- 相關(guān)推薦
《函數(shù)的單調(diào)性》教學(xué)設(shè)計(jì)范文
作為一名人民教師,就不得不需要編寫(xiě)教學(xué)設(shè)計(jì),借助教學(xué)設(shè)計(jì)可以更大幅度地提高學(xué)生各方面的能力,從而使學(xué)生獲得良好的發(fā)展。我們?cè)撛趺慈?xiě)教學(xué)設(shè)計(jì)呢?下面是小編精心整理的《函數(shù)的單調(diào)性》教學(xué)設(shè)計(jì)范文,供大家參考借鑒,希望可以幫助到有需要的朋友。
一、教材分析
本節(jié)內(nèi)容是北師大版數(shù)學(xué)必修1第二章第3節(jié)函數(shù)的單調(diào)性,兩課時(shí)內(nèi)容,本節(jié)是第一課時(shí)。函數(shù)的單調(diào)性是函數(shù)的重要性質(zhì),學(xué)生在初中階段,通過(guò)一次函數(shù)、二次函數(shù)、反比例函數(shù)的學(xué)習(xí)已經(jīng)對(duì)函數(shù)的增減性有了一個(gè)初步的感性認(rèn)識(shí)。
高中階段,進(jìn)一步用符號(hào)語(yǔ)言刻畫(huà)圖形語(yǔ)言,用定量分析解釋定性結(jié)果,有利于培養(yǎng)學(xué)生的理性思維。從知識(shí)的結(jié)構(gòu)上看,函數(shù)的單調(diào)性既是函數(shù)概念的延續(xù)和拓展,又為后續(xù)研究指數(shù)函數(shù)、對(duì)數(shù)函數(shù)、三角函數(shù)的單調(diào)性等內(nèi)容的學(xué)習(xí)作準(zhǔn)備,也為利用導(dǎo)數(shù)研究單調(diào)性的相關(guān)知識(shí)奠定了基礎(chǔ)。
在研究各種具體函數(shù)的性質(zhì)和應(yīng)用、解決各種問(wèn)題中都有著廣泛的應(yīng)用。函數(shù)單調(diào)性概念的建立過(guò)程中蘊(yùn)涵諸多數(shù)學(xué)思想方法,對(duì)于進(jìn)一步探索、研究函數(shù)的其他性質(zhì)有很強(qiáng)的啟發(fā)與示范作用。
二、學(xué)情分析
在初中階段通過(guò)對(duì)一次函數(shù)、二次函數(shù)、反比例函數(shù)的學(xué)習(xí)已經(jīng)對(duì)函數(shù)的增減性有了初步的感性認(rèn)識(shí),同時(shí)經(jīng)過(guò)初中的學(xué)習(xí)學(xué)生已具備了一定的觀察、發(fā)現(xiàn)、分析、抽象、概括能力,為函數(shù)單調(diào)性的學(xué)習(xí)做好了準(zhǔn)備,但是把具體的、直觀形象的函數(shù)單調(diào)性的特征用數(shù)學(xué)符號(hào)語(yǔ)言進(jìn)行定量刻畫(huà)對(duì)高一的學(xué)生來(lái)說(shuō)比較困難,同時(shí)單調(diào)性的證明又是學(xué)生在函數(shù)學(xué)習(xí)中首次接觸到的代數(shù)論證內(nèi)容,剛上高一的學(xué)生在代數(shù)方面的推理論證能力是比較薄弱的。
三、教學(xué)目標(biāo)
1、知識(shí)與技能:
(1)使學(xué)生從形與數(shù)兩方面理解函數(shù)單調(diào)性的概念;
(2)初步掌握利用函數(shù)圖象和定義判斷、證明函數(shù)單調(diào)性的方法步驟。
2、過(guò)程與方法:
。1)通過(guò)對(duì)函數(shù)單調(diào)性定義的探究,滲透數(shù)形結(jié)合的思想方法,培養(yǎng)學(xué)生觀察、歸納、抽象的能力和語(yǔ)言表達(dá)能力;
。2)通過(guò)對(duì)函數(shù)單調(diào)性的證明,提高學(xué)生的推理論證能力。
3、情感、態(tài)度與價(jià)值觀:
通過(guò)知識(shí)的探究過(guò)程培養(yǎng)學(xué)生細(xì)心觀察、認(rèn)真分析、嚴(yán)謹(jǐn)論證的良好思維習(xí)慣,讓學(xué)生感知從具體到抽象,從特殊到一般,從感性到理性的認(rèn)知過(guò)程,體會(huì)數(shù)形結(jié)合的思想。
