高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(實(shí)用)
總結(jié)是事后對(duì)某一時(shí)期、某一項(xiàng)目或某些工作進(jìn)行回顧和分析,從而做出帶有規(guī)律性的結(jié)論,它可以幫助我們總結(jié)以往思想,發(fā)揚(yáng)成績(jī),因此我們要做好歸納,寫好總結(jié)。但是總結(jié)有什么要求呢?以下是小編幫大家整理的高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié),僅供參考,希望能夠幫助到大家。
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)1
導(dǎo)數(shù)及其應(yīng)用
一.導(dǎo)數(shù)概念的引入
1.導(dǎo)數(shù)的物理意義:瞬時(shí)速率。一般的,函數(shù)yf(x)在xx0處的瞬時(shí)變化率是
x0limf(x0x)f(x0),
x我們稱它為函數(shù)yf(x)在xx0處的導(dǎo)數(shù),記作f(x0)或y|xx0,即f(x0)=limx0f(x0x)f(x0)
x例1.在高臺(tái)跳水運(yùn)動(dòng)中,運(yùn)動(dòng)員相對(duì)于水面的高度h(單位:m)與起跳后的時(shí)間t(單位:
s)存在函數(shù)關(guān)系
h(t)4.9t26.5t10
運(yùn)動(dòng)員在t=2s時(shí)的瞬時(shí)速度是多少?解:根據(jù)定義
vh(2)limh(2x)h(2)13.1
x0x即該運(yùn)動(dòng)員在t=2s是13.1m/s,符號(hào)說明方向向下
2.導(dǎo)數(shù)的幾何意義:曲線的切線.通過圖像,我們可以看出當(dāng)點(diǎn)Pn趨近于P時(shí),直線PT與
曲線相切。容易知道,割線PPn的斜率是knf(xn)f(x0),當(dāng)點(diǎn)Pn趨近于P時(shí),
xnx0函數(shù)yf(x)在xx0處的導(dǎo)數(shù)就是切線PT的斜率k,即klimx0f(xn)f(x0)f(x0)
xnx03.導(dǎo)函數(shù):當(dāng)x變化時(shí),f(x)便是x的一個(gè)函數(shù),我們稱它為f(x)的導(dǎo)函數(shù).yf(x)的導(dǎo)函數(shù)有時(shí)也記作y,即f(x)lim
二.導(dǎo)數(shù)的計(jì)算
1.函數(shù)yf(x)c的導(dǎo)數(shù)2.函數(shù)yf(x)x的'導(dǎo)數(shù)3.函數(shù)yf(x)x的導(dǎo)數(shù)
2x0f(xx)f(x)
x
4.函數(shù)yf(x)1的導(dǎo)數(shù)x基本初等函數(shù)的導(dǎo)數(shù)公式:
1若f(x)c(c為常數(shù)),則f(x)0;
2若f(x)x,則f(x)x1;
3若f(x)sinx,則f(x)cosx
4若f(x)cosx,則f(x)sinx;
5若f(x)ax,則f(x)axlna6若f(x)e,則f(x)e
xx1xlna18若f(x)lnx,則f(x)
xx7若f(x)loga,則f(x)導(dǎo)數(shù)的運(yùn)算法則
1.[f(x)g(x)]f(x)g(x)
2.[f(x)g(x)]f(x)g(x)f(x)g(x)
3.[f(x)f(x)g(x)f(x)g(x)]g(x)[g(x)]
2復(fù)合函數(shù)求導(dǎo)
yf(u)和ug(x),稱則y可以表示成為x的函數(shù),即yf(g(x))為一個(gè)復(fù)合函數(shù)yf(g(x))g(x)
三.導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用
1.函數(shù)的單調(diào)性與導(dǎo)數(shù):
一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系:
在某個(gè)區(qū)間(a,b)內(nèi),如果f(x)0,那么函數(shù)yf(x)在這個(gè)區(qū)間單調(diào)遞增;如果f(x)0,那么函數(shù)yf(x)在這個(gè)區(qū)間單調(diào)遞減.2.函數(shù)的極值與導(dǎo)數(shù)
極值反映的是函數(shù)在某一點(diǎn)附近的大小情況.求函數(shù)yf(x)的極值的方法是:
(1)如果在x0附近的左側(cè)f(x)0,右側(cè)f(x)0,那么f(x0)是極大值;
(2)如果在x0附近的左側(cè)f(x)0,右側(cè)f(x)0,那么f(x0)是極小值;
4.函數(shù)的最大(小)值與導(dǎo)數(shù)
函數(shù)極大值與最大值之間的關(guān)系.
求函數(shù)yf(x)在[a,b]上的最大值與最小值的步驟
。1)求函數(shù)yf(x)在(a,b)內(nèi)的極值;
。2)將函數(shù)yf(x)的各極值與端點(diǎn)處的函數(shù)值f(a),f(b)比較,其中最大的是一個(gè)最大值,最小的是最小值.
四.生活中的優(yōu)化問題
利用導(dǎo)數(shù)的知識(shí),求函數(shù)的最大(小)值,從而解決實(shí)際問題
第二章推理與證明
考點(diǎn)一合情推理與類比推理
根據(jù)一類事物的部分對(duì)象具有某種性質(zhì),退出這類事物的所有對(duì)象都具有這種性質(zhì)的推理,叫做歸納推理,歸納是從特殊到一般的過程,它屬于合情推理
根據(jù)兩類不同事物之間具有某些類似(或一致)性,推測(cè)其中一類事物具有與另外一類事物類似的性質(zhì)的推理,叫做類比推理.
類比推理的一般步驟:
(1)找出兩類事物的相似性或一致性;
(2)用一類事物的性質(zhì)去推測(cè)另一類事物的性質(zhì),得出一個(gè)明確的命題(猜想);
(3)一般的,事物之間的各個(gè)性質(zhì)并不是孤立存在的,而是相互制約的如果兩個(gè)事物在某些性質(zhì)上相同或相似,那么他們?cè)诹硪粚懶再|(zhì)上也可能相同或類似,類比的結(jié)論可能是真的
(4)一般情況下,如果類比的相似性越多,相似的性質(zhì)與推測(cè)的性質(zhì)之間越相關(guān),那么類比得出的命題越可靠.
考點(diǎn)二演繹推理(俗稱三段論)
由一般性的命題推出特殊命題的過程,這種推理稱為演繹推理.
考點(diǎn)三數(shù)學(xué)歸納法
1.它是一個(gè)遞推的數(shù)學(xué)論證方法.
2.步驟:A.命題在n=1(或n0)時(shí)成立,這是遞推的基礎(chǔ);B.假設(shè)在n=k時(shí)命題成立C.證明n=k+1時(shí)命題也成立,
完成這兩步,就可以斷定對(duì)任何自然數(shù)(或n>=n0,且nN)結(jié)論都成立。
考點(diǎn)三證明
1.反證法:
2.分析法:
3.綜合法:
第一章數(shù)系的擴(kuò)充和復(fù)數(shù)的概念考點(diǎn)一:復(fù)數(shù)的概念
(1)復(fù)數(shù):形如abi(aR,bR)的數(shù)叫做復(fù)數(shù),a和b分別叫它的實(shí)部和虛部.
(2)分類:復(fù)數(shù)abi(aR,bR)中,當(dāng)b0,就是實(shí)數(shù);b0,叫做虛數(shù);當(dāng)a0,b0時(shí),叫做純虛數(shù).
(3)復(fù)數(shù)相等:如果兩個(gè)復(fù)數(shù)實(shí)部相等且虛部相等就說這兩個(gè)復(fù)數(shù)相等.
(4)共軛復(fù)數(shù):當(dāng)兩個(gè)復(fù)數(shù)實(shí)部相等,虛部互為相反數(shù)時(shí),這兩個(gè)復(fù)數(shù)互為共軛復(fù)數(shù).
(5)復(fù)平面:建立直角坐標(biāo)系來表示復(fù)數(shù)的平面叫做復(fù)平面,x軸叫做實(shí)軸,y軸除去原點(diǎn)的部分叫做虛軸。
(6)兩個(gè)實(shí)數(shù)可以比較大小,但兩個(gè)復(fù)數(shù)如果不全是實(shí)數(shù)就不能比較大小。
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)2
數(shù)學(xué)選修2-2導(dǎo)數(shù)及其應(yīng)用知識(shí)點(diǎn)必記
1.函數(shù)的平均變化率是什么?答:平均變化率為
f(x2)f(x1)f(x1x)f(x1)yfx2x1xxx注1:其中x是自變量的改變量,可正,可負(fù),可零。
注2:函數(shù)的平均變化率可以看作是物體運(yùn)動(dòng)的平均速度。
2、導(dǎo)函數(shù)的概念是什么?
答:函數(shù)yf(x)在xx0處的瞬時(shí)變化率是limf(x0x)f(x0)y,則稱limx0xx0x函數(shù)yf(x)在點(diǎn)x0處可導(dǎo),并把這個(gè)極限叫做yf(x)在x0處的導(dǎo)數(shù),記作f"(x0)或y"|xx0,即f"(x0)=limf(x0x)f(x0)y.limx0xx0x
3.平均變化率和導(dǎo)數(shù)的幾何意義是什么?
答:函數(shù)的平均變化率的幾何意義是割線的斜率;函數(shù)的導(dǎo)數(shù)的幾何意義是切線的斜率。
4導(dǎo)數(shù)的背景是什么?
答:(1)切線的斜率;(2)瞬時(shí)速度;(3)邊際成本。
5、常見的函數(shù)導(dǎo)數(shù)和積分公式有哪些?函數(shù)導(dǎo)函數(shù)不定積分ycy"0xn1xdxn1nyxnnN*y"nxn1yaxa0,a1y"alnay"exxaxadxlnaxyexedxexxylogaxa0,a1,x0ylnxy"1xlna1x1xdxlnxy"ysinxy"cosxcosxdxsinxsinxdxcosxycosxy"sinx
6、常見的導(dǎo)數(shù)和定積分運(yùn)算公式有哪些?答:若fx,gx均可導(dǎo)(可積),則有:和差的導(dǎo)數(shù)運(yùn)算f(x)g(x)f(x)g(x)""f"(x)g"(x)f"(x)g(x)f(x)g"(x)積的導(dǎo)數(shù)運(yùn)算特別地:Cfx"Cf"x商的導(dǎo)數(shù)運(yùn)算f(x)f"(x)g(x)f(x)g"(x)(g(x)0)g(x)2g(x)"1g"(x)特別地:"2gxgx復(fù)合函數(shù)的導(dǎo)數(shù)yxyuux微積分基本定理fxdxab(其中F"xfx)和差的積分運(yùn)算ba[f1(x)f2(x)]dxf1(x)dxf2(x)dxaabb特別地:積分的區(qū)間可加性bakf(x)dxkf(x)dx(k為常數(shù))abbaf(x)dxf(x)dxf(x)dx(其中acb)accb
7.用導(dǎo)數(shù)求函數(shù)單調(diào)區(qū)間的步驟是什么?答:①求函數(shù)f(x)的導(dǎo)數(shù)f"(x)
、诹頵"(x)>0,解不等式,得x的范圍就是遞增區(qū)間.③令f"(x)
8.利用導(dǎo)數(shù)求函數(shù)的最值的步驟是什么?
答:求f(x)在a,b上的最大值與最小值的步驟如下:⑴求f(x)在a,b上的極值;
、茖(x)的各極值與f(a),f(b)比較,其中最大的一個(gè)是最大值,最小的一個(gè)是最小值。
注:實(shí)際問題的開區(qū)間唯一極值點(diǎn)就是所求的最值點(diǎn);
9.求曲邊梯形的思想和步驟是什么?
答:分割近似代替求和取極限(“以直代曲”的思想)
10.定積分的性質(zhì)有哪些?
根據(jù)定積分的定義,不難得出定積分的如下性質(zhì):
11.
ababbbbb性質(zhì)5若f(x)0,xa,b,則f(x)dx0
①推廣:[f1(x)f2(x)fm(x)]dxf1(x)dxf2(x)dxfm(x)
aaaa②推廣:f(x)dxf(x)dxf(x)dxf(x)dx
aac1ckbc1c2b11定積分的取值情況有哪幾種?
答:定積分的值可能取正值,也可能取負(fù)值,還可能是0.
(l)當(dāng)對(duì)應(yīng)的曲邊梯形位于x軸上方時(shí),定積分的值取正值,且等于x軸上方的圖形面積;
。2)當(dāng)對(duì)應(yīng)的曲邊梯形位于x軸下方時(shí),定積分的值取負(fù)值,且等于x軸上方圖形面積的相反數(shù);
。3)當(dāng)位于x軸上方的曲邊梯形面積等于位于x軸下方的曲邊梯形面積時(shí),定積分的值為0,且等于x軸上方圖形的面積減去下方的圖形的面積.
12.物理中常用的微積分知識(shí)有哪些?答:(1)位移的導(dǎo)數(shù)為速度,速度的導(dǎo)數(shù)為加速度。(2)力的積分為功。
數(shù)學(xué)選修2-2推理與證明知識(shí)點(diǎn)必記
13.歸納推理的定義是什么?答:從個(gè)別事實(shí)中推演出一般性的結(jié)論,像這樣的推理通常稱為歸納推理。歸納推理是由部分到整體,由個(gè)別到一般的推理。
14.歸納推理的思維過程是什么?答:大致如圖:
實(shí)驗(yàn)、觀察概括、推廣猜測(cè)一般性結(jié)論
15.歸納推理的特點(diǎn)有哪些?
