- 相關(guān)推薦
六年級數(shù)學(xué)總復(fù)習(xí)知識點歸納
在平日的學(xué)習(xí)中,是不是聽到知識點,就立刻清醒了?知識點有時候特指教科書上或考試的知識。還在為沒有系統(tǒng)的知識點而發(fā)愁嗎?下面是小編為大家收集的六年級數(shù)學(xué)總復(fù)習(xí)知識點歸納,歡迎閱讀,希望大家能夠喜歡。
一、 常用的數(shù)量關(guān)系式
1、每份數(shù)×份數(shù)=總數(shù) 總數(shù)÷每份數(shù)=份數(shù) 總數(shù)÷份數(shù)=每份數(shù)
2、1倍數(shù)×倍數(shù)=幾倍數(shù) 幾倍數(shù)÷1倍數(shù)=倍數(shù) 幾倍數(shù)÷倍數(shù)=1倍數(shù)
3、速度×?xí)r間=路程 路程÷速度=時間 路程÷時間=速度
4、單價×數(shù)量=總價 總價÷單價=數(shù)量 總價÷數(shù)量=單價
5、工作效率×工作時間=工作總量 工作總量÷工作效率=工作時間 工作總量÷工作時間=工作效率
6、加數(shù)+加數(shù)=和 和-一個加數(shù)=另一個加數(shù)
7、被減數(shù)-減數(shù)=差 被減數(shù)-差=減數(shù) 差+減數(shù)=被減數(shù)
8、因數(shù)×因數(shù)=積 積÷一個因數(shù)=另一個因數(shù)
9、被除數(shù)÷除數(shù)=商 被除數(shù)÷商=除數(shù) 商×除數(shù)=被除數(shù)
二、小學(xué)數(shù)學(xué)圖形計算公式
1、正方形 (C:周長 S:面積 a:邊長)
周長=邊長×4 C=4a
面積=邊長×邊長 S=a×a
2、正方體 (V:體積 a:棱長 )
表面積=棱長×棱長×6 S表=a×a×6
體積=棱長×棱長×棱長 V=a×a×a
3、長方形( C:周長 S:面積 a:邊長 )
周長=(長+寬)×2 C=2(a+b)
面積=長×寬 S=ab
4、長方體 (V:體積 s:面積 a:長 b: 寬 h:高)
(1)表面積(長×寬+長×高+寬×高)×2 S=2(ab+ah+bh)
(2)體積=長×寬×高 V=abh
5、三角形 (s:面積 a:底 h:高)
面積=底×高÷2 s=ah÷2
三角形高=面積 ×2÷底 三角形底=面積 ×2÷高
6、平行四邊形 (s:面積 a:底 h:高)
面積=底×高 s=ah
7、梯形 (s:面積 a:上底 b:下底 h:高)
面積=(上底+下底)×高÷2 s=(a+b)× h÷2
8、圓形 (S:面積 C:周長 л d=直徑 r=半徑)
(1)周長=直徑×л=2×л×半徑 C=лd=2лr
(2)面積=半徑×半徑×л
9、圓柱體 (v:體積 h:高 s:底面積 r:底面半徑 c:底面周長)
(1)側(cè)面積=底面周長×高=ch(2лr或лd) (2)表面積=側(cè)面積+底面積×2
(3)體積=底面積×高 (4)體積=側(cè)面積÷2×半徑
10、圓錐體 (v:體積 h:高 s:底面積 r:底面半徑)
體積=底面積×高÷3
11、總數(shù)÷總份數(shù)=平均數(shù)
12、和差問題的公式
(和+差)÷2=大數(shù) (和-差)÷2=小數(shù)
13、和倍問題
和÷(倍數(shù)-1)=小數(shù) 小數(shù)×倍數(shù)=大數(shù) (或者 和-小數(shù)=大數(shù))
14、差倍問題
差÷(倍數(shù)-1)=小數(shù) 小數(shù)×倍數(shù)=大數(shù) (或 小數(shù)+差=大數(shù))
15、相遇問題
相遇路程=速度和×相遇時間
相遇時間=相遇路程÷速度和
速度和=相遇路程÷相遇時間
16、濃度問題
溶質(zhì)的重量+溶劑的重量=溶液的重量
溶質(zhì)的重量÷溶液的重量×100%=濃度