四、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):函數(shù)單調(diào)性的概念;判斷及證明。
難點(diǎn):函數(shù)單調(diào)性概念(數(shù)學(xué)符號(hào)語(yǔ)言)的認(rèn)知,應(yīng)用定義證明單調(diào)性的代數(shù)推理論證。
五、教學(xué)、學(xué)法分析
通過(guò)對(duì)一次函數(shù)、二次函數(shù)、反比例函數(shù)的學(xué)習(xí)已經(jīng)對(duì)函數(shù)的增減性有了初步的感性認(rèn)識(shí),因此探究時(shí)先以基本初等函數(shù)為載體,針對(duì)它們的圖像,依據(jù)循序漸進(jìn)原則,設(shè)計(jì)幾個(gè)問(wèn)題,通過(guò)引導(dǎo)學(xué)生多思,多說(shuō)多練,學(xué)生回答的同時(shí)教師利用多媒體展示,使認(rèn)識(shí)得到深化。在整個(gè)教學(xué)過(guò)程中主要采取教師啟發(fā)講授,學(xué)生探究學(xué)習(xí)的教學(xué)方法。
六、教學(xué)過(guò)程
(一)創(chuàng)設(shè)問(wèn)題情境引入課題
給出德國(guó)著名心理學(xué)家艾賓浩斯描繪的著名的“艾賓浩斯遺忘曲線(xiàn)”。
思考:隨著時(shí)間t的變化,記憶量y如何變化?這條曲線(xiàn)告訴了你遺忘有什么規(guī)律,你打算如何對(duì)待剛學(xué)過(guò)的知識(shí)?
學(xué)生回答,教師補(bǔ)充!鞍e浩斯遺忘曲線(xiàn)”從左向右看圖像是下降的,對(duì)此如何從數(shù)學(xué)的觀點(diǎn)進(jìn)行解釋呢?這種以函數(shù)圖像的上升或下降為標(biāo)準(zhǔn)對(duì)函數(shù)進(jìn)行研究,這就是我們這一節(jié)課要學(xué)習(xí)的“函數(shù)的單調(diào)性”。
設(shè)計(jì)意圖:利用“艾賓浩斯遺忘曲線(xiàn)”引入新課,可以激發(fā)學(xué)生的學(xué)習(xí)數(shù)學(xué)的興趣,引發(fā)學(xué)生探求數(shù)學(xué)知識(shí)的欲望。
展示目標(biāo):
教師向?qū)W生展示本節(jié)課的學(xué)習(xí)目標(biāo)及教學(xué)重點(diǎn)和教學(xué)難點(diǎn)。
設(shè)計(jì)意圖:讓學(xué)生明確本節(jié)課要學(xué)習(xí)的內(nèi)容。
(二)新知探究
1、感性認(rèn)識(shí)函數(shù)單調(diào)性
問(wèn)題1、做出下列函數(shù)的圖象。
設(shè)計(jì)意圖:檢查學(xué)生掌握基本初等函數(shù)圖像的情況。(分組完成不同的任務(wù),及時(shí)發(fā)現(xiàn)存在問(wèn)題,教師進(jìn)行點(diǎn)評(píng)。)
問(wèn)題2、觀察函數(shù)圖象哪部分是上升的,哪部分是下降的?(從左到右)
(1)函數(shù):在整個(gè)定義域內(nèi)上升。
(2)函數(shù):在整個(gè)定義域內(nèi)上升。
(3)函數(shù):在______上升,在上下降。
(4)函數(shù):在______上升,在上下降。
對(duì)于引導(dǎo)學(xué)生進(jìn)行分類(lèi)描述,為后面說(shuō)明函數(shù)的單調(diào)性是在定義域內(nèi)某個(gè)區(qū)間而言的,是函數(shù)的局部性質(zhì)埋下伏筆。
問(wèn)題3、怎樣用自變量,函數(shù)值來(lái)描述這種上升和下降?
上升:某個(gè)區(qū)間上隨自變量x的增大,也越來(lái)越大。
下降:隨自變量的增大,越來(lái)越小。
問(wèn)題4、你能根據(jù)自己的理解說(shuō)說(shuō)什么是增加的、減少的嗎?