答:①歸納推理的前提是幾個(gè)已知的特殊現(xiàn)象,歸納所得的結(jié)論是尚屬未知的一般現(xiàn)象。
、谟蓺w納推理得到的結(jié)論具有猜測(cè)的性質(zhì),結(jié)論是否真實(shí),還需經(jīng)過邏輯證明和實(shí)驗(yàn)檢驗(yàn),因此,它不能作為數(shù)學(xué)證明的工具。③歸納推理是一種具有創(chuàng)造性的推理,通過歸納推理的猜想,可以作為進(jìn)一步研究的起點(diǎn),幫助人們發(fā)現(xiàn)問題和提出問題。
16.類比推理的定義是什么?
答:根據(jù)兩個(gè)(或兩類)對(duì)象之間在某些方面的相似或相同,推演出它們?cè)谄渌矫嬉蚕嗨苹蛳嗤,這樣的推理稱為類比推理。類比推理是由特殊到特殊的推理。
17.類比推理的思維過程是什么?答:
觀察、比較聯(lián)想、類推推測(cè)新的結(jié)論
18.演繹推理的定義是什么?
答:演繹推理是根據(jù)已有的事實(shí)和正確的結(jié)論(包括定義、公理、定理等)按照嚴(yán)格的邏輯法則得到新結(jié)論的推理過程。演繹推理是由一般到特殊的推理。
19.演繹推理的主要形式是什么?答:三段論
20.“三段論”可以表示為什么?
答:①大前題:M是P②小前提:S是M③結(jié)論:S是P。
其中①是大前提,它提供了一個(gè)一般性的原理;②是小前提,它指出了一個(gè)特殊對(duì)象;③是結(jié)論,它是根據(jù)一般性原理,對(duì)特殊情況做出的判斷。
21.什么是直接證明?它包括哪幾種證明方法?
答:直接證明是從命題的條件或結(jié)論出發(fā),根據(jù)已知的定義、公理、定理,直接推證結(jié)論的`真實(shí)性。直接證明包括綜合法和分析法。
22.什么是綜合法?
答:綜合法就是“由因?qū)Ч保瑥囊阎獥l件出發(fā),不斷用必要條件代替前面的條件,直至推出要證的結(jié)論。
23.什么是分析法?答:分析法就是從所要證明的結(jié)論出發(fā),不斷地用充分條件替換前面的條件或者一定成立的式子,可稱為“由果索因”。
要注意敘述的形式:要證A,只要證B,B應(yīng)是A成立的充分條件.分析法和綜合法常結(jié)合使用,不要將它們割裂開。
24什么是間接證明?
答:即反證法:是指從否定的結(jié)論出發(fā),經(jīng)過邏輯推理,導(dǎo)出矛盾,證實(shí)結(jié)論的否定是錯(cuò)誤的,從而肯定原結(jié)論是正確的證明方法。
25.反證法的一般步驟是什么?
答:(1)假設(shè)命題結(jié)論不成立,即假設(shè)結(jié)論的反面成立;
(2)從假設(shè)出發(fā),經(jīng)過推理論證,得出矛盾;
。3)從矛盾判定假設(shè)不正確,即所求證命題正確。
26常見的“結(jié)論詞”與“反義詞”有哪些?原結(jié)論詞反義詞原結(jié)論詞至少有一個(gè)至多有一個(gè)至少有n個(gè)至多有n個(gè)一個(gè)也沒有至少有兩個(gè)至多有n-1個(gè)至少有n+1個(gè)對(duì)任意x不成立p或qp且q反義詞存在x使成立p且qp或q對(duì)所有的x都成立存在x使不成立
27.反證法的思維方法是什么?答:正難則反....
28.如何歸繆矛盾?
答:(1)與已知條件矛盾;(2)與已有公理、定理、定義矛盾;
。3)自相矛盾.
29.?dāng)?shù)學(xué)歸納法(只能證明與正整數(shù)有關(guān)的數(shù)學(xué)命題)的步驟是什么?nnN答:(1)證明:當(dāng)n取第一個(gè)值時(shí)命題成立;00
(2)假設(shè)當(dāng)n=k(k∈N*,且k≥n0)時(shí)命題成立,證明當(dāng)n=k+1時(shí)命題也成立由(1),(2)可知,命題對(duì)于從n0開始的所有正整數(shù)n都正確注:常用于證明不完全歸納法推測(cè)所得命題的正確性的證明。
數(shù)學(xué)選修2-2數(shù)系的擴(kuò)充和復(fù)數(shù)的概念知識(shí)點(diǎn)必記
30.復(fù)數(shù)的概念是什么?答:形如a+bi的數(shù)叫做復(fù)數(shù),其中i叫虛數(shù)單位,a叫實(shí)部,b叫虛部,數(shù)集
Cabi|a,bR叫做復(fù)數(shù)集。
規(guī)定:abicdia=c且,強(qiáng)調(diào):兩復(fù)數(shù)不能比較大小,只有相等或不相b=d等。實(shí)數(shù)(b0)
31.?dāng)?shù)集的關(guān)系有哪些?答:復(fù)數(shù)Z一般虛數(shù)(a0)
虛數(shù)(b0)純虛數(shù)(a0)
32.復(fù)數(shù)的幾何意義是什么?答:復(fù)數(shù)與平面內(nèi)的點(diǎn)或有序?qū)崝?shù)對(duì)一一對(duì)應(yīng)。
33.什么是復(fù)平面?
答:根據(jù)復(fù)數(shù)相等的定義,任何一個(gè)復(fù)數(shù)zabi,都可以由一個(gè)有序?qū)崝?shù)對(duì)
(a,b)唯一確定。由于有序?qū)崝?shù)對(duì)(a,b)與平面直角坐標(biāo)系中的點(diǎn)一一對(duì)應(yīng),因此
復(fù)數(shù)集與平面直角坐標(biāo)系中的點(diǎn)集之間可以建立一一對(duì)應(yīng)。這個(gè)建立了直角坐標(biāo)系來表示復(fù)數(shù)的平面叫做復(fù)平面,x軸叫做實(shí)軸,y軸叫做虛軸。實(shí)軸上的點(diǎn)都表示實(shí)數(shù),除了原點(diǎn)外,虛軸上的點(diǎn)都表示純虛數(shù)。
34.如何求復(fù)數(shù)的模(絕對(duì)值)?答:與復(fù)數(shù)z對(duì)應(yīng)的向量OZ的模r叫做復(fù)數(shù)zabi的模(也叫絕對(duì)值)記作z或abi。由模的定義可知:zabia2b2
35.復(fù)數(shù)的加、減法運(yùn)算及幾何意義是什么?
答:①?gòu)?fù)數(shù)的加、減法法則:z1abi與z2cdi,則z1z2ac(bd)i。
注:復(fù)數(shù)的加、減法運(yùn)算也可以按向量的加、減法來進(jìn)行。
、趶(fù)數(shù)的乘法法則:(abi)(cdi)acbdadbci。
、蹚(fù)數(shù)的除法法則:
abi(abi)(cdi)acbdbcadicdi(cdi)(cdi)c2d2c2d2其中cdi叫做實(shí)數(shù)化因子
36.什么是共軛復(fù)數(shù)?
答:兩復(fù)數(shù)abi與abi互為共軛復(fù)數(shù),當(dāng)b0時(shí),它們叫做共軛虛數(shù)。
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)3
。浩矫
1.經(jīng)過不在同一條直線上的三點(diǎn)確定一個(gè)面.
注:兩兩相交且不過同一點(diǎn)的四條直線必在同一平面內(nèi).
2.兩個(gè)平面可將平面分成3或4部分.(①兩個(gè)平面平行,②兩個(gè)平面相交)
3.過三條互相平行的直線可以確定1或3個(gè)平面.(①三條直線在一個(gè)平面內(nèi)平行,②三條直線不在一個(gè)平面內(nèi)平行)
[注]:三條直線可以確定三個(gè)平面,三條直線的公共點(diǎn)有0或1個(gè).
4.三個(gè)平面最多可把空間分成8部分.(X、Y、Z三個(gè)方向)
。嚎臻g的直線與平面
、逼矫娴幕拘再|(zhì)⑴三個(gè)公理及公理三的三個(gè)推論和它們的用途. ⑵斜二測(cè)畫法.
、部臻g兩條直線的位置關(guān)系:相交直線、平行直線、異面直線.
、殴硭(平行線的傳遞性).等角定理.
⑵異面直線的判定:判定定理、反證法.
⑶異面直線所成的角:定義(求法)、范圍.
、持本和平面平行直線和平面的位置關(guān)系、直線和平面平行的判定與性質(zhì).
、粗本和平面垂直
⑴直線和平面垂直:定義、判定定理.
、迫咕定理及逆定理.
5.平面和平面平行
兩個(gè)平面的位置關(guān)系、兩個(gè)平面平行的判定與性質(zhì).
6.平面和平面垂直
互相垂直的平面及其判定定理、性質(zhì)定理.
(二)直線與平面的平行和垂直的證明思路(見附圖)
(三)夾角與距離
7.直線和平面所成的角與二面角
、牌矫娴男本和平面所成的角:三面角余弦公式、最小角定理、斜線和平
面所成的角、直線和平面所成的角.
⑵二面角:①定義、范圍、二面角的平面角、直二面角.
、诨ハ啻怪钡钠矫婕捌渑卸ǘɡ怼⑿再|(zhì)定理.
8.距離
、劈c(diǎn)到平面的距離.
⑵直線到與它平行平面的距離.
、莾蓚(gè)平行平面的距離:兩個(gè)平行平面的公垂線、公垂線段.
、犬惷嬷本的距離:異面直線的公垂線及其性質(zhì)、公垂線段.
(四)簡(jiǎn)單多面體與球
9.棱柱與棱錐
、哦嗝骟w.
、评庵c它的性質(zhì):棱柱、直棱柱、正棱柱、棱柱的性質(zhì).
、瞧叫辛骟w與長(zhǎng)方體:平行六面體、直平行六面體、長(zhǎng)方體、正四棱柱、
正方體;平行六面體的性質(zhì)、長(zhǎng)方體的性質(zhì).
、壤忮F與它的性質(zhì):棱錐、正棱錐、棱錐的性質(zhì)、正棱錐的性質(zhì).
、芍崩庵驼忮F的直觀圖的畫法.
10.多面體歐拉定理的發(fā)現(xiàn)
、藕(jiǎn)單多面體的歐拉公式.
⑵正多面體.
11.球
、徘蚝退男再|(zhì):球體、球面、球的大圓、小圓、球面距離.
⑵球的.體積公式和表面積公式.
