高一《兩角和與差三角函數(shù)》教學(xué)設(shè)計
作為一名無私奉獻的老師,往往需要進行教學(xué)設(shè)計編寫工作,教學(xué)設(shè)計是實現(xiàn)教學(xué)目標的計劃性和決策性活動。優(yōu)秀的教學(xué)設(shè)計都具備一些什么特點呢?以下是小編為大家收集的高一《兩角和與差三角函數(shù)》教學(xué)設(shè)計,歡迎閱讀與收藏。
【教材分析】
本節(jié)是北師大版高中必修四第三章2.1和2.2兩角和與差的正弦、余弦函數(shù)(書第116頁-118頁內(nèi)容),本節(jié)是在學(xué)生已經(jīng)學(xué)習(xí)了任意角的三角函數(shù)和平面向量知識的基礎(chǔ)上進一步研究兩角和與差的三角函數(shù)與單角的三角函數(shù)關(guān)系,它既是三角函數(shù)和平面向量知識的延伸,又是后繼內(nèi)容兩角和與差的正切公式、二倍角公式、半角公式的知識基礎(chǔ),起著承上啟下的作用,對于三角函數(shù)式的化簡、求值和三角恒等式的證明等有著重要的支撐。本課時主要講授運用平面向量的數(shù)量積推導(dǎo)兩角差的余弦公式以及兩角和與差的正、余弦公式的運用。
【學(xué)情分析】
學(xué)生在本節(jié)之前已經(jīng)學(xué)習(xí)了三角函數(shù)和平面向量這兩章知識內(nèi)容,這為本節(jié)課的學(xué)習(xí)作了很多的知識鋪墊,學(xué)生也有了一定的數(shù)學(xué)推理能力和運算能力。本節(jié)教學(xué)內(nèi)容需要學(xué)生已經(jīng)具有單位圓中的任意角的三角概念和平面向量的數(shù)量積的表示等方面的知識儲備,這將有利于進一步促進學(xué)生思維能力的發(fā)展和數(shù)學(xué)思想的形成。
【課程資源】
高中數(shù)學(xué)北師大版必修四教材;多媒體投影儀
【教學(xué)目標】
1、掌握用向量方法推導(dǎo)兩角差的余弦公式,通過簡單運用,使學(xué)生初步理解公式的結(jié)構(gòu)及其功能,為建立其它和(差)公式打好基礎(chǔ);
2、讓學(xué)生經(jīng)歷兩角差的余弦公式的探索、發(fā)現(xiàn)過程,培養(yǎng)學(xué)生的動手實踐、探索、研究能力.
3、激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和積極性,實事求是的科學(xué)學(xué)習(xí)態(tài)度和勇于創(chuàng)新的精神.
【教學(xué)重點和難點】
教學(xué)重點:兩角和與差的余弦公式的推導(dǎo)及運用
教學(xué)難點:向量法推導(dǎo)兩角差的余弦公式及公式的靈活運用
(設(shè)計依據(jù):平面內(nèi)兩向量的數(shù)量積的兩種形式的應(yīng)用是本節(jié)課“兩角和與差的余弦公式推導(dǎo)”的主要依據(jù),在后繼知識中也有廣泛的應(yīng)用,所以是本節(jié)的一個重點。又由于“兩角和與差的余弦公式的推導(dǎo)和應(yīng)用”對后幾節(jié)內(nèi)容能否掌握具有決定意義,在三角變換、三角恒等式的證明、三角函數(shù)式的化簡求值等方面有著廣泛的應(yīng)用,因此也是本節(jié)的一個重點。由于其推導(dǎo)方法的特殊性和推導(dǎo)過程的復(fù)雜性,所以也是一個難點。)
【教學(xué)方法】
情景教學(xué)法;問題教學(xué)法;直觀教學(xué)法;啟發(fā)發(fā)現(xiàn)法。
【學(xué)法指導(dǎo)】、
1、注意任意角的終邊與單位圓交點坐標、平面向量的坐標的表示以及平面向量的數(shù)量積的兩種表示形式的復(fù)習(xí)為兩角差的余弦的推導(dǎo)做必要的準備,并讓學(xué)生體會感悟向量在解決數(shù)學(xué)問題中的工具作用(體現(xiàn)學(xué)習(xí)過程中循序漸進,溫故知新的認知規(guī)律。);
2、突出誘導(dǎo)公式在三角函數(shù)名稱變換中的作用以及變角思想讓學(xué)生進一步體會數(shù)學(xué)的化歸思想。
3、讓學(xué)生注意觀察、對比兩角和與差的余弦公式中正弦、余弦的順序;角的順序關(guān)系,培養(yǎng)學(xué)生的觀察能力,并通過觀察掌握公式的特點。
【教學(xué)過程】
教學(xué)流程為:創(chuàng)設(shè)情境----提出問題----探索嘗試----啟發(fā)引導(dǎo)----解決問題。
(一)創(chuàng)設(shè)情境,揭示課題
問題1:同學(xué)們都知道,,試問是否與相等?大家可以猜想是不是等于呢?下面我們就一起探討兩角差的'余弦公式
【設(shè)計意圖】通過問題情境,自然流暢地提出問題,揭示課題,引發(fā)學(xué)生思考。使學(xué)生目標明確、迅速進入新知學(xué)習(xí)。
。ǘ﹩栴}探究,新知構(gòu)建
問題2:你能用與的三角函數(shù)值表示出這兩個角的終邊與單位圓的交點A和B的坐標嗎?怎樣表示?