如果函數(shù)在某個(gè)區(qū)間上隨自變量的增大,y也越來(lái)越大,我們說(shuō)函數(shù)在該區(qū)間上為增加的;如果函數(shù)在某個(gè)區(qū)間上隨自變量的增大,y越來(lái)越小,我們說(shuō)函數(shù)在該區(qū)間上為減少的。
設(shè)計(jì)意圖:
。1)合理設(shè)置層次,為揭示函數(shù)單調(diào)性做好鋪墊。
。2)函數(shù)單調(diào)性實(shí)質(zhì)上揭示了在定義域的某個(gè)子集(或某一區(qū)間)上,函數(shù)值隨自變量的變化而變化,描述函數(shù)圖像在這個(gè)子集(或這一區(qū)間)的升降趨勢(shì),有利于多角度、深層次揭示這一概念的本質(zhì)特征,幫助學(xué)生體會(huì)運(yùn)用動(dòng)態(tài)觀點(diǎn)判斷函數(shù)的單調(diào)性,培養(yǎng)學(xué)生形象思維。
2、理性認(rèn)識(shí)函數(shù)單調(diào)性
問(wèn)題5、如何用數(shù)學(xué)語(yǔ)言表達(dá)函數(shù)值的增減變化呢?
學(xué)生回答,教師根據(jù)實(shí)際回答情況引導(dǎo)學(xué)生得到函數(shù)單調(diào)性的數(shù)學(xué)表達(dá)式。
(1) 在給定區(qū)間內(nèi)取兩個(gè)數(shù),例如1和2。
(2) 仿(1),取多組數(shù)值驗(yàn)證均滿(mǎn)足,所以在為增加的。
(3) 任取,因?yàn)?即,所以在上為增加的。
對(duì)于學(xué)生錯(cuò)誤的回答,引導(dǎo)學(xué)生分別用圖形語(yǔ)言和文字語(yǔ)言進(jìn)行辨析,使學(xué)生認(rèn)識(shí)到問(wèn)題的根源在于自變量不可能被窮舉,從而引導(dǎo)學(xué)生在給定的區(qū)間內(nèi)任意取兩個(gè)自變量。
設(shè)計(jì)意圖:對(duì)二次函數(shù)的單調(diào)性認(rèn)識(shí)由感性上升到理性認(rèn)識(shí)的高度,逐步提升學(xué)生的思維高度,為學(xué)習(xí)函數(shù)的單調(diào)性做好鋪墊,突破難點(diǎn),同時(shí)培養(yǎng)學(xué)生的數(shù)學(xué)表達(dá)能力。
這是本節(jié)課的難點(diǎn),為了分解難度老師啟發(fā)引導(dǎo)學(xué)生,得出增函數(shù)嚴(yán)格的定義,然后學(xué)生類(lèi)比得出減函數(shù)的定義。
一般地,設(shè)函數(shù)的定義域?yàn)锳,區(qū)間IA:______如果對(duì)于區(qū)間I內(nèi)的任意兩個(gè)變量,當(dāng)時(shí)都有______,那么就說(shuō)在這個(gè)區(qū)間上是增加的。
課后作業(yè)
1、必做題:習(xí)題2—3A組第2題:(2),(3)、第4,5題。
2、選作題:習(xí)題2—3 B組第2題。
設(shè)計(jì)意圖:不同的人在數(shù)學(xué)上可以獲得不同的發(fā)展,每個(gè)學(xué)生都能夠獲得這些數(shù)學(xué),有專(zhuān)長(zhǎng)的,可以進(jìn)一步發(fā)展、因此設(shè)計(jì)了不同程度要求的題目。
【《函數(shù)的單調(diào)性》教學(xué)設(shè)計(jì)】相關(guān)文章:
高中函數(shù)單調(diào)性的教學(xué)設(shè)計(jì)(通用5篇)03-26
高二數(shù)學(xué)《導(dǎo)數(shù)與函數(shù)單調(diào)性》教學(xué)設(shè)計(jì)03-03
《函數(shù)的單調(diào)性》數(shù)學(xué)教學(xué)反思05-18
導(dǎo)數(shù)與函數(shù)的單調(diào)性的教學(xué)反思06-01
冪函數(shù)教學(xué)設(shè)計(jì)11-22
單教學(xué)設(shè)計(jì)01-09
單教學(xué)設(shè)計(jì)01-09
高二數(shù)學(xué)說(shuō)課稿之函數(shù)單調(diào)性03-04