。撼S媒Y(jié)論、方法和公式
1.異面直線所成角的求法:
(1)平移法:在異面直線中的一條直線中選擇一特殊點(diǎn),作另一條的平行線;
(2)補(bǔ)形法:把空間圖形補(bǔ)成熟悉的或完整的幾何體,如正方體、平行六面體、長(zhǎng)方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關(guān)系;
2.直線與平面所成的角
斜線和平面所成的是一個(gè)直角三角形的銳角,它的三條邊分別是平面的垂線段、斜線段及斜線段在平面上的射影。通常通過斜線上某個(gè)特殊點(diǎn)作出平面的垂線段,垂足和斜足的連線,是產(chǎn)生線面角的關(guān)鍵;
3.二面角的求法
(1)定義法:直接在二面角的棱上取一點(diǎn)(特殊點(diǎn)),分別在兩個(gè)半平面內(nèi)作棱的垂線,得出平面角,用定義法時(shí),要認(rèn)真觀察圖形的特性;
(2)三垂線法:已知二面角其中一個(gè)面內(nèi)一點(diǎn)到一個(gè)面的垂線,用三垂線定理或逆定理作出二面角的平面角;
(3)垂面法:已知二面角內(nèi)一點(diǎn)到兩個(gè)面的垂線時(shí),過兩垂線作平面與兩個(gè)半平面的交線所成的角即為平面角,由此可知,二面角的平面角所在的平面與棱垂直;
(4)射影法:利用面積射影公式S射=S原cos,其中為平面角的大小,此法不必在圖形中畫出平面角;
特別:對(duì)于一類沒有給出棱的二面角,應(yīng)先延伸兩個(gè)半平面,使之相交出現(xiàn)棱,然后再選用上述方法(尤其要考慮射影法)。
4.空間距離的求法
(1)兩異面直線間的距離,高考要求是給出公垂線,所以一般先利用垂直作出公垂線,然后再進(jìn)行計(jì)算;
(2)求點(diǎn)到直線的距離,一般用三垂線定理作出垂線再求解;
(3)求點(diǎn)到平面的距離,一是用垂面法,借助面面垂直的性質(zhì)來作,因此,確定已知面的垂面是關(guān)鍵;二是不作出公垂線,轉(zhuǎn)化為求三棱錐的高,利用等體積法列方程求解;
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)4
第一講相似三角形的判定及有關(guān)性質(zhì)1.平行線等分線段定理
平行線等分線段定理:如果一組平行線在一條直線上截得的線段相等,那么在其他直線上截得的線段也相等。
推理1:經(jīng)過三角形一邊的中點(diǎn)與另一邊平行的直線必平分第三邊。推理2:經(jīng)過梯形一腰的中點(diǎn),且與底邊平行的直線平分另一腰。
2.平分線分線段成比例定理
平分線分線段成比例定理:三條平行線截兩條直線,所得的對(duì)應(yīng)線段成比例。
推論:平行于三角形一邊的直線截其他兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例。
3.相似三角形的判定及性質(zhì)
相似三角形的判定:
定義:對(duì)應(yīng)角相等,對(duì)應(yīng)邊成比例的兩個(gè)三角形叫做相似三角形。相似三角形對(duì)應(yīng)邊的比值叫做相似比(或相似系數(shù))。
由于從定義出發(fā)判斷兩個(gè)三角形是否相似,需考慮6個(gè)元素,即三組對(duì)應(yīng)角是否分別相等,三組對(duì)應(yīng)邊是否分別成比例,顯然比較麻煩。所以我們?cè)?jīng)給出過如下幾個(gè)判定兩個(gè)三角形相似的簡(jiǎn)單方法:
。1)兩角對(duì)應(yīng)相等,兩三角形相似;
(2)兩邊對(duì)應(yīng)成比例且夾角相等,兩三角形相似;(3)三邊對(duì)應(yīng)成比例,兩三角形相似。
預(yù)備定理:平行于三角形一邊的直線和其他兩邊(或兩邊的延長(zhǎng)線)相交,所構(gòu)成的三角形與三角形相似。
判定定理1:對(duì)于任意兩個(gè)三角形,如果一個(gè)三角形的兩個(gè)角與另一個(gè)三角形的兩個(gè)角對(duì)應(yīng)相等,那么這兩個(gè)三角形相似。簡(jiǎn)述為:兩角對(duì)應(yīng)相等,兩三角形相似。
判定定理2:對(duì)于任意兩個(gè)三角形,如果一個(gè)三角形的兩邊和另一個(gè)三角形的兩邊對(duì)應(yīng)成比例,并且夾角相等,那么這兩個(gè)三角形相似。簡(jiǎn)述為:兩邊對(duì)應(yīng)成比例且夾角相等,兩三角形相似。
判定定理3:對(duì)于任意兩個(gè)三角形,如果一個(gè)三角形的三條邊和另一個(gè)三角形的三條邊對(duì)應(yīng)成比例,那么這兩個(gè)三角形相似。簡(jiǎn)述為:三邊對(duì)應(yīng)成比例,兩三角形相似。
引理:如果一條直線截三角形的兩邊(或兩邊的延長(zhǎng)線)所得的對(duì)應(yīng)線段成比例,那么這條直線平行于三角形的第三邊。定理:(1)如果兩個(gè)直角三角形有一個(gè)銳角對(duì)應(yīng)相等,那么它們相似;
(2)如果兩個(gè)直角三角形的兩條直角邊對(duì)應(yīng)成比例,那么它們相似。
定理:如果一個(gè)直角三角形的斜邊和一條直角邊與另一個(gè)三角形的斜邊和直角邊對(duì)應(yīng)成比例,那么這兩個(gè)直角三角形相似。相似三角形的性質(zhì):
。1)相似三角形對(duì)應(yīng)高的比、對(duì)應(yīng)中線的比和對(duì)應(yīng)平分線的比都等于相似比;(2)相似三角形周長(zhǎng)的比等于相似比;
。3)相似三角形面積的比等于相似比的平方。
相似三角形外接圓的直徑比、周長(zhǎng)比等于相似比,外接圓的面積比等于相似比的平方。
4.直角三角形的射影定理
射影定理:直角三角形斜邊上的高是兩直角邊在斜邊上射影的比例中項(xiàng);兩直角邊分別是它們?cè)谛边吷仙溆芭c斜邊的比例中項(xiàng)。
第二講直線與圓的位置關(guān)系1.圓周定理
圓周角定理:圓上一條弧所對(duì)的圓周角等于它所對(duì)的圓周角的一半。圓心角定理:圓心角的度數(shù)等于它所對(duì)弧的度數(shù)。
推論1:同弧或等弧所對(duì)的圓周角相等;同圓或等圓中,相等的圓周角所對(duì)的弧相等。推論2:半圓(或直徑)所對(duì)的圓周角是直角;90°的圓周角所對(duì)的弦是直徑。
2.圓內(nèi)接四邊形的性質(zhì)與判定定理
定理1:圓的內(nèi)接四邊形的對(duì)角互補(bǔ)。
定理2:圓內(nèi)接四邊形的外角等于它的內(nèi)角的對(duì)角。
圓內(nèi)接四邊形判定定理:如果一個(gè)四邊形的對(duì)角互補(bǔ),那么這個(gè)四邊形的四個(gè)頂點(diǎn)共圓。推論:如果四邊形的一個(gè)外角等于它的內(nèi)角的對(duì)角,那么這個(gè)四邊形的四個(gè)頂點(diǎn)共圓。
3.圓的切線的性質(zhì)及判定定理
切線的性質(zhì)定理:圓的切線垂直于經(jīng)過切點(diǎn)的半徑。推論1:經(jīng)過圓心且垂直于切線的直線必經(jīng)過切點(diǎn)。推論2:經(jīng)過切點(diǎn)且垂直于切線的直線必經(jīng)過圓心。
切線的判定定理:經(jīng)過半徑的外端并且垂直于這條半徑的直線是圓的切線。
4.弦切角的性質(zhì)
弦切角定理:弦切角等于它所夾的`弧所對(duì)的圓周角。
5.與圓有關(guān)的比例線段
相交弦定理:圓內(nèi)的兩條相交弦,被交點(diǎn)分成的兩條線段長(zhǎng)的積相等。
割線定理:從園外一點(diǎn)引圓的兩條割線,這一點(diǎn)到每條割線與圓的交點(diǎn)的兩條線段長(zhǎng)的積相等。
切割線定理:從圓外一點(diǎn)引圓的切線和割線,切線長(zhǎng)是這點(diǎn)到割線與圓交點(diǎn)的兩條線段長(zhǎng)的比例中項(xiàng)。
切線長(zhǎng)定理:從圓外一點(diǎn)引圓的兩條切線,它們的切線長(zhǎng)相等,圓心和這一點(diǎn)的連線平分兩條切線的夾角。
6.垂徑定理
垂直于弦的直徑平分這條弦,并且平分弦所對(duì)的兩條弧。
7.三角形的五心
(1)內(nèi)心:三條角平分線的交點(diǎn),也是三角形內(nèi)切圓的圓心。性質(zhì):到三邊距離相等。(2)外心:三條中垂線的交點(diǎn),也是三角形外接圓的圓心。性質(zhì):到三個(gè)頂點(diǎn)距離相等。(3)重心:三條中線的交點(diǎn)。性質(zhì):三條中線的三等分點(diǎn),到頂點(diǎn)距離為到對(duì)邊中點(diǎn)距離的2倍。
(4)垂心:三條高所在直線的交點(diǎn)。
(5)旁心:三角形任意兩角的外角平分線和第三個(gè)角的內(nèi)角平分線的交點(diǎn)。性質(zhì):到三邊的
距離相等
第三講圓錐曲線性質(zhì)的探究1.平面與圓柱面的截線:
當(dāng)平面與圓柱的兩底面平行時(shí),截面是個(gè)圓;當(dāng)平面與圓柱的兩底面不平行時(shí),截面是個(gè)橢
圓;定理1:圓柱形物體的斜截口是橢圓。
定理2:在空間中,取直線l為軸,直線l’與l相交于O點(diǎn),夾角為α,l’圍繞l旋轉(zhuǎn)得
到以O(shè)為頂點(diǎn),l’為母線的圓錐面,任取平面π,若它與軸l的夾角為β(當(dāng)π與l平行時(shí),記β=0),則截面不過頂點(diǎn)時(shí):
(1)β>α,平面π與圓錐的交線為橢圓;(2)β=α,平面π與圓錐的交線為拋物線;(3)
β<α,平面π與圓錐的交線為雙曲線;截面過頂點(diǎn)時(shí):(1)截面和圓錐面只相交于頂點(diǎn),交線為一個(gè)點(diǎn)。
(2)截面和圓錐面相交于兩條母線,交線為兩條相交曲線。(3)截面和圓錐面相切,交線為兩
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)5
1.概率與統(tǒng)計(jì):包括概率、統(tǒng)計(jì)、概率的意義、一維和二維正態(tài)分布、樣本和抽樣分布、參數(shù)估計(jì)、假設(shè)檢驗(yàn)、方差分析、回歸分析等。
2.微積分:包括極限、導(dǎo)數(shù)、微分、不定積分、定積分、常微分方程、偏微分方程、差分方程等。
3.線性代數(shù):包括矩陣、向量、線性方程組、矩陣的相似對(duì)角化、二次型、線性空間、線性變換、矩陣的行列式、矩陣的逆矩陣、矩陣的秩、向量組的相關(guān)性、向量組的極大線性無關(guān)組等。
4.概率論與數(shù)理統(tǒng)計(jì):包括隨機(jī)事件與概率、概率的基本性質(zhì)與運(yùn)算法則、古典概型、條件概率、獨(dú)立性、隨機(jī)變量與分布函數(shù)、正態(tài)分布、二維隨機(jī)變量與分布函數(shù)、條件概率與相互獨(dú)立性、期望、方差、協(xié)方差與相關(guān)系數(shù)、矩、中心極限定理等。
5.平面幾何:包括點(diǎn)和距離、平行和垂直、三角形、四邊形、圓和扇形、平面圖形和空間圖形等。
6.平面解析幾何:包括點(diǎn)與線的坐標(biāo)、直線的方程與性質(zhì)、圓的'標(biāo)準(zhǔn)方程與性質(zhì)、橢圓的標(biāo)準(zhǔn)方程與性質(zhì)、雙曲線的標(biāo)準(zhǔn)方程與性質(zhì)、拋物線的標(biāo)準(zhǔn)方程與性質(zhì)、參數(shù)方程與極坐標(biāo)方程等。
7.集合與函數(shù):包括集合與集合運(yùn)算、函數(shù)與映射、函數(shù)圖像與性質(zhì)、指數(shù)與指數(shù)冪、對(duì)數(shù)與對(duì)數(shù)運(yùn)算、函數(shù)圖像變換等。
8.三角函數(shù):包括三角函數(shù)的概念與圖像、同角三角函數(shù)基本關(guān)系式、正弦函數(shù)和余弦函數(shù)的圖像與性質(zhì)、正切函數(shù)的圖像與性質(zhì)、兩角和與差的正弦、余弦和正切函數(shù)、二倍角公式等。
9.數(shù)列:包括數(shù)列的概念與表示、等差數(shù)列與等比數(shù)列的概念與性質(zhì)、數(shù)列的通項(xiàng)公式與通項(xiàng)公式求法、數(shù)列的求和公式、數(shù)列的極限等。
10.立體幾何:包括多面體和旋轉(zhuǎn)體的體積和表面積、平面基本性質(zhì)、直線和平面、平面和平面、直線、平面之間的位置關(guān)系、平行和垂直的判定和性質(zhì)、以及角度和平面角、距離等。
以上是高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié),具體的學(xué)習(xí)方法和應(yīng)對(duì)考試技巧需要根據(jù)個(gè)人情況來制定。
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)6
簡(jiǎn)單隨機(jī)抽樣的定義:
一般地,設(shè)一個(gè)總體含有N個(gè)個(gè)體,從中逐個(gè)不放回地抽取n個(gè)個(gè)體作為樣本(n≤N),如果每次抽取時(shí)總體內(nèi)的各個(gè)個(gè)體被抽到的機(jī)會(huì)都相等,就把這種抽樣方法叫做簡(jiǎn)單隨機(jī)抽樣。
簡(jiǎn)單隨機(jī)抽樣的特點(diǎn):
(1)用簡(jiǎn)單隨機(jī)抽樣從含有N個(gè)個(gè)體的總體中抽取一個(gè)容量為n的樣本時(shí),每次抽取一個(gè)個(gè)體時(shí)任一個(gè)體被抽到的概率為___;在整個(gè)抽樣過程中各個(gè)個(gè)體被抽到的概率為____。
。2)簡(jiǎn)單隨機(jī)抽樣的特點(diǎn)是,逐個(gè)抽取,且各個(gè)個(gè)體被抽到的概率相等。
。3)簡(jiǎn)單隨機(jī)抽樣方法,體現(xiàn)了抽樣的客觀性與公平性,是其他更復(fù)雜抽樣方法的基礎(chǔ)。
。4)簡(jiǎn)單隨機(jī)抽樣是不放回抽樣;它是逐個(gè)地進(jìn)行抽取;它是一種等概率抽樣。
簡(jiǎn)單抽樣常用方法:
。1)抽簽法:先將總體中的`所有個(gè)體(共有N個(gè))編號(hào)(號(hào)碼可從1到N),并把號(hào)碼寫在形狀、大小相同的號(hào)簽上(號(hào)簽可用小球、卡片、紙條等制作),然后將這些號(hào)簽放在同一個(gè)箱子里,進(jìn)行均勻攪拌,抽簽時(shí)每次從中抽一個(gè)號(hào)簽,連續(xù)抽取n次,就得到一個(gè)容量為n的樣本適用范圍:總體的個(gè)體數(shù)不多時(shí)優(yōu)點(diǎn):抽簽法簡(jiǎn)便易行,當(dāng)總體的個(gè)體數(shù)不太多時(shí)適宜采用抽簽法。
。2)隨機(jī)數(shù)表法:隨機(jī)數(shù)表抽樣“三步曲”:第一步,將總體中的個(gè)體編號(hào);第二步,選定開始的數(shù)字;第三步,獲取樣本號(hào)碼概率。
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)7
等比數(shù)列公式性質(zhì)知識(shí)點(diǎn)
1.等比數(shù)列的有關(guān)概念
(1)定義:
如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù)(不為零),那么這個(gè)數(shù)列就叫做等比數(shù)列.這個(gè)常數(shù)叫做等比數(shù)列的公比,通常用字母q表示,定義的表達(dá)式為an+1/an=q(n∈N_,q為非零常數(shù)).