【師生活動】畫單位圓在直角坐標系中畫出單位圓并作出與角的終邊與單位圓的交點,引導(dǎo)學(xué)生利用三角函數(shù)值表示出交點坐標。
【設(shè)計意圖】通過復(fù)習(xí)使學(xué)生熟悉基礎(chǔ)知識、特別是用角的正、余弦表示特殊點的坐標,為新課的推進做準備。
問題3:如何計算向量的數(shù)量積?
【師生活動】引導(dǎo)學(xué)生觀察是的夾角,引發(fā)學(xué)生對向量的思考,并及時啟發(fā)學(xué)生復(fù)習(xí)向量的數(shù)量積的的兩種表示。
【設(shè)計意圖】平復(fù)習(xí)面內(nèi)兩向量的數(shù)量積的幾何法與代數(shù)法兩種表示,從而使“兩角差的余弦公式”的推證水到渠成。
問題4:計算cos15°和cos75°的值。
分析:本題關(guān)鍵是將分成45°與30°的和或者分解成45°與15°的差,再利用兩角差的余弦公式即可求解。(學(xué)生板演)
【師生活動】引導(dǎo)學(xué)生初步應(yīng)用公式
【設(shè)計意圖】讓學(xué)生熟練兩角和與差的余弦公式,體會學(xué)生公式的實際應(yīng)用價值,即:將非特殊角轉(zhuǎn)化為特殊角的和與差。并引發(fā)學(xué)生對兩角和的余弦公式的推證興趣。
問題7:同學(xué)們都知道誘導(dǎo)公式cos(-β)=cosβ,sin(-β)=-sinβ,那么你會推導(dǎo)出cos(α+β)=?
【師生活動】學(xué)生在老師的引導(dǎo)下自主推證兩角和的余弦公式。
【設(shè)計意圖】讓學(xué)生在學(xué)習(xí)中體會感受化歸思想和類比思想在新知識發(fā)現(xiàn)中的作用。
問題8:同學(xué)們已學(xué)過sinα=cos(-α),那么你會運用這個公式推證出sin(α-β)和sin(α+β)嗎?
【師生活動】教師引導(dǎo)學(xué)生推導(dǎo)公式。
【設(shè)計意圖】新知構(gòu)建并體會轉(zhuǎn)化思想的應(yīng)用。
問題9:勾畫書中兩角和與差的三角函數(shù)公式并觀察它們有什么特點?
兩角和與差的余弦:
同名之積相加減,運算符號左右反
cos(α+β)=cosαcosβ-sinαsinβ
cos(α-β)=cosαcosβ+sinαsinβ
兩角和與差的正弦:
異名之積相加減,運算符號兩相同
sin(α+β)=sinαcosβ+cosαsinβ
sin(α-β)=sinαcosβ-cosαsinβ
【師生活動】學(xué)生總結(jié)公式特點,學(xué)習(xí)小組交流,教師總結(jié)公式結(jié)構(gòu)特征。
【設(shè)計意圖】讓學(xué)生熟悉并掌握公式特征,如:教的順序、函數(shù)的順序、符號的規(guī)律。
。ㄈ┲R應(yīng)用,熟悉公式
例2、(1)求sin(-25π\12)的值;
。2)求cos75°cos105°+sin75°sin105°的值.