溶液的重量×濃度=溶質(zhì)的重量
溶質(zhì)的重量÷濃度=溶液的重量
17、利潤與折扣問題
利潤=售出價-成本
利潤率=利潤÷成本×100%=(售出價÷成本-1)×100%
漲跌金額=本金×漲跌百分比
利息=本金×利率×?xí)r間
稅后利息=本金×利率×?xí)r間×(1-20%)
三、常用單位換算
1、長度單位換算
1千米=1000米 1米=10分米 1分米=10厘米 1米=100厘米 1厘米=10毫米
面積單位換算
1平方千米=100公頃 1公頃=10000平方米 1平方米=100平方分米
1平方分米=100平方厘米 1平方厘米=100平方毫米
2、體(容)積單位換算
1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升
1立方厘米=1毫升 1立方米=1000升
重量單位換算
1噸=1000 千克 1千克=1000克 1千克=1公斤
人民幣單位換算
1元=10角 1角=10分 1元=100分
3、時間單位換算
1世紀=100年 1年=12月 大月(31天)有:135781012月 小月(30天)的有:46911月
平年2月28天, 閏年2月29天 平年全年365天, 閏年全年366天 1日=24小時
1時=60分 1分=60秒 1時=3600秒
4、基本概念
第一章 數(shù)和數(shù)的運算
一 概念
(一)整數(shù)
1 整數(shù)的意義
自然數(shù)和0都是整數(shù)。
2 自然數(shù)
我們在數(shù)物體的時候,用來表示物體個數(shù)的1,2,3……叫做自然數(shù)。
一個物體也沒有,用0表示。0也是自然數(shù)。
3計數(shù)單位
一(個)、十、百、千、萬、十萬、百萬、千萬、億……都是計數(shù)單位。
每相鄰兩個計數(shù)單位之間的進率都是10。這樣的計數(shù)法叫做十進制計數(shù)法。
4 數(shù)位
計數(shù)單位按照一定的順序排列起來,它們所占的位置叫做數(shù)位。
5數(shù)的整除
整數(shù)a除以整數(shù)b(b ≠ 0),除得的商是整數(shù)而沒有余數(shù),我們就說a能被b整除,或者說b能整除a 。
如果數(shù)a能被數(shù)b(b ≠ 0)整除,a就叫做b的倍數(shù),b就叫做a的約數(shù)(或a的因數(shù))。倍數(shù)和約數(shù)是相互依存的。
因為35能被7整除,所以35是7的倍數(shù),7是35的約數(shù)。
一個數(shù)的約數(shù)的個數(shù)是有限的,其中最小的約數(shù)是1,最大的 約數(shù)是它本身。例如:10的約數(shù)有1、2、5、10,其中最小的約數(shù)是1,最大的約數(shù)是10。
一個數(shù)的倍數(shù)的個數(shù)是無限的,其中最小的倍數(shù)是它本身。3的倍數(shù)有:3、6、9、12……其中最小的倍數(shù)是3 ,沒有最大的倍數(shù)。
個位上是0、2、4、6、8的數(shù),都能被2整除,例如:202、480、304,都能被2整除。
個位上是0或5的數(shù),都能被5整除,例如:5、30、405都能被5整除。
一個數(shù)的各位上的數(shù)的和能被3整除,這個數(shù)就能被3整除,例如:12、108、204都能被3整除。
一個數(shù)各位數(shù)上的和能被9整除,這個數(shù)就能被9整除。
能被3整除的數(shù)不一定能被9整除,但是能被9整除的數(shù)一定能被3整除。
一個數(shù)的末兩位數(shù)能被4(或25)整除,這個數(shù)就能被4(或25)整除。例如:16、404、1256都能被4整除,50、325、500、1675都能被25整除。
一個數(shù)的末三位數(shù)能被8(或125)整除,這個數(shù)就能被8(或125)整除。例如:1168、4600、5000、12344都能被8整除,1125、13375、5000都能被125整除。