(2)等比中項(xiàng):
如果a、G、b成等比數(shù)列,那么G叫做a與b的等比中項(xiàng).即:G是a與b的等比中項(xiàng)a,G,b成等比數(shù)列G2=ab.
2.等比數(shù)列的有關(guān)公式
(1)通項(xiàng)公式:an=a1qn-1.
3.等比數(shù)列{an}的常用性質(zhì)
(1)在等比數(shù)列{an}中,若m+n=p+q=2r(m,n,p,q,r∈N_),則am·an=ap·aq=a.
特別地,a1an=a2an-1=a3an-2=….
(2)在公比為q的等比數(shù)列{an}中,數(shù)列am,am+k,am+2k,am+3k,…仍是等比數(shù)列,公比為qk;數(shù)列Sm,S2m-Sm,S3m-S2m,…仍是等比數(shù)列(此時(shí)q≠-1);an=amqn-m.
4.等比數(shù)列的特征
(1)從等比數(shù)列的定義看,等比數(shù)列的任意項(xiàng)都是非零的',公比q也是非零常數(shù).
(2)由an+1=qan,q≠0并不能立即斷言{an}為等比數(shù)列,還要驗(yàn)證a1≠0.
5.等比數(shù)列的前n項(xiàng)和Sn
(1)等比數(shù)列的前n項(xiàng)和Sn是用錯(cuò)位相減法求得的,注意這種思想方法在數(shù)列求和中的運(yùn)用.
(2)在運(yùn)用等比數(shù)列的前n項(xiàng)和公式時(shí),必須注意對(duì)q=1與q≠1分類討論,防止因忽略q=1這一特殊情形導(dǎo)致解題失誤.
等比數(shù)列知識(shí)點(diǎn)
1.等比中項(xiàng)
如果在a與b中間插入一個(gè)數(shù)G,使a,G,b成等比數(shù)列,那么G叫做a與b的等比中項(xiàng)。
有關(guān)系:
注:兩個(gè)非零同號(hào)的實(shí)數(shù)的等比中項(xiàng)有兩個(gè),它們互為相反數(shù),所以G2=ab是a,G,b三數(shù)成等比數(shù)列的必要不充分條件。
2.等比數(shù)列通項(xiàng)公式
an=a1_q’(n-1)(其中首項(xiàng)是a1,公比是q)
an=Sn-S(n-1)(n≥2)
前n項(xiàng)和
當(dāng)q≠1時(shí),等比數(shù)列的前n項(xiàng)和的公式為
Sn=a1(1-q’n)/(1-q)=(a1-a1_q’n)/(1-q)(q≠1)
當(dāng)q=1時(shí),等比數(shù)列的前n項(xiàng)和的公式為
Sn=na1
3.等比數(shù)列前n項(xiàng)和與通項(xiàng)的關(guān)系
an=a1=s1(n=1)
an=sn-s(n-1)(n≥2)
4.等比數(shù)列性質(zhì)
(1)若m、n、p、q∈N_,且m+n=p+q,則am·an=ap·aq;
(2)在等比數(shù)列中,依次每k項(xiàng)之和仍成等比數(shù)列。
(3)從等比數(shù)列的定義、通項(xiàng)公式、前n項(xiàng)和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
(4)等比中項(xiàng):q、r、p成等比數(shù)列,則aq·ap=ar2,ar則為ap,aq等比中項(xiàng)。
記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一個(gè)各項(xiàng)均為正數(shù)的等比數(shù)列各項(xiàng)取同底指數(shù)冪后構(gòu)成一個(gè)等差數(shù)列;反之,以任一個(gè)正數(shù)C為底,用一個(gè)等差數(shù)列的各項(xiàng)做指數(shù)構(gòu)造冪Can,則是等比數(shù)列。在這個(gè)意義下,我們說:一個(gè)正項(xiàng)等比數(shù)列與等差數(shù)列是“同構(gòu)”的。
(5)等比數(shù)列前n項(xiàng)之和Sn=a1(1-q’n)/(1-q)
(6)任意兩項(xiàng)am,an的`關(guān)系為an=am·q’(n-m)
(7)在等比數(shù)列中,首項(xiàng)a1與公比q都不為零。
注意:上述公式中a’n表示a的n次方。
等比數(shù)列知識(shí)點(diǎn)總結(jié)
等比數(shù)列:如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù),這個(gè)數(shù)列就叫做等比數(shù)列。這個(gè)常數(shù)叫做等比數(shù)列的公比,公比通常用字母q表示(q≠0)。
1:等比數(shù)列通項(xiàng)公式:an=a1_q^(n-1);推廣式:an=am·q^(n-m);
2:等比數(shù)列求和公式:等比求和:Sn=a1+a2+a3+.......+an
、佼(dāng)q≠1時(shí),Sn=a1(1-q^n)/(1-q)或Sn=(a1-an×q)÷(1-q)
、诋(dāng)q=1時(shí),Sn=n×a1(q=1)記πn=a1·a2…an,則有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
3:等比中項(xiàng):aq·ap=ar^2,ar則為ap,aq等比中項(xiàng)。
4:性質(zhì):
、偃鬽、n、p、q∈N,且m+n=p+q,則am·an=ap_aq;
、谠诘缺葦(shù)列中,依次每k項(xiàng)之和仍成等比數(shù)列.
例題:設(shè)ak,al,am,an是等比數(shù)列中的第k、l、m、n項(xiàng),若k+l=m+n,求證:ak_al=am_an
證明:設(shè)等比數(shù)列的首項(xiàng)為a1,公比為q,則ak=a1·q^(k-1),al=a1·q^(l-1),am=a1·q^(m-1),an=a1·q^(n-1)
所以:ak_al=a^2_q^(k+l-2),am_an=a^2_q(m+n-2),故:ak_al=am_an
說明:這個(gè)例題是等比數(shù)列的一個(gè)重要性質(zhì),它在解題中常常會(huì)用到。它說明等比數(shù)列中距離兩端(首末兩項(xiàng))距離等遠(yuǎn)的兩項(xiàng)的乘積等于首末兩項(xiàng)的乘積,即:a(1+k)·a(n-k)=a1·an
對(duì)于等差數(shù)列,同樣有:在等差數(shù)列中,距離兩端等這的兩項(xiàng)之和等于首末兩項(xiàng)之和。即:a(1+k)+a(n-k)=a1+an
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)8
1.有關(guān)平行與垂直(線線、線面及面面)的問題,是在解決立體幾何問題的過程中,大量的、反復(fù)遇到的,而且是以各種各樣的問題(包括論證、計(jì)算角、與距離等)中不可缺少的內(nèi)容,因此在主體幾何的總復(fù)習(xí)中,首先應(yīng)從解決平行與垂直的有關(guān)問題著手,通過較為基本問題,熟悉公理、定理的內(nèi)容和功能,通過對(duì)問題的分析與概括,掌握立體幾何中解決問題的規(guī)律--充分利用線線平行(垂直)、線面平行(垂直)、面面平行(垂直)相互轉(zhuǎn)化的思想,以提高邏輯思維能力和空間想象能力。
2. 判定兩個(gè)平面平行的方法:
(1)根據(jù)定義--證明兩平面沒有公共點(diǎn);
(2)判定定理--證明一個(gè)平面內(nèi)的兩條相交直線都平行于另一個(gè)平面;
(3)證明兩平面同垂直于一條直線。
3.兩個(gè)平面平行的主要性質(zhì):
(1)由定義知:兩平行平面沒有公共點(diǎn)。
(2)由定義推得:兩個(gè)平面平行,其中一個(gè)平面內(nèi)的直線必平行于另一個(gè)平面。
(3)兩個(gè)平面平行的性質(zhì)定理:如果兩個(gè)平行平面同時(shí)和第三個(gè)平面相交,那么它們的交線平行。
(4)一條直線垂直于兩個(gè)平行平面中的一個(gè)平面,它也垂直于另一個(gè)平面。
(5)夾在兩個(gè)平行平面間的平行線段相等。
(6)經(jīng)過平面外一點(diǎn)只有一個(gè)平面和已知平面平行。
以上性質(zhì)(2)、(3)、(5)、(6)在課文中雖未直接列為性質(zhì)定理,但在解題過程中均可直接作為性質(zhì)定理引用。
數(shù)學(xué)必修單元知識(shí)點(diǎn)
第一,函數(shù)與導(dǎo)數(shù)。主要考查集合運(yùn)算、函數(shù)的有關(guān)概念定義域、值域、解析式、函數(shù)的極限、連續(xù)、導(dǎo)數(shù)。
第二,平面向量與三角函數(shù)、三角變換及其應(yīng)用。這一部分是高考的重點(diǎn)但不是難點(diǎn),主要出一些基礎(chǔ)題或中檔題。
第三,數(shù)列及其應(yīng)用。這部分是高考的重點(diǎn)而且是難點(diǎn),主要出一些綜合題。
第四,不等式。主要考查不等式的求解和證明,而且很少單獨(dú)考查,主要是在解答題中比較大小。是高考的重點(diǎn)和難點(diǎn)
第五,概率和統(tǒng)計(jì)。這部分和我們的生活聯(lián)系比較大,屬應(yīng)用題。
第六,空間位置關(guān)系的定性與定量分析,主要是證明平行或垂直,求角和距離。
第七,解析幾何。是高考的難點(diǎn),運(yùn)算量大,一般含參數(shù)。
高中數(shù)學(xué)知識(shí)點(diǎn)梳理
函數(shù)與導(dǎo)數(shù)
第一、求函數(shù)定義域題忽視細(xì)節(jié)函數(shù)的定義域是使函數(shù)有意義的自變量的取值范圍,考生想要在考場(chǎng)上準(zhǔn)確求出定義域,就要根據(jù)函數(shù)解析式把各種情況下的自變量的限制條件找出來,列成不等式組,不等式組的解集就是該函數(shù)的定義域。
在求一般函數(shù)定義域時(shí),要注意以下幾點(diǎn):分母不為0;偶次被開放式非負(fù);真數(shù)大于0以及0的0次冪無意義。函數(shù)的定義域是非空的數(shù)集,在解答函數(shù)定義域類的題時(shí)千萬別忘了這一點(diǎn)。復(fù)合函數(shù)要注意外層函數(shù)的定義域由內(nèi)層函數(shù)的值域決定。
第二、帶絕對(duì)值的函數(shù)單調(diào)性判斷錯(cuò)誤帶絕對(duì)值的函數(shù)實(shí)質(zhì)上就是分段函數(shù),判斷分段函數(shù)的單調(diào)性有兩種方法:第一,在各個(gè)段上根據(jù)函數(shù)的解析式所表示的函數(shù)的單調(diào)性求出單調(diào)區(qū)間,然后對(duì)各個(gè)段上的單調(diào)區(qū)間進(jìn)行整合;第二,畫出這個(gè)分段函數(shù)的圖象,結(jié)合函數(shù)圖象、性質(zhì)能夠進(jìn)行直觀的判斷。函數(shù)題離不開函數(shù)圖象,而函數(shù)圖象反應(yīng)了函數(shù)的所有性質(zhì),考生在解答函數(shù)題時(shí),要第一時(shí)間在腦海中畫出函數(shù)圖象,從圖象上分析問題,解決問題。
對(duì)于函數(shù)不同的單調(diào)遞增(減)區(qū)間,千萬記住,不要使用并集,指明這幾個(gè)區(qū)間是該函數(shù)的單調(diào)遞增(減)區(qū)間即可。
第三、求函數(shù)奇偶性的常見錯(cuò)誤求函數(shù)奇偶性類的題最常見的錯(cuò)誤有求錯(cuò)函數(shù)定義域或忽視函數(shù)定義域,對(duì)函數(shù)具有奇偶性的前提條件不清,對(duì)分段函數(shù)奇偶性判斷方法不當(dāng)?shù)鹊。判斷函?shù)的奇偶性,首先要考慮函數(shù)的定義域,一個(gè)函數(shù)具備奇偶性的必要條件是這個(gè)函數(shù)的定義域區(qū)間關(guān)于原點(diǎn)對(duì)稱,如果不具備這個(gè)條件,函數(shù)一定是非奇非偶的函數(shù)。在定義域區(qū)間關(guān)于原點(diǎn)對(duì)稱的前提下,再根據(jù)奇偶函數(shù)的定義進(jìn)行判斷。
在用定義進(jìn)行判斷時(shí),要注意自變量在定義域區(qū)間內(nèi)的.任意性。
第四、抽象函數(shù)推理不嚴(yán)謹(jǐn)很多抽象函數(shù)問題都是以抽象出某一類函數(shù)的共同特征而設(shè)計(jì)的,在解答此類問題時(shí),考生可以通過類比這類函數(shù)中一些具體函數(shù)的性質(zhì)去解決抽象函數(shù)。多用特殊賦值法,通過特殊賦可以找到函數(shù)的不變性質(zhì),這往往是問題的突破口。
抽象函數(shù)性質(zhì)的證明屬于代數(shù)推理,和幾何推理證明一樣,考生在作答時(shí)要注意推理的嚴(yán)謹(jǐn)性。每一步都要有充分的條件,別漏掉條件,更不能臆造條件,推理過程層次分明,還要注意書寫規(guī)范。