【設(shè)計意圖】進一步熟悉誘導(dǎo)公式、兩角和與差的三角函數(shù)公式的特點及正逆應(yīng)用。
例3、已知求sin(α+β),cos(α-β)的值。
思維點撥:觀察公式本題已知條件應(yīng)先計算出cosα,cosβ,再代入公式求值.求cosα,cosβ的值可借助于同角三角函數(shù)的平方關(guān)系,并注意α,β的取值范圍來求解.
【設(shè)計意圖】訓(xùn)練學(xué)生思維的有序性,例如在面對問題時,要注意先認真分析條件,明確使用公式時要有什么準備,準備工作怎么進行等。還要重視思維過程的表述,不能只看最后結(jié)果而不顧過程表述的準確性、簡潔性等。在教學(xué)過程中,對例3適當(dāng)延伸,目的要求學(xué)生正確使用分類討論的思想方法,在表述上也對學(xué)生有了更高的要求。
(四)自主探究,深化理解,拓展思維
變式訓(xùn)練1:如何計算?
【反思】本節(jié)學(xué)習(xí)的兩角和與差的三角函數(shù)公式對任意角也成立嗎?
變式訓(xùn)練2:例3中如果去掉條件,對結(jié)果和求解過程會有什么影響?
變式訓(xùn)練3:下列等式成立嗎?
cos(α+β)=cosα+cosβ
cos(α-β)=cosα-cosβ
sin(α+β)=sinα+sinβ
sin(α-β)=sinα-sinβ
【設(shè)計意圖】通過變式訓(xùn)練與討論進一步培養(yǎng)學(xué)生自主探究、合作學(xué)習(xí)交流的能力,以熟悉公式的變形運用并掌握兩角和與差的正余弦公式的特征及應(yīng)用。
。ㄎ澹┬〗Y(jié)反思,評價反饋
1、本節(jié)學(xué)習(xí)的內(nèi)容有哪些?
2、兩角和與差的三角函數(shù)公式有什么特點?運用兩角和與差的三角函數(shù)公式可以解決哪些問題?
3、你通過本節(jié)學(xué)習(xí)有哪些收獲?
【設(shè)計意圖】進一步熟悉公式,加深學(xué)生對公式的理解和認識,培養(yǎng)學(xué)生的歸納總結(jié)能力和交流表達能力,讓學(xué)生獲得成功體驗。
。┳鳂I(yè)布置,練習(xí)鞏固
書面:課本第121頁A組1中間兩題;2(2)(3)(4)B組2(2)
課后研究:課本第118頁練習(xí)5;
【設(shè)計意圖】鞏固和理解知識,掌握兩角和與差的三角函數(shù)公式。并引發(fā)學(xué)生對新知學(xué)習(xí)與探求的欲望和興趣。
【板書設(shè)計】
兩角和與差的正、余弦函數(shù)
公式
推導(dǎo)
例1
例2
例3
【教后反思】
本節(jié)教學(xué)設(shè)計首先通過問題情景闡述了兩角差的余弦公式的產(chǎn)生背景,然后通過組織學(xué)生分析,討論,并借助于單位圓中以原點為起點的兩向量的數(shù)量積的兩種表示,對α大于β使,cos(α-β)給出證明,進而用向量知識探究任意角的情形。這些均體現(xiàn)了數(shù)學(xué)中從特殊到一般的思想方法,符合新課改的基本理念。同時,例題1、2、3由淺入深,讓學(xué)生在問題中探究,在探究中建構(gòu)新知。使學(xué)生在已有基礎(chǔ)上,充分利用歸納、類比等方法激發(fā)學(xué)生進一步探究的欲望,建立Cα±β模型,有利于學(xué)生數(shù)學(xué)思維水平的提高,同時及時鞏固,應(yīng)用,拓展延伸,加強了學(xué)生對新知的掌握和靈活運用。給學(xué)生思維以適當(dāng)?shù)囊龑?dǎo)并不一定會降低學(xué)生思維的層次,反而能夠提高思維的有效性,從而體現(xiàn)教師主導(dǎo)作用和學(xué)生主體作用的和諧統(tǒng)一。但課后發(fā)現(xiàn)小結(jié)倉促,如果能再引導(dǎo)學(xué)生自我小結(jié)、反思。可能會更好.
