin(a-30°)

  =-4cosasin[90°-(60°-a)]sin[-90°+(60°+a)]

  =-4cosacos(60°-a)[-cos(60°+a)]

  =4cosacos(60°-a)cos(60°+a)

  上述兩式相比可得

  tan3a=tanatan(60°-a)tan(60°+a)

  半角公式

  tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA);

  cot(A/2)=sinA/(1-cosA)=(1+cosA)/sinA.

  sin^2(a/2)=(1-cos(a))/2

  cos^2(a/2)=(1+cos(a))/2

  tan(a/2)=(1-cos(a))/sin(a)=sin(a)/(1+cos(a))

  三角和

  sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ

  cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγ

  tan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)

  兩角和差

  cos(α+β)=cosα·cosβ-sinα·sinβ

  cos(α-β)=cosα·cosβ+sinα·sinβ

  sin(α±β)=sinα·cosβ±cosα·sinβ

  tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)

  tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

  和差化積

  sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]

  sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]

  cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]

  cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]

  tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)

  tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)

【數(shù)學(xué)知識點總結(jié)】相關(guān)文章:

小升初數(shù)學(xué)的知識點總結(jié)04-11

數(shù)學(xué)相似知識點總結(jié)03-29

數(shù)學(xué)圓知識點總結(jié)11-03

數(shù)學(xué)知識點總結(jié)11-07

初中數(shù)學(xué)知識點總結(jié)01-23

中考數(shù)學(xué)知識點總結(jié)08-11

小升初數(shù)學(xué)圓的知識點總結(jié)03-29

小升初的數(shù)學(xué)知識點總結(jié)03-29

高二數(shù)學(xué)的知識點總結(jié)12-02

初中數(shù)學(xué)《整式》知識點總結(jié)10-21