第五、函數(shù)零點(diǎn)定理使用不當(dāng)若函數(shù)y=f(x)在區(qū)間[a,b]上的圖象是連續(xù)不斷的一條曲線,且有f(a)f(b)0。那么函數(shù)y=f(x)在區(qū)間(a,b)內(nèi)有零點(diǎn),即存在c(a,b),使得f(c)=0。這個(gè)c也可以是方程f(c)=0的根,稱之為函數(shù)的零點(diǎn)定理,分為變號(hào)零點(diǎn)和不變號(hào)零點(diǎn),而對(duì)于不變號(hào)零點(diǎn),函數(shù)的零點(diǎn)定理是無能為力的,在解決函數(shù)的零點(diǎn)時(shí),考生需格外注意這類問題。
第六、混淆兩類切線曲線上一點(diǎn)處的切線是指以該點(diǎn)為切點(diǎn)的曲線的切線,這樣的切線只有一條;曲線的過一個(gè)點(diǎn)的切線是指過這個(gè)點(diǎn)的曲線的所有切線,這個(gè)點(diǎn)如果在曲線上當(dāng)然包括曲線在該點(diǎn)處的切線,曲線的過一個(gè)點(diǎn)的切線可能不止一條。
因此,考生在求解曲線的切線問題時(shí),首先要區(qū)分是什么類型的切線。
第七、混淆導(dǎo)數(shù)與單調(diào)性的關(guān)系一個(gè)函數(shù)在某個(gè)區(qū)間上是增函數(shù)的這類題型,如果考生認(rèn)為函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大于0,很容易就會(huì)出錯(cuò)。
解答函數(shù)的單調(diào)性與其導(dǎo)函數(shù)的關(guān)系時(shí)一定要注意,一個(gè)函數(shù)的導(dǎo)函數(shù)在某個(gè)區(qū)間上單調(diào)遞增(減)的充要條件是這個(gè)函數(shù)的導(dǎo)函數(shù)在此區(qū)間上恒大(小)于等于0,且導(dǎo)函數(shù)在此區(qū)間的任意子區(qū)間上都不恒為零。
第八、導(dǎo)數(shù)與極值關(guān)系不清考生在使用導(dǎo)數(shù)求函數(shù)極值類問題時(shí),容易出現(xiàn)的錯(cuò)誤就是求出使導(dǎo)函數(shù)等于0的點(diǎn),卻沒有對(duì)這些點(diǎn)左右兩側(cè)導(dǎo)函數(shù)的符號(hào)進(jìn)行判斷,誤以為使導(dǎo)函數(shù)等于0的點(diǎn)就是函數(shù)的極值點(diǎn),往往就會(huì)出錯(cuò),出錯(cuò)原因就是考生對(duì)導(dǎo)數(shù)與極值關(guān)系沒搞清楚。
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)9
空間兩條直線只有三種位置關(guān)系:平行、相交、異面。
按是否共面可分為兩類:
(1)共面:平行、相交
(2)異面:
異面直線的定義:不同在任何一個(gè)平面內(nèi)的兩條直線或既不平行也不相交。
異面直線判定定理:用平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,與平面內(nèi)不經(jīng)過該點(diǎn)的直線是異面直線。
兩異面直線所成的角:范圍為(0°,90°)esp?臻g向量法。
兩異面直線間距離:公垂線段(有且只有一條)esp?臻g向量法。
若從有無公共點(diǎn)的角度看可分為兩類:
(1)有且僅有一個(gè)公共點(diǎn)——相交直線;(2)沒有公共點(diǎn)——平行或異面。
直線和平面的位置關(guān)系:
直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行。
①直線在平面內(nèi)——有無數(shù)個(gè)公共點(diǎn)
、谥本和平面相交——有且只有一個(gè)公共點(diǎn)
直線與平面所成的角:平面的一條斜線和它在這個(gè)平面內(nèi)的射影所成的銳角。
空間向量法(找平面的法向量)
規(guī)定:a、直線與平面垂直時(shí),所成的角為直角;b、直線與平面平行或在平面內(nèi),所成的角為0°角。
由此得直線和平面所成角的取值范圍為[0°,90°]。
最小角定理:斜線與平面所成的角是斜線與該平面內(nèi)任一條直線所成角中的最小角。
三垂線定理及逆定理:如果平面內(nèi)的一條直線,與這個(gè)平面的一條斜線的射影垂直,那么它也與這條斜線垂直。
直線和平面垂直
直線和平面垂直的定義:如果一條直線a和一個(gè)平面內(nèi)的任意一條直線都垂直,我們就說直線a和平面互相垂直。直線a叫做平面的垂線,平面叫做直線a的垂面。
直線與平面垂直的判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個(gè)平面。
直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。直線和平面平行——沒有公共點(diǎn)
直線和平面平行的定義:如果一條直線和一個(gè)平面沒有公共點(diǎn),那么我們就說這條直線和這個(gè)平面平行。
直線和平面平行的判定定理:如果平面外一條直線和這個(gè)平面內(nèi)的一條直線平行,那么這條直線和這個(gè)平面平行。
直線和平面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行。
數(shù)學(xué)常用解題技巧有哪些
第一,應(yīng)堅(jiān)持由易到難的做題順序。近年來高考數(shù)學(xué)試題的設(shè)置是8道選擇題、6道填空題、6到大題,通常稱為866結(jié)構(gòu)。在實(shí)體設(shè)置的結(jié)構(gòu)中有三個(gè)小高峰,選擇題是由易到難,最難的題是第8題。填空題同樣是這樣設(shè)置的。也是第9題容易到第14題最難,大題從第15題到第20題,它們的設(shè)置也是這樣的。根據(jù)這樣的試題結(jié)構(gòu),應(yīng)先做前面容易的,基礎(chǔ)好一點(diǎn)的考生就先做前7個(gè)選擇,前5個(gè)填空、前5個(gè)大題,稱為是755結(jié)構(gòu);A(chǔ)差的就是644,先把自己能做的、會(huì)做的拿到手。這是第一點(diǎn)。
第二,審題是關(guān)鍵。把題給看清楚了再動(dòng)筆答題,看清楚題以后問什么、已知什么、讓你做什么,把這些問題搞清楚了,自己制訂了一個(gè)完整的解題策略,在開始寫的時(shí)候,這個(gè)時(shí)候是很快就可以完成的。
第三,屬于非智力因素導(dǎo)致想不起來。本來是很簡(jiǎn)單的題比如說是做到第三題、第四題的時(shí)候不是難題,但想不起來了,卡住了,這時(shí)候怎么辦?雖然是簡(jiǎn)單題卻不會(huì)做怎么辦?應(yīng)先跳過去,不是這道題不會(huì)做嗎?后面還有很多的簡(jiǎn)單題呢,把后面的題做一做,不要在考場(chǎng)上愣神,先跳過去做其他的題,等穩(wěn)定下來以后再回過頭來看會(huì)頓悟,豁然開朗。
第四,做選擇題的時(shí)候應(yīng)運(yùn)用最好的解題方法。因?yàn)檫x擇題和填空題都是看結(jié)果不看過程,因此在這個(gè)過程中都應(yīng)不擇手段,只要是能把正確的結(jié)論找到就行?忌S玫姆椒ㄊ侵苯臃ǎ瑥囊阎拈_始也不看它的四個(gè)選項(xiàng),從頭到尾寫完了之后一看答案就寫上去了。另外就是特質(zhì)法(音),一些出現(xiàn)字母、特別是不等式,這時(shí)候給它賦一個(gè)值,代進(jìn)去這時(shí)候速度會(huì)比較快,正確地找出結(jié)果來。再就是數(shù)形結(jié)合法。最后實(shí)在不行了,就將四個(gè)選項(xiàng)代入驗(yàn)證,看看哪個(gè)符合就是哪個(gè)了。填空題用上述的.直接法、特質(zhì)法、數(shù)形結(jié)合法三種方法都適合。做大題的時(shí)候要特別注意解題步驟,規(guī)范答題可以減少失分。簡(jiǎn)單地說,規(guī)范答題就是從上一步的原因到下一步的結(jié)論,這是一個(gè)必然的過程,讓誰寫、誰看都是這樣的。因?yàn)槭裁此允裁词且粋(gè)必然的過程,這是規(guī)范答題。
學(xué)霸分享的數(shù)學(xué)復(fù)習(xí)技巧
1、把答案蓋住看例題
例題不能帶著答案去看,不然會(huì)認(rèn)為自己就是這么,其實(shí)自己并沒有理解透徹。
所以,在看例題時(shí),把解答蓋住,自己去做,做完或做不出時(shí)再去看。這時(shí)要想一想,自己做的哪里與解答不同,哪里沒想到,該注意什么,哪一種方法更好,還有沒有另外的解法。
經(jīng)過上面的訓(xùn)練,自己的思維空間擴(kuò)展了,看問題也全面了。如果把題目徹底搞清了,在題后精煉幾個(gè)批注,說明此題的“題眼”及巧妙之處,收獲會(huì)更大。
2、研究每題都考什么
數(shù)學(xué)能力的提高離不開做題,“熟能生巧”這個(gè)簡(jiǎn)單的道理大家都懂。但做題不是搞題海戰(zhàn)術(shù),而是要通過一題聯(lián)想到很多題。
3、錯(cuò)一次反思一次
每次業(yè)及考試或多或少會(huì)發(fā)生些錯(cuò)誤,這并不可怕,要緊的是避免類似的錯(cuò)誤再次重現(xiàn)。因此平時(shí)注意把錯(cuò)題記下來。
學(xué)生若能將每次考試或練習(xí)中出現(xiàn)的錯(cuò)誤記錄下來分析,并盡力保證在下次考試時(shí)不發(fā)生同樣錯(cuò)誤,那么以后人生中最重要的高考也就能避免犯錯(cuò)了.
4、分析試卷總結(jié)經(jīng)驗(yàn)
每次考試結(jié)束試卷發(fā)下來,要認(rèn)真分析得失,總結(jié)經(jīng)驗(yàn)教訓(xùn)。特別是將試卷中出現(xiàn)的錯(cuò)誤進(jìn)行分類。
數(shù)學(xué)解題方法分別有哪些
1、配方法
所謂的公式是使用變換解析方程的同構(gòu)方法,并將其中的一些分配給一個(gè)或多個(gè)多項(xiàng)式正整數(shù)冪的和形式。通過配方解決數(shù)學(xué)問題的公式。其中,用的最多的是配成完全平方式。匹配方法是數(shù)學(xué)中不斷變形的重要方法,其應(yīng)用非常廣泛,在分解,簡(jiǎn)化根,它通常用于求解方程,證明方程和不等式,找到函數(shù)的極值和解析表達(dá)式。
2、因式分解法
因式分解是將多項(xiàng)式轉(zhuǎn)換為幾個(gè)積分產(chǎn)品的乘積。分解是恒定變形的基礎(chǔ)。除了引入中學(xué)教科書中介紹的公因子法,公式法,群體分解法,交叉乘法法等外,還有很多方法可以進(jìn)行因式分解。還有一些項(xiàng)目,如拆除物品的使用,根分解,替換,未確定的系數(shù)等等。
3、換元法
替代方法是數(shù)學(xué)中一個(gè)非常重要和廣泛使用的解決問題的方法。我們通常稱未知或變?cè)S眯碌膮?shù)替換原始公式的一部分或重新構(gòu)建原始公式可以更簡(jiǎn)單,更容易解決。
4、判別式法與韋達(dá)定理
一元二次方程 ax2+ bx+ c=0( a、 b、 c屬于 R, a≠0)根的判別, = b2-4 ac,不僅用來確定根的性質(zhì),還作為一個(gè)問題解決方法,代數(shù)變形,求解方程(組),求解不等式,研究函數(shù),甚至幾何以及三角函數(shù)都有非常廣泛的應(yīng)用。
韋達(dá)定理除了知道二次方程的根外,還找到另一根;考慮到兩個(gè)數(shù)的和和乘積的簡(jiǎn)單應(yīng)用并尋找這兩個(gè)數(shù),也可以找到根的對(duì)稱函數(shù)并量化二次方程根的符號(hào)。求解對(duì)稱方程并解決一些與二次曲線有關(guān)的問題等,具有非常廣泛的應(yīng)用。
5、待定系數(shù)法
在解決數(shù)學(xué)問題時(shí),如果我們首先判斷我們所尋找的結(jié)果具有一定的形式,其中包含某些未決的系數(shù),然后根據(jù)問題的條件列出未確定系數(shù)的方程,最后找到未確定系數(shù)的值或這些待定系數(shù)之間的關(guān)系。為了解決數(shù)學(xué)問題,這種問題解決方法被稱為待定系數(shù)法。它是中學(xué)數(shù)學(xué)中常用的方法之一。
6、構(gòu)造法
在解決問題時(shí),我們通常通過分析條件和結(jié)論來使用這些方法來構(gòu)建輔助元素。它可以是一個(gè)圖表,一個(gè)方程(組),一個(gè)方程,一個(gè)函數(shù),一個(gè)等價(jià)的命題等,架起連接條件和結(jié)論的橋梁。為了解決這個(gè)問題,這種解決問題的數(shù)學(xué)方法,我們稱之為構(gòu)造方法。運(yùn)用結(jié)構(gòu)方法解決問題可以使代數(shù),三角形,幾何等數(shù)學(xué)知識(shí)相互滲透,有助于解決問題。
數(shù)學(xué)經(jīng)常遇到的問題解答
1、要提高數(shù)學(xué)成績(jī)首先要做什么?