【關(guān)于教學(xué)設(shè)計的思考】
1、本節(jié)課授課內(nèi)容為《普通高中課程標準實驗教科書·數(shù)學(xué)(4)》(北師大版)第三章第一節(jié),本節(jié)課的教學(xué)重點是:兩角和與差的余弦公式的推導(dǎo)和應(yīng)用是本節(jié)的又一個重點,也是本節(jié)的一個難點。所以這節(jié)課效果的好壞,體現(xiàn)在對這兩點實現(xiàn)的程度上,因此,例題、練習(xí)、作業(yè)應(yīng)用繞這兩方面設(shè)計。而平面內(nèi)兩向量的數(shù)量積的兩種形式的應(yīng)用又是推導(dǎo)兩角差的余弦公式的關(guān)鍵;因此在復(fù)習(xí),平面內(nèi)兩向量的數(shù)量積的兩種形式是本節(jié)課必要的準備。
2、本節(jié)課采用“創(chuàng)設(shè)情境----提出問題----探索嘗試----啟發(fā)引導(dǎo)----解決問題”的過程來實現(xiàn)教學(xué)目標。有利于知識產(chǎn)生、發(fā)展、解決這一認知過程的完整體現(xiàn)。在教學(xué)手段上使用多媒體技術(shù),有效增加課堂容量。在教學(xué)過程環(huán)節(jié),采用問題教學(xué),再逐步展開的方式,能夠充分調(diào)動學(xué)生的學(xué)習(xí)積極性,讓學(xué)生的探索具有明確的目的性,減少盲目性。在利用平面內(nèi)兩向量的數(shù)量積的幾何形式、代數(shù)形式建立等式,而得到兩角差的余弦公式后,利用代數(shù)思想推出兩角和的余弦公式,使學(xué)生進一步體會數(shù)學(xué)思想的深刻性。通過對公式的對比,可以加深學(xué)生對公式特征的印象,同時體會公式的線形美與對稱美,給學(xué)生以美的陶冶。作業(yè)的布置中,突出了學(xué)生學(xué)習(xí)的個體差異現(xiàn)實,使學(xué)有余力的學(xué)生產(chǎn)生挑戰(zhàn)的心理感受,也為下一節(jié)內(nèi)容的學(xué)習(xí)做準備。
3、數(shù)學(xué)的學(xué)習(xí),主要是培養(yǎng)人的思維課程,強調(diào)思維構(gòu)造,以問題解決為主的課程,既注重人的智慧獲得,又注重人的情感發(fā)展,因而在教學(xué)中,應(yīng)注意“完整的人”的數(shù)學(xué)教育,不搞“以智力開發(fā)為主的教育”,使學(xué)生成為真正的人。因此在課堂教學(xué)中,教學(xué)設(shè)計應(yīng)從學(xué)生出發(fā),給學(xué)生更多的自由,讓他們真正參與,注重學(xué)習(xí)的過程,尤其重視以學(xué)生為主的數(shù)學(xué)活動,注重學(xué)生的自我完善,自我發(fā)展,不把學(xué)生當(dāng)成接受知識的容器,要教會學(xué)生學(xué)會學(xué)習(xí),尤其是有意義的接受學(xué)習(xí)和發(fā)現(xiàn)學(xué)習(xí),“授人以魚,不如授之以漁,授人以魚祗救一時之及,授人以漁則可解一生之需”。在數(shù)學(xué)教育中,注重培養(yǎng)學(xué)生的自信,自重,自尊,使他們充滿希望和成功,促進其健康人格的形成。只有這樣,才能讓數(shù)學(xué)課更有生機和人性,才能學(xué)生真正成為學(xué)習(xí)的主人。
【高一《兩角和與差三角函數(shù)》教學(xué)設(shè)計】相關(guān)文章:
初中兩角和與差的三角函數(shù)試題03-31
《兩角和與差的正弦余弦和正切公式》教學(xué)設(shè)計范文01-25
兩角和與差的正弦說課稿11-03
兩角和與差余弦公式的說課稿02-19
七年級《兩角差余弦函數(shù)》教學(xué)設(shè)計07-01
三角函數(shù)積化和差公式09-29