能被2整除的數(shù)叫做偶數(shù)。
不能被2整除的數(shù)叫做奇數(shù)。
0也是偶數(shù)。自然數(shù)按能否被2 整除的特征可分為奇數(shù)和偶數(shù)。
一個數(shù),如果只有1和它本身兩個約數(shù),這樣的數(shù)叫做質(zhì)數(shù)(或素數(shù)),100以內(nèi)的質(zhì)數(shù)有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
一個數(shù),如果除了1和它本身還有別的約數(shù),這樣的數(shù)叫做合數(shù),例如 4、6、8、9、12都是合數(shù)。
1不是質(zhì)數(shù)也不是合數(shù),自然數(shù)除了1外,不是質(zhì)數(shù)就是合數(shù)。如果把自然數(shù)按其約數(shù)的個數(shù)的不同分類,可分為質(zhì)數(shù)、合數(shù)和1。
每個合數(shù)都可以寫成幾個質(zhì)數(shù)相乘的形式。其中每個質(zhì)數(shù)都是這個合數(shù)的因數(shù),叫做這個合數(shù)的質(zhì)因數(shù),例如15=3×5,3和5 叫做15的質(zhì)因數(shù)。
把一個合數(shù)用質(zhì)因數(shù)相乘的形式表示出來,叫做分解質(zhì)因數(shù)。
例如把28分解質(zhì)因數(shù)
幾個數(shù)公有的約數(shù),叫做這幾個數(shù)的公約數(shù)。其中最大的一個,叫做這幾個數(shù)的最大公約數(shù),例如12的約數(shù)有1、2、3、4、6、12;18的約數(shù)有1、2、3、6、9、18。其中,1、2、3、6是12和1 8的公約數(shù),6是它們的最大公約數(shù)。
公約數(shù)只有1的兩個數(shù),叫做互質(zhì)數(shù),成互質(zhì)關(guān)系的兩個數(shù),有下列幾種情況:
1和任何自然數(shù)互質(zhì)。
相鄰的兩個自然數(shù)互質(zhì)。
兩個不同的質(zhì)數(shù)互質(zhì)。
當(dāng)合數(shù)不是質(zhì)數(shù)的倍數(shù)時,這個合數(shù)和這個質(zhì)數(shù)互質(zhì)。
兩個合數(shù)的公約數(shù)只有1時,這兩個合數(shù)互質(zhì),如果幾個數(shù)中任意兩個都互質(zhì),就說這幾個數(shù)兩兩互質(zhì)。
如果較小數(shù)是較大數(shù)的約數(shù),那么較小數(shù)就是這兩個數(shù)的最大公約數(shù)。
如果兩個數(shù)是互質(zhì)數(shù),它們的最大公約數(shù)就是1。
幾個數(shù)公有的倍數(shù),叫做這幾個數(shù)的公倍數(shù),其中最小的一個,叫做這幾個數(shù)的最小公倍數(shù),如2的倍數(shù)有2、4、6 、8、10、12、14、16、18 ……
3的倍數(shù)有3、6、9、12、15、18 …… 其中6、12、18……是2、3的公倍數(shù),6是它們的最小公倍數(shù)。
如果較大數(shù)是較小數(shù)的倍數(shù),那么較大數(shù)就是這兩個數(shù)的最小公倍數(shù)。
如果兩個數(shù)是互質(zhì)數(shù),那么這兩個數(shù)的積就是它們的最小公倍數(shù)。
幾個數(shù)的公約數(shù)的個數(shù)是有限的,而幾個數(shù)的公倍數(shù)的個數(shù)是無限的。
。ǘ┬(shù)
1 小數(shù)的意義
把整數(shù)1平均分成10份、100份、1000份…… 得到的十分之幾、百分之幾、千分之幾…… 可以用小數(shù)表示。