這一點(diǎn),是很多學(xué)生所關(guān)注的,要提高數(shù)學(xué)成績(jī),首先就應(yīng)該從基礎(chǔ)知識(shí)學(xué)起。不少同學(xué)覺得基礎(chǔ)知識(shí)過于簡(jiǎn)單,看兩遍基本上就都會(huì)了。這種“自我感覺良好”其實(shí)是一種錯(cuò)覺,而真正考試時(shí)又覺得無從下手,這還是基礎(chǔ)不牢的表現(xiàn),因此要提高數(shù)學(xué)成績(jī)先要把基礎(chǔ)夯實(shí)。
2、基礎(chǔ)不好怎么學(xué)好數(shù)學(xué)?
對(duì)于基礎(chǔ)差的同學(xué)來說,課本是就是學(xué)好數(shù)學(xué)的秘籍,把課本上的定義、公式、定理全部弄懂,力爭(zhēng)在理解的基礎(chǔ)上全部背熟,每一道例題、每一道課后題都要掌握。我們知道只有把公式、定理爛熟于心,才能舉一反三、活學(xué)活用,把課本的知識(shí)學(xué)透有兩個(gè)好處,第一,強(qiáng)化基礎(chǔ);第二,提高得分能力。
3、是否要采用題海戰(zhàn)術(shù)?
方法君曾不止一次提到了“題海戰(zhàn)術(shù)”,題海戰(zhàn)術(shù)究竟可不可取呢?“題海戰(zhàn)術(shù)”其實(shí)也是一種學(xué)習(xí)方法,但很多學(xué)生只知道做題,不懂得總結(jié),體現(xiàn)不出任何的學(xué)習(xí)效果。因此在做題后要總結(jié)至關(guān)重要,只有認(rèn)真總結(jié)才能不斷積累做題經(jīng)驗(yàn),這樣才能取得理想成績(jī)。
4、做題總是粗心怎么辦?
很多學(xué)生成績(jī)不好,會(huì)說自己是因?yàn)榇中膶?dǎo)致的,其實(shí)“粗心”只是借口,真正的原因就是題做得少、基礎(chǔ)知識(shí)不牢、沒有清晰的解題思路、計(jì)算能力不強(qiáng)。因此在平時(shí)的學(xué)習(xí)中,一定要注重熟練度和精準(zhǔn)度的練習(xí)。如果總是給自己找“粗心”的借口,也就變相否定了自己的學(xué)習(xí)弱點(diǎn),所以,要告訴自己,高中數(shù)學(xué)沒有“粗心”只有“不用心”。
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)10
一次函數(shù)
一、定義與定義式:
自變量x和因變量y有如下關(guān)系:
y=kx+b
則此時(shí)稱y是x的一次函數(shù)。
特別地,當(dāng)b=0時(shí),y是x的正比例函數(shù)。
即:y=kx (k為常數(shù),k0)
二、一次函數(shù)的性質(zhì):
1、y的變化值與對(duì)應(yīng)的x的變化值成正比例,比值為k
即:y=kx+b (k為任意不為零的實(shí)數(shù)b取任何實(shí)數(shù))
2、當(dāng)x=0時(shí),b為函數(shù)在y軸上的截距。
三、一次函數(shù)的圖像及性質(zhì):
1、作法與圖形:通過如下3個(gè)步驟
(1)列表;
。2)描點(diǎn);
。3)連線,可以作出一次函數(shù)的圖像一條直線。因此,作一次函數(shù)的圖像只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點(diǎn))
2、性質(zhì):(1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。(2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(—b/k,0)正比例函數(shù)的圖像總是過原點(diǎn)。
3、k,b與函數(shù)圖像所在象限:
當(dāng)k0時(shí),直線必通過一、三象限,y隨x的增大而增大;
當(dāng)k0時(shí),直線必通過二、四象限,y隨x的增大而減小。
當(dāng)b0時(shí),直線必通過一、二象限;
當(dāng)b=0時(shí),直線通過原點(diǎn)
當(dāng)b0時(shí),直線必通過三、四象限。
特別地,當(dāng)b=O時(shí),直線通過原點(diǎn)O(0,0)表示的是正比例函數(shù)的圖像。
這時(shí),當(dāng)k0時(shí),直線只通過一、三象限;當(dāng)k0時(shí),直線只通過二、四象限。
四、確定一次函數(shù)的表達(dá)式:
已知點(diǎn)A(x1,y1);B(x2,y2),請(qǐng)確定過點(diǎn)A、B的一次函數(shù)的表達(dá)式。
。1)設(shè)一次函數(shù)的表達(dá)式(也叫解析式)為y=kx+b。
(2)因?yàn)樵谝淮魏瘮?shù)上的任意一點(diǎn)P(x,y),都滿足等式y(tǒng)=kx+b。所以可以列出2個(gè)方程:y1=kx1+b ①和y2=kx2+b ②
(3)解這個(gè)二元一次方程,得到k,b的值。
。4)最后得到一次函數(shù)的表達(dá)式。
五、一次函數(shù)在生活中的應(yīng)用:
1、當(dāng)時(shí)間t一定,距離s是速度v的一次函數(shù)。s=vt。
2、當(dāng)水池抽水速度f一定,水池中水量g是抽水時(shí)間t的一次函數(shù)。設(shè)水池中原有水量S。g=S—ft。
六、常用公式:(不全,希望有人補(bǔ)充)
1、求函數(shù)圖像的k值:(y1—y2)/(x1—x2)
2、求與x軸平行線段的中點(diǎn):|x1—x2|/2
3、求與y軸平行線段的中點(diǎn):|y1—y2|/2
4、求任意線段的長(zhǎng):(x1—x2)^2+(y1—y2)^2 (注:根號(hào)下(x1—x2)與(y1—y2)的平方和)
二次函數(shù)
I、定義與定義表達(dá)式
一般地,自變量x和因變量y之間存在如下關(guān)系:
y=ax^2+bx+c
。╝,b,c為常數(shù),a0,且a決定函數(shù)的開口方向,a0時(shí),開口方向向上,a0時(shí),開口方向向下,IaI還可以決定開口大小,IaI越大開口就越小,IaI越小開口就越大、)
則稱y為x的二次函數(shù)。
二次函數(shù)表達(dá)式的右邊通常為二次三項(xiàng)式。
II、二次函數(shù)的三種表達(dá)式
一般式:y=ax^2+bx+c(a,b,c為常數(shù),a0)
頂點(diǎn)式:y=a(x—h)^2+k [拋物線的頂點(diǎn)P(h,k)]
交點(diǎn)式:y=a(x—x)(x—x ) [僅限于與x軸有交點(diǎn)A(x,0)和B(x,0)的拋物線]
注:在3種形式的互相轉(zhuǎn)化中,有如下關(guān)系:
h=—b/2ak=(4ac—b^2)/4a x,x=(—bb^2—4ac)/2a
III、二次函數(shù)的圖像
在平面直角坐標(biāo)系中作出二次函數(shù)y=x^2的圖像,
可以看出,二次函數(shù)的圖像是一條拋物線。
IV、拋物線的性質(zhì)
1、拋物線是軸對(duì)稱圖形。對(duì)稱軸為直線
x= —b/2a。
對(duì)稱軸與拋物線唯一的交點(diǎn)為拋物線的頂點(diǎn)P。
特別地,當(dāng)b=0時(shí),拋物線的對(duì)稱軸是y軸(即直線x=0)
2、拋物線有一個(gè)頂點(diǎn)P,坐標(biāo)為
P( —b/2a,(4ac—b^2)/4a )
當(dāng)—b/2a=0時(shí),P在y軸上;當(dāng)= b^2—4ac=0時(shí),P在x軸上。
3、二次項(xiàng)系數(shù)a決定拋物線的開口方向和大小。
當(dāng)a0時(shí),拋物線向上開口;當(dāng)a0時(shí),拋物線向下開口。
|a|越大,則拋物線的開口越小。
4、一次項(xiàng)系數(shù)b和二次項(xiàng)系數(shù)a共同決定對(duì)稱軸的位置。
當(dāng)a與b同號(hào)時(shí)(即ab0),對(duì)稱軸在y軸左;
當(dāng)a與b異號(hào)時(shí)(即ab0),對(duì)稱軸在y軸右。
5、常數(shù)項(xiàng)c決定拋物線與y軸交點(diǎn)。
拋物線與y軸交于(0,c)
6、拋物線與x軸交點(diǎn)個(gè)數(shù)
= b^2—4ac0時(shí),拋物線與x軸有2個(gè)交點(diǎn)。
= b^2—4ac=0時(shí),拋物線與x軸有1個(gè)交點(diǎn)。
= b^2—4ac0時(shí),拋物線與x軸沒有交點(diǎn)。X的取值是虛數(shù)(x= —bb^2—4ac的值的相反數(shù),乘上虛數(shù)i,整個(gè)式子除以2a)
V、二次函數(shù)與一元二次方程
特別地,二次函數(shù)(以下稱函數(shù))y=ax^2+bx+c,
當(dāng)y=0時(shí),二次函數(shù)為關(guān)于x的一元二次方程(以下稱方程),
即ax^2+bx+c=0
此時(shí),函數(shù)圖像與x軸有無交點(diǎn)即方程有無實(shí)數(shù)根。
函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即為方程的根。
1、二次函數(shù)y=ax^2,y=a(x—h)^2,y=a(x—h)^2+k,y=ax^2+bx+c(各式中,a0)的圖象形狀相同,只是位置不同,它們的頂點(diǎn)坐標(biāo)及對(duì)稱軸如下表:
解析式頂點(diǎn)坐標(biāo)對(duì)稱軸
y=ax^2(0,0) x=0
y=a(x—h)^2(h,0) x=h
y=a(x—h)^2+k(h,k) x=h
y=ax^2+bx+c(—b/2a,[4ac—b^2]/4a) x=—b/2a
當(dāng)h0時(shí),y=a(x—h)^2的圖象可由拋物線y=ax^2向右平行移動(dòng)h個(gè)單位得到,
當(dāng)h0時(shí),則向左平行移動(dòng)|h|個(gè)單位得到、
當(dāng)h0,k0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向上移動(dòng)k個(gè)單位,就可以得到y(tǒng)=a(x—h)^2+k的圖象;
當(dāng)h0,k0時(shí),將拋物線y=ax^2向右平行移動(dòng)h個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x—h)^2+k的圖象;
當(dāng)h0,k0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向上移動(dòng)k個(gè)單位可得到y(tǒng)=a(x—h)^2+k的圖象;
當(dāng)h0,k0時(shí),將拋物線向左平行移動(dòng)|h|個(gè)單位,再向下移動(dòng)|k|個(gè)單位可得到y(tǒng)=a(x—h)^2+k的圖象;
因此,研究拋物線y=ax^2+bx+c(a0)的圖象,通過配方,將一般式化為y=a(x—h)^2+k的形式,可確定其頂點(diǎn)坐標(biāo)、對(duì)稱軸,拋物線的大體位置就很清楚了、這給畫圖象提供了方便、
2、拋物線y=ax^2+bx+c(a0)的圖象:當(dāng)a0時(shí),開口向上,當(dāng)a0時(shí)開口向下,對(duì)稱軸是直線x=—b/2a,頂點(diǎn)坐標(biāo)是(—b/2a,[4ac—b^2]/4a)、
3、拋物線y=ax^2+bx+c(a0),若a0,當(dāng)x —b/2a時(shí),y隨x的增大而減;當(dāng)x —b/2a時(shí),y隨x的.增大而增大、若a0,當(dāng)x —b/2a時(shí),y隨x的增大而增大;當(dāng)x —b/2a時(shí),y隨x的增大而減小、
4、拋物線y=ax^2+bx+c的圖象與坐標(biāo)軸的交點(diǎn):
。1)圖象與y軸一定相交,交點(diǎn)坐標(biāo)為(0,c);
。2)當(dāng)△=b^2—4ac0,圖象與x軸交于兩點(diǎn)A(x,0)和B(x,0),其中的x1,x2是一元二次方程ax^2+bx+c=
。╝0)的兩根、這兩點(diǎn)間的距離AB=|x—x|
當(dāng)△=0、圖象與x軸只有一個(gè)交點(diǎn);
當(dāng)△0、圖象與x軸沒有交點(diǎn)、當(dāng)a0時(shí),圖象落在x軸的上方,x為任何實(shí)數(shù)時(shí),都有y0;當(dāng)a0時(shí),圖象落在x軸的下方,x為任何實(shí)數(shù)時(shí),都有y0、
5、拋物線y=ax^2+bx+c的最值:如果a0(a0),則當(dāng)x= —b/2a時(shí),y最。ù螅┲=(4ac—b^2)/4a、