一位小數(shù)表示十分之幾,兩位小數(shù)表示百分之幾,三位小數(shù)表示千分之幾……
一個小數(shù)由整數(shù)部分、小數(shù)部分和小數(shù)點部分組成。數(shù)中的圓點叫做小數(shù)點,小數(shù)點左邊的數(shù)叫做整數(shù)部分,小數(shù)點左邊的數(shù)叫做整數(shù)部分,小數(shù)點右邊的數(shù)叫做小數(shù)部分。
在小數(shù)里,每相鄰兩個計數(shù)單位之間的進率都是10。小數(shù)部分的最高分數(shù)單位“十分之一”和整數(shù)部分的最低單位“一”之間的進率也是10。
2小數(shù)的分類
純小數(shù):整數(shù)部分是零的小數(shù),叫做純小數(shù)。例如: 0.25 、 0.368 都是純小數(shù)。
帶小數(shù):整數(shù)部分不是零的小數(shù),叫做帶小數(shù)。 例如: 3.25 、 5.26 都是帶小數(shù)。
有限小數(shù):小數(shù)部分的數(shù)位是有限的小數(shù),叫做有限小數(shù)。 例如: 41.7 、 25.3 、 0.23 都是有限小數(shù)。
無限小數(shù):小數(shù)部分的數(shù)位是無限的小數(shù),叫做無限小數(shù)。 例如: 4.33 …… 3.1415926 ……
無限不循環(huán)小數(shù):一個數(shù)的小數(shù)部分,數(shù)字排列無規(guī)律且位數(shù)無限,這樣的小數(shù)叫做無限不循環(huán)小數(shù)。 例如:∏
循環(huán)小數(shù):一個數(shù)的小數(shù)部分,有一個數(shù)字或者幾個數(shù)字依次不斷重復(fù)出現(xiàn),這個數(shù)叫做循環(huán)小數(shù)。 例如: 3.555 …… 0.0333 …… 12.109109 ……
一個循環(huán)小數(shù)的小數(shù)部分,依次不斷重復(fù)出現(xiàn)的數(shù)字叫做這個循環(huán)小數(shù)的循環(huán)節(jié)。 例如: 3.99 ……的循環(huán)節(jié)是“ 9 ” , 0.5454 ……的循環(huán)節(jié)是“ 54 ” 。
純循環(huán)小數(shù):循環(huán)節(jié)從小數(shù)部分第一位開始的,叫做純循環(huán)小數(shù)。 例如: 3.111 …… 0.5656 ……
混循環(huán)小數(shù):循環(huán)節(jié)不是從小數(shù)部分第一位開始的,叫做混循環(huán)小數(shù)。 3.1222 …… 0.03333 ……
寫循環(huán)小數(shù)的時候,為了簡便,小數(shù)的循環(huán)部分只需寫出一個循環(huán)節(jié),并在這個循環(huán)節(jié)的首、末位數(shù)字上各點一個圓點。如果循環(huán) 節(jié)只有 一個數(shù)字,就只在它的上面點一個點。例如: 3.777 …… 簡寫作 0.5302302 …… 簡寫作 。
。ㄈ┓謹(shù)
1 分數(shù)的意義
把單位“1”平均分成若干份,表示這樣的一份或者幾份的數(shù)叫做分數(shù)。
在分數(shù)里,中間的橫線叫做分數(shù)線;分數(shù)線下面的數(shù),叫做分母,表示把單位“1”平均分成多少份;分數(shù)線下面的數(shù)叫做分子,表示有這樣的多少份。
把單位“1”平均分成若干份,表示其中的一份的數(shù),叫做分數(shù)單位。
2 分數(shù)的分類
真分數(shù):分子比分母小的分數(shù)叫做真分數(shù)。真分數(shù)小于1。
假分數(shù):分子比分母大或者分子和分母相等的分數(shù),叫做假分數(shù)。假分數(shù)大于或等于1。
帶分數(shù):假分數(shù)可以寫成整數(shù)與真分數(shù)合成的數(shù),通常叫做帶分數(shù)。
3 約分和通分
把一個分數(shù)化成同它相等但是分子、分母都比較小的分數(shù) ,叫做約分。
分子分母是互質(zhì)數(shù)的分數(shù),叫做最簡分數(shù)。
把異分母分數(shù)分別化成和原來分數(shù)相等的同分母分數(shù),叫做通分。
。ㄋ模┌俜謹(shù)
1 表示一個數(shù)是另一個數(shù)的百分之幾的數(shù) 叫做百分數(shù),也叫做百分率 或百分比。百分數(shù)通常用"%"來表示。百分號是表示百分數(shù)的符號。
二 方法
。ㄒ唬⿺(shù)的讀法和寫法
1. 整數(shù)的讀法:從高位到低位,一級一級地讀。讀億級、萬級時,先按照個級的讀法去讀,再在后面加一個“億”或“萬”字。每一級末尾的0都不讀出來,其它數(shù)位連續(xù)有幾個0都只讀一個零。
2. 整數(shù)的寫法:從高位到低位,一級一級地寫,哪一個數(shù)位上一個單位也沒有,就在那個數(shù)位上寫0。
3. 小數(shù)的讀法:讀小數(shù)的時候,整數(shù)部分按照整數(shù)的讀法讀,小數(shù)點讀作“點”,小數(shù)部分從左向右順次讀出每一位數(shù)位上的數(shù)字。
4. 小數(shù)的寫法:寫小數(shù)的時候,整數(shù)部分按照整數(shù)的寫法來寫,小數(shù)點寫在個位右下角,小數(shù)部分順次寫出每一個數(shù)位上的數(shù)字。
5. 分數(shù)的讀法:讀分數(shù)時,先讀分母再讀“分之”然后讀分子,分子和分母按照整數(shù)的讀法來讀。
6. 分數(shù)的寫法:先寫分數(shù)線,再寫分母,最后寫分子,按照整數(shù)的寫法來寫。
7. 百分數(shù)的讀法:讀百分數(shù)時,先讀百分之,再讀百分號前面的數(shù),讀數(shù)時按照整數(shù)的讀法來讀。
8. 百分數(shù)的寫法:百分數(shù)通常不寫成分數(shù)形式,而在原來的分子后面加上百分號“%”來表示。
。ǘ⿺(shù)的改寫
一個較大的多位數(shù),為了讀寫方便,常常把它改寫成用“萬”或“億”作單位的數(shù)。有時還可以根據(jù)需要,省略這個數(shù)某一位后面的數(shù),寫成近似數(shù)。
1. 準確數(shù):在實際生活中,為了計數(shù)的簡便,可以把一個較大的數(shù)改寫成以萬或億為單位的數(shù)。改寫后的數(shù)是原數(shù)的準確數(shù)。 例如把 1254300000 改寫成以萬做單位的數(shù)是 125430 萬;改寫成 以億做單位 的數(shù) 12.543 億。
2. 近似數(shù):根據(jù)實際需要,我們還可以把一個較大的數(shù),省略某一位后面的尾數(shù),用一個近似數(shù)來表示。 例如: 1302490015 省略億后面的尾數(shù)是 13 億。
3. 四舍五入法:要省略的尾數(shù)的最高位上的數(shù)是4 或者比4小,就把尾數(shù)去掉;如果尾數(shù)的最高位上的數(shù)是5或者比5大,就把尾數(shù)舍去,并向它的前一位進1。例如:省略 345900 萬后面的尾數(shù)約是 35 萬。省略 4725097420 億后面的尾數(shù)約是 47 億。
4. 大小比較
1. 比較整數(shù)大。罕容^整數(shù)的大小,位數(shù)多的那個數(shù)就大,如果位數(shù)相同,就看最高位,最高位上的數(shù)大,那個數(shù)就大;最高位上的數(shù)相同,就看下一位,哪一位上的數(shù)大那個數(shù)就大。