頂點(diǎn)的橫坐標(biāo),是取得最值時(shí)的自變量值,頂點(diǎn)的縱坐標(biāo),是最值的取值、
6、用待定系數(shù)法求二次函數(shù)的解析式
。1)當(dāng)題給條件為已知圖象經(jīng)過三個(gè)已知點(diǎn)或已知x、y的三對(duì)對(duì)應(yīng)值時(shí),可設(shè)解析式為一般形式:
y=ax^2+bx+c(a0)、
(2)當(dāng)題給條件為已知圖象的頂點(diǎn)坐標(biāo)或?qū)ΨQ軸時(shí),可設(shè)解析式為頂點(diǎn)式:y=a(x—h)^2+k(a0)、
。3)當(dāng)題給條件為已知圖象與x軸的兩個(gè)交點(diǎn)坐標(biāo)時(shí),可設(shè)解析式為兩根式:y=a(x—x)(x—x)(a0)、
7、二次函數(shù)知識(shí)很容易與其它知識(shí)綜合應(yīng)用,而形成較為復(fù)雜的綜合題目。因此,以二次函數(shù)知識(shí)為主的綜合性題目是中考的熱點(diǎn)考題,往往以大題形式出現(xiàn)、
反比例函數(shù)
形如y=k/x(k為常數(shù)且k0)的函數(shù),叫做反比例函數(shù)。
自變量x的取值范圍是不等于0的一切實(shí)數(shù)。
反比例函數(shù)圖像性質(zhì):
反比例函數(shù)的圖像為雙曲線。
由于反比例函數(shù)屬于奇函數(shù),有f(—x)=—f(x),圖像關(guān)于原點(diǎn)對(duì)稱。
另外,從反比例函數(shù)的解析式可以得出,在反比例函數(shù)的圖像上任取一點(diǎn),向兩個(gè)坐標(biāo)軸作垂線,這點(diǎn)、兩個(gè)垂足及原點(diǎn)所圍成的矩形面積是定值,為∣k∣。
如圖,上面給出了k分別為正和負(fù)(2和—2)時(shí)的函數(shù)圖像。
當(dāng)K0時(shí),反比例函數(shù)圖像經(jīng)過一,三象限,是減函數(shù)
當(dāng)K0時(shí),反比例函數(shù)圖像經(jīng)過二,四象限,是增函數(shù)
反比例函數(shù)圖像只能無限趨向于坐標(biāo)軸,無法和坐標(biāo)軸相交。
知識(shí)點(diǎn):
1、過反比例函數(shù)圖象上任意一點(diǎn)作兩坐標(biāo)軸的垂線段,這兩條垂線段與坐標(biāo)軸圍成的矩形的面積為| k |。
2、對(duì)于雙曲線y=k/x,若在分母上加減任意一個(gè)實(shí)數(shù)(即y=k/(xm)m為常數(shù)),就相當(dāng)于將雙曲線圖象向左或右平移一個(gè)單位。(加一個(gè)數(shù)時(shí)向左平移,減一個(gè)數(shù)時(shí)向右平移)
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)11
空間兩條直線只有三種位置關(guān)系:平行、相交、異面
按是否共面可分為兩類:
(1)共面:平行、相交
(2)異面:
異面直線的定義:不同在任何一個(gè)平面內(nèi)的兩條直線或既不平行也不相交。
異面直線判定定理:用平面內(nèi)一點(diǎn)與平面外一點(diǎn)的直線,與平面內(nèi)不經(jīng)過該點(diǎn)的直線是異面直線。
兩異面直線所成的角:范圍為(0°,90°)esp.空間向量法
兩異面直線間距離:公垂線段(有且只有一條)esp.空間向量法
若從有無公共點(diǎn)的角度看可分為兩類:
(1)有且僅有一個(gè)公共點(diǎn)——相交直線;
(2)沒有公共點(diǎn)——平行或異面
直線和平面的位置關(guān)系:
直線和平面只有三種位置關(guān)系:在平面內(nèi)、與平面相交、與平面平行
、僦本在平面內(nèi)——有無數(shù)個(gè)公共點(diǎn)
②直線和平面相交——有且只有一個(gè)公共點(diǎn)
直線與平面所成的角:平面的一條斜線和它在這個(gè)平面內(nèi)的射影所成的`銳角。
空間向量法(找平面的法向量)
規(guī)定:
a、直線與平面垂直時(shí),所成的角為直角,
b、直線與平面平行或在平面內(nèi),所成的角為0°角
由此得直線和平面所成角的取值范圍為[0°,90°]
最小角定理:斜線與平面所成的角是斜線與該平面內(nèi)任一條直線所成角中的最小角
三垂線定理及逆定理:如果平面內(nèi)的一條直線,與這個(gè)平面的一條斜線的射影垂直,那么它也與這條斜線垂直
直線和平面垂直
直線和平面垂直的定義:如果一條直線a和一個(gè)平面內(nèi)的任意一條直線都垂直,我們就說直線a和平面互相垂直.直線a叫做平面的垂線,平面叫做直線a的垂面。
直線與平面垂直的判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直于這個(gè)平面。
直線與平面垂直的性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行。③直線和平面平行——沒有公共點(diǎn)
直線和平面平行的定義:如果一條直線和一個(gè)平面沒有公共點(diǎn),那么我們就說這條直線和這個(gè)平面平行。
直線和平面平行的判定定理:如果平面外一條直線和這個(gè)平面內(nèi)的一條直線平行,那么這條直線和這個(gè)平面平行。
直線和平面平行的性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行。
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)12
集合的分類:
。1)按元素屬性分類,如點(diǎn)集,數(shù)集。
。2)按元素的個(gè)數(shù)多少,分為有/無限集
關(guān)于集合的概念:
。1)確定性:作為一個(gè)集合的元素,必須是確定的,這就是說,不能確定的對(duì)象就不能構(gòu)成集合,也就是說,給定一個(gè)集合,任何一個(gè)對(duì)象是不是這個(gè)集合的元素也就確定了。
。2)互異性:對(duì)于一個(gè)給定的集合,集合中的元素一定是不同的(或說是互異的),這就是說,集合中的任何兩個(gè)元素都是不同的對(duì)象,相同的對(duì)象歸入同一個(gè)集合時(shí)只能算作集合的一個(gè)元素。
。3)無序性:判斷一些對(duì)象時(shí)候構(gòu)成集合,關(guān)鍵在于看這些對(duì)象是否有明確的標(biāo)準(zhǔn)。
集合可以根據(jù)它含有的元素的個(gè)數(shù)分為兩類:
含有有限個(gè)元素的集合叫做有限集,含有無限個(gè)元素的集合叫做無限集。
非負(fù)整數(shù)全體構(gòu)成的集合,叫做自然數(shù)集,記作N。
在自然數(shù)集內(nèi)排除0的集合叫做正整數(shù)集,記作N+或N_。
整數(shù)全體構(gòu)成的集合,叫做整數(shù)集,記作Z。
有理數(shù)全體構(gòu)成的集合,叫做有理數(shù)集,記作Q。(有理數(shù)是整數(shù)和分?jǐn)?shù)的統(tǒng)稱,一切有理數(shù)都可以化成分?jǐn)?shù)的形式。)
實(shí)數(shù)全體構(gòu)成的集合,叫做實(shí)數(shù)集,記作R。(包括有理數(shù)和無理數(shù)。其中無理數(shù)就是無限不循環(huán)小數(shù),有理數(shù)就包括整數(shù)和分?jǐn)?shù)。數(shù)學(xué)上,實(shí)數(shù)直觀地定義為和數(shù)軸上的'點(diǎn)一一對(duì)應(yīng)的數(shù)。)
1、列舉法:如果一個(gè)集合是有限集,元素又不太多,常常把集合的所有元素都列舉出來,寫在花括號(hào)“{}”內(nèi)表示這個(gè)集合,例如,由兩個(gè)元素0,1構(gòu)成的集合可表示為{0,1}。
有些集合的元素較多,元素的排列又呈現(xiàn)一定的規(guī)律,在不致于發(fā)生誤解的情況下,也可以列出幾個(gè)元素作為代表,其他元素用省略號(hào)表示。
例如:不大于100的自然數(shù)的全體構(gòu)成的集合,可表示為{0,1,2,3,…,100}。
無限集有時(shí)也用上述的列舉法表示,例如,自然數(shù)集N可表示為{1,2,3,…,n,…}。
2、描述法:一種更有效地描述集合的方法,是用集合中元素的特征性質(zhì)來描述。
例如:正偶數(shù)構(gòu)成的集合,它的每一個(gè)元素都具有性質(zhì):“能被2整除,且大于0”
而這個(gè)集合外的.其他元素都不具有這種性質(zhì),因此,我們可以用上述性質(zhì)把正偶數(shù)集合表示為{x∈R│x能被2整除,且大于0}或{x∈R│x=2n,n∈N+},大括號(hào)內(nèi)豎線左邊的X表示這個(gè)集合的任意一個(gè)元素,元素X從實(shí)數(shù)集合中取值,在豎線右邊寫出只有集合內(nèi)的元素x才具有的性質(zhì)。
一般地,如果在集合I中,屬于集合A的任意一個(gè)元素x都具有性質(zhì)p(x),而不屬于集合A的元素都不具有的性質(zhì)p(x),則性質(zhì)p(x)叫做集合A的一個(gè)特征性質(zhì)。于是,集合A可以用它的性質(zhì)p(x)描述為{x∈I│p(x)}它表示集合A是由集合I中具有性質(zhì)p(x)的所有元素構(gòu)成的,這種表示集合的方法,叫做特征性質(zhì)描述法,簡(jiǎn)稱描述法。
例如:集合A={x∈R│x2—1=0}的特征是X2—1=0
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)13
1、算法的概念:
、儆苫具\(yùn)算及規(guī)定的運(yùn)算順序所構(gòu)成的完整的解題步驟,或者是按照要求設(shè)計(jì)好的有限的計(jì)算序列,并且這樣的步驟或序列能解決一類問題。
、谒惴ǖ奈鍌(gè)重要特征:
、∮懈F性:一個(gè)算法必須保證執(zhí)行有限步后結(jié)束;
、⒋_切性:算法的每一步必須有確切的定義;
、?尚行裕核惴ㄔ瓌t上能夠精確地運(yùn)行,而且人們用筆和紙做有限次即可完成;
、ぽ斎耄阂粋(gè)算法有0個(gè)或多個(gè)輸入,以刻劃運(yùn)算對(duì)象的初始條件。所謂0個(gè)輸入是指算法本身定出了初始條件。
、ポ敵觯阂粋(gè)算法有1個(gè)或多個(gè)輸出,以反映對(duì)輸入數(shù)據(jù)加工后的結(jié)果。沒有輸出的算法是毫無意義的。
2、程序框圖也叫流程圖,是人們將思考的過程和工作的順序進(jìn)行分析、整理,用規(guī)定的文字、符號(hào)、圖形的組合加以直觀描述的方法
。1)程序框圖的基本符號(hào):
(2)畫流程圖的基本規(guī)則:
、偈褂脴(biāo)準(zhǔn)的框圖符號(hào)
、趶纳系瓜、從左到右
、坶_始符號(hào)只有一個(gè)退出點(diǎn),結(jié)束符號(hào)只有一個(gè)進(jìn)入點(diǎn),判斷符號(hào)允許有多個(gè)退出點(diǎn)
④判斷可以是兩分支結(jié)構(gòu),也可以是多分支結(jié)構(gòu)
、菡Z言簡(jiǎn)練
、扪h(huán)框可以被替代
3、三種基本的邏輯結(jié)構(gòu):順序結(jié)構(gòu)、條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu)
(1)順序結(jié)構(gòu):
順序結(jié)構(gòu)描述的是是最簡(jiǎn)單的算法結(jié)構(gòu),語句與語句之間,框與框之間是按從上到下的順序進(jìn)行的。
(2)條件結(jié)構(gòu):分支結(jié)構(gòu)的一般形式
兩種結(jié)構(gòu)的共性:
、僖粋(gè)入口,一個(gè)出口。特別注意:一個(gè)判斷框可以有兩個(gè)出口,但一個(gè)條件分支結(jié)構(gòu)只有一個(gè)出口。
、诮Y(jié)構(gòu)中每個(gè)部分都有可能被執(zhí)行,即對(duì)每一個(gè)框都有從入口進(jìn)、出口出的路徑。
以上兩點(diǎn)是用來檢查流程圖是否合理的基本方法(當(dāng)然,學(xué)習(xí)循環(huán)結(jié)構(gòu)后,循環(huán)結(jié)構(gòu)也有此特點(diǎn))
(3)循環(huán)結(jié)構(gòu)的一般形式:
在一些算法中,經(jīng)常會(huì)出現(xiàn)從某處開始,按照一定條件,反復(fù)執(zhí)行某一處理步驟的情況,這就是循環(huán)結(jié)構(gòu),反復(fù)執(zhí)行的處理步驟為循環(huán)體,顯然,循環(huán)結(jié)構(gòu)中一定包含條件結(jié)構(gòu)。
循環(huán)結(jié)構(gòu)又稱重復(fù)結(jié)構(gòu),循環(huán)結(jié)構(gòu)可細(xì)分為兩類:
、偃缱笙聢D所示,它的功能是當(dāng)給定的條件成立時(shí),執(zhí)行A框,框執(zhí)行完畢后,再判斷條件是否成立,如果仍然成立,再執(zhí)行A框,如此反復(fù)執(zhí)行框,直到某一次條件不成立為止,此時(shí)不再執(zhí)行A框,從b離開循環(huán)結(jié)構(gòu)。
、谌缬疑蠄D所示,它的功能是先執(zhí)行,然后判斷給定的條件是否成立,如果仍然不成立,則繼續(xù)執(zhí)行A框,直到某一次給定的條件成立為止,此時(shí)不再執(zhí)行A框,從b點(diǎn)離開循環(huán)結(jié)構(gòu)。
高中數(shù)學(xué)算法初步知識(shí)點(diǎn):算法的基本語句
。1)賦值語句:在表述一個(gè)算法時(shí),經(jīng)常要引入變量,并賦給該變量一個(gè)值,用來表明賦給某一個(gè)變量的一個(gè)具體的確定值的語句叫做賦值語句。
賦值語句的一般格式:變量名表達(dá)式
、=的意義和作用:賦值語句中的=號(hào),稱作賦值號(hào)。
、谫x值語句的作用:先計(jì)算出賦值號(hào)右邊表達(dá)式的值,然后把該值賦給賦值號(hào)左邊的變量,使該變量的值等于表達(dá)式的值。
、坳P(guān)于賦值語句,需要注意幾點(diǎn):
、≠x值號(hào)左邊只能是變量名,而不是表達(dá)式。例如3。6=X,5=y;都是錯(cuò)誤的
、①x值號(hào)左右不能對(duì)換:賦值語句是將賦值號(hào)右邊的表達(dá)式賦值給賦值號(hào)左邊的變量,例如:Y=X,表示用X的值替代變量Y原先的取值,不能改寫成X=Y,因?yàn)楹笳弑硎居肶的值替代變量X的值。
ⅲ不能利用賦值語句進(jìn)行代數(shù)式(或符號(hào))的演算:在賦值語句中的賦值符號(hào)右邊的表達(dá)式中的每一個(gè)變量都必須事先賦值給確定的值,不能用賦值語句進(jìn)行如化簡(jiǎn)、因式分解等演算,在一個(gè)賦值語句中只能給一個(gè)變量賦值,不能出現(xiàn)兩個(gè)或多個(gè)=。
、べx值號(hào)和數(shù)學(xué)中的等號(hào)的意義不同:賦值號(hào)左邊的變量如果原來沒有值,則在執(zhí)行賦值語句后,獲得一個(gè)值。例如X=5;Y=1等;如果原來已經(jīng)有值,則執(zhí)行該語句后,以賦值號(hào)右邊表達(dá)式的值代替該變量的原值,即將原值沖掉。例如:N=N+1在數(shù)學(xué)中是不成立的,但在賦值語句中,意思是將N的原值加1再賦給N,即N的值增加1。
計(jì)算機(jī)執(zhí)行這種形式的條件語句時(shí),也是首先對(duì)IF后的條件進(jìn)行判斷,如果條件符合,就執(zhí)行語句,如果條件不符合,則直接結(jié)束該條件語句,轉(zhuǎn)而執(zhí)行其他語句。其對(duì)應(yīng)的.程序框圖為:(如下圖)
條件語句的作用:在程序執(zhí)行過程中,根據(jù)判斷是否滿足約定的條件而決定是否需要轉(zhuǎn)換到何處去。需要計(jì)算機(jī)按條件進(jìn)行分析、比較、判斷,并按判斷后的不同情況進(jìn)行不同的處理。
。3)循環(huán)結(jié)構(gòu):
算法中的循環(huán)結(jié)構(gòu)是由循環(huán)語句來實(shí)現(xiàn)的。對(duì)應(yīng)于程序框圖中的兩種循環(huán)結(jié)構(gòu),一般程序設(shè)計(jì)語言中也有當(dāng)型(WHILE型)和直到型(for型)兩種語句結(jié)構(gòu)。即WHILE語句和UNTIL語句。
、賅HILE語句的一般格式是:
其中循環(huán)體是由計(jì)算機(jī)反復(fù)執(zhí)行的一組語句構(gòu)成的。WHLIE后面的條件是用于控制計(jì)算機(jī)執(zhí)行循環(huán)體或跳出循環(huán)體的。
當(dāng)計(jì)算機(jī)遇到WHILE語句時(shí),先判斷條件的真假,如果條件符合,就執(zhí)行WHILE與END之間的循環(huán)體;然后再檢查上述條件,如果條件仍符合,再次執(zhí)行循環(huán)體,這個(gè)過程反復(fù)進(jìn)行,直到某一次條件不符合為止。這時(shí),計(jì)算機(jī)將不執(zhí)行循環(huán)體,直接跳到END語句后,接著執(zhí)行END之后的語句。其對(duì)應(yīng)的程序結(jié)構(gòu)框圖為:(如下圖)
其對(duì)應(yīng)的程序結(jié)構(gòu)框圖為:(如上圖)
從for型循環(huán)結(jié)構(gòu)分析,計(jì)算機(jī)執(zhí)行該語句時(shí),先把初始值賦給循環(huán)變量,記下終值和步長(zhǎng),并比較初值和中止,如果初值超過終值,就執(zhí)行end以后的語句,否則執(zhí)行for語句下面的語句,執(zhí)行到end語句時(shí),計(jì)算機(jī)讓循環(huán)變量增加一個(gè)步長(zhǎng)值,然后用增值后的循環(huán)變量值與終值比較,如果超過終值,就執(zhí)行for語句以后的語句。是先執(zhí)行循環(huán)體后進(jìn)行條件判斷的循環(huán)語句。
高中數(shù)學(xué)算法初步知識(shí)點(diǎn):復(fù)習(xí)點(diǎn)睛
1、什么是算法:一般地,算法是指在解決問題時(shí)按照某種機(jī)械程序步驟一定可以得到結(jié)果的處理過程。這種程序必須是確定的、有效的、有限的。要了解算法的基本思想、基本結(jié)構(gòu)、程序框圖、基本語句、算法案例等。
2、四種基本的程序框:
4、基本算法語句:賦值語句、條件語句、循環(huán)語句;
5、解決分段函數(shù)的求值等問題,一般可采用條件結(jié)構(gòu)來設(shè)計(jì)算法;
6、對(duì)于有規(guī)律的計(jì)算問題,一般可采用循環(huán)結(jié)構(gòu)設(shè)計(jì)算法;
7、在WHILE語句中,是當(dāng)條件滿足時(shí)執(zhí)行循環(huán)體,而在for語句中,是當(dāng)條件不滿足時(shí)執(zhí)行循環(huán)體
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)14
平均值等于每個(gè)小長(zhǎng)方形面積(即概率)乘每組橫坐標(biāo)的中點(diǎn),然后加和。
平均數(shù),首先得直方圖應(yīng)該歸一化,也就是說所有矩形的面積之和為1,然后每個(gè)矩形的面積代表其底邊中點(diǎn)橫坐標(biāo)的數(shù)的頻率,那么面積乘以橫坐標(biāo)就相當(dāng)于頻率乘以橫坐標(biāo),得到的當(dāng)然是平均數(shù)。
頻率直方圖中是沒有樣本數(shù)據(jù)的在某一個(gè)分組里,分布在這個(gè)分組的樣本數(shù)據(jù)沒法找得出來,然后也分布不均勻,所以就用這個(gè)組的中點(diǎn)的橫坐標(biāo)來表示這個(gè)分組的樣本數(shù)據(jù)的平均值。
而每一個(gè)小長(zhǎng)方形的面積是表示相應(yīng)的`頻率,(相當(dāng)于相應(yīng)數(shù)據(jù)的百分比)所以平均數(shù)等于每個(gè)小長(zhǎng)方形的面積乘以相應(yīng)的分組的底邊中點(diǎn)橫坐標(biāo)的之和。
頻率分布直方圖的運(yùn)用
頻率分布直方圖能清楚顯示各組頻數(shù)分布情況又易于顯示各組之間頻數(shù)的差別。它主要是為了將我們獲取的數(shù)據(jù)直觀、形象地表示出來,讓我們能夠更好了解數(shù)據(jù)的分布情況,因此其中組距、組數(shù)起關(guān)鍵作用。
分組過少,數(shù)據(jù)就非常集中;分組過多,數(shù)據(jù)就非常分散,這就掩蓋了分布的特征。當(dāng)數(shù)據(jù)在100以內(nèi)時(shí),一般分5~12組為宜。
從頻率分布直方圖可以估計(jì)出的幾個(gè)數(shù)據(jù):
眾數(shù):頻率分布直方圖中最高矩形的底邊中點(diǎn)的橫坐標(biāo) 。
算術(shù)平均數(shù):頻率分布直方圖每組數(shù)值的中間值乘以頻率后相加。
加權(quán)平均數(shù):加權(quán)平均數(shù)就是所有的頻率乘以數(shù)值后的和相加。
中位數(shù):把頻率分布直方圖分成兩個(gè)面積相等部分的平行于Y軸的直線橫坐標(biāo)。
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)15
什么是不等式?
一般地,用純粹的大于號(hào)“>”、小于號(hào)“<”連接的不等式稱為嚴(yán)格不等式,用不小于號(hào)(大于或等于號(hào))“≥”、不大于號(hào)(小于或等于號(hào))“≤”連接的不等式稱為非嚴(yán)格不等式,或稱廣義不等式?偟膩碚f,用不等號(hào)(<,>,≥,≤,≠)連接的式子叫做不等式。
通常不等式中的數(shù)是實(shí)數(shù),字母也代表實(shí)數(shù),不等式的一般形式為F(x,y,……,z)≤G(x,y,……,z)(其中不等號(hào)也可以為<,≤,≥,>中某一個(gè)),兩邊的解析式的公共定義域稱為不等式的定義域,不等式既可以表達(dá)一個(gè)命題,也可以表示一個(gè)問題。
數(shù)學(xué)知識(shí)點(diǎn)1、不等式性質(zhì)比較大小方法:
。1)作差比較法(2)作商比較法
不等式的基本性質(zhì)
、賹(duì)稱性:a > b,b > a
、趥鬟f性:a > b,b > ca > c
、劭杉有裕篴 > b a + c > b + c
④可積性:a > b,c > 0,ac > bc
、菁臃ǚ▌t:a > b,c > d,a + c > b + d
、蕹朔ǚ▌t:a > b > 0,c > d > 0,ac > bd
、叱朔椒▌t:a > b > 0,an > bn(n∈N)
、嚅_方法則:a > b > 0
數(shù)學(xué)知識(shí)點(diǎn)2、算術(shù)平均數(shù)與幾何平均數(shù)定理:
。1)如果a、b∈R,那么a2 + b2 ≥2ab;(當(dāng)且僅當(dāng)a=b時(shí)等號(hào))
。2)如果a、b∈R+,那么(當(dāng)且僅當(dāng)a=b時(shí)等號(hào))推廣:
如果為實(shí)數(shù),則重要結(jié)論
。1)如果積xy是定值P,那么當(dāng)x=y時(shí),和x+y有最小值2;
(2)如果和x+y是定值S,那么當(dāng)x=y時(shí),和xy有最大值S2/4。
數(shù)學(xué)知識(shí)點(diǎn)3、證明不等式的常用方法:
比較法:比較法是最基本、最重要的方法。
當(dāng)不等式的兩邊的差能分解因式或能配成平方和的形式,則選擇作差比較法;當(dāng)不等式的兩邊都是正數(shù)且它們的商能與1比較大小,則選擇作商比較法;碰到絕對(duì)值或根式,我們還可以考慮作平方差。
綜合法:從已知或已證明過的不等式出發(fā),根據(jù)不等式的'性質(zhì)推導(dǎo)出欲證的不等式。綜合法的放縮經(jīng)常用到均值不等式。
分析法:不等式兩邊的聯(lián)系不夠清楚,通過尋找不等式成立的充分條件,逐步將欲證的不等式轉(zhuǎn)化,直到尋找到易證或已知成立的結(jié)論。
【高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)】相關(guān)文章:
高中數(shù)學(xué)幾何知識(shí)點(diǎn)總結(jié)10-31
高中數(shù)學(xué)基本的知識(shí)點(diǎn)總結(jié)09-28
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)02-20
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)05-15
高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)04-23
高中數(shù)學(xué)知識(shí)點(diǎn)必修總結(jié)08-18
高中數(shù)學(xué)必修三知識(shí)點(diǎn)總結(jié)06-17
高中數(shù)學(xué)考試知識(shí)點(diǎn)總結(jié)06-08