2. 比較小數(shù)的大小:先看它們的整數(shù)部分,整數(shù)部分大的那個數(shù)就大;整數(shù)部分相同的,十分位上的數(shù)大的那個數(shù)就大;十分位上的數(shù)也相同的,百分位上的數(shù)大的那個數(shù)就大……
3. 比較分數(shù)的大小:分母相同的分數(shù),分子大的分數(shù)比較大;分子相同的數(shù),分母小的分數(shù)大。分數(shù)的分母和分子都不相同的,先通分,再比較兩個數(shù)的大小。
(三)數(shù)的互化
1. 小數(shù)化成分數(shù):原來有幾位小數(shù),就在1的后面寫幾個零作分母,把原來的小數(shù)去掉小數(shù)點作分子,能約分的要約分。
2. 分數(shù)化成小數(shù):用分母去除分子。能除盡的就化成有限小數(shù),有的不能除盡,不能化成有限小數(shù)的,一般保留三位小數(shù)。
3. 一個最簡分數(shù),如果分母中除了2和5以外,不含有其他的質(zhì)因數(shù),這個分數(shù)就能化成有限小數(shù);如果分母中含有2和5 以外的質(zhì)因數(shù),這個分數(shù)就不能化成有限小數(shù)。
4. 小數(shù)化成百分數(shù):只要把小數(shù)點向右移動兩位,同時在后面添上百分號。
5. 百分數(shù)化成小數(shù):把百分數(shù)化成小數(shù),只要把百分號去掉,同時把小數(shù)點向左移動兩位。
6. 分數(shù)化成百分數(shù):通常先把分數(shù)化成小數(shù)(除不盡時,通常保留三位小數(shù)),再把小數(shù)化成百分數(shù)。
7. 百分數(shù)化成小數(shù):先把百分數(shù)改寫成分數(shù),能約分的要約成最簡分數(shù)。
。ㄋ模⿺(shù)的整除
1. 把一個合數(shù)分解質(zhì)因數(shù),通常用短除法。先用能整除這個合數(shù)的質(zhì)數(shù)去除,一直除到商是質(zhì)數(shù)為止,再把除數(shù)和商寫成連乘的形式。
2. 求幾個數(shù)的最大公約數(shù)的方法是:先用這幾個數(shù)的公約數(shù)連續(xù)去除,一直除到所得的商只有公約數(shù)1為止,然后把所有的除數(shù)連乘求積,這個積就是這幾個數(shù)的的最大公約數(shù) 。
3. 求幾個數(shù)的最小公倍數(shù)的方法是:先用這幾個數(shù)(或其中的部分數(shù))的公約數(shù)去除,一直除到互質(zhì)(或兩兩互質(zhì))為止,然后把所有的除數(shù)和商連乘求積,這個積就是這幾個數(shù)的最小公倍數(shù)。
4. 成為互質(zhì)關(guān)系的兩個數(shù):1和任何自然數(shù)互質(zhì) ; 相鄰的兩個自然數(shù)互質(zhì); 當(dāng)合數(shù)不是質(zhì)數(shù)的倍數(shù)時,這個合數(shù)和這個質(zhì)數(shù)互質(zhì); 兩個合數(shù)的公約數(shù)只有1時,這兩個合數(shù)互質(zhì)。
。ㄎ澹 約分和通分
約分的方法:用分子和分母的公約數(shù)(1除外)去除分子、分母;通常要除到得出最簡分數(shù)為止。
通分的方法:先求出原來的幾個分數(shù)分母的最小公倍數(shù),然后把各分數(shù)化成用這個最小公倍數(shù)作分母的分數(shù)。
三 性質(zhì)和規(guī)律
。ㄒ唬┥滩蛔兊囊(guī)律
商不變的規(guī)律:在除法里,被除數(shù)和除數(shù)同時擴大或者同時縮小相同的倍,商不變。
(二)小數(shù)的性質(zhì)
小數(shù)的性質(zhì):在小數(shù)的末尾添上零或者去掉零小數(shù)的大小不變。
。ㄈ┬(shù)點位置的移動引起小數(shù)大小的變化
1. 小數(shù)點向右移動一位,原來的數(shù)就擴大10倍;小數(shù)點向右移動兩位,原來的數(shù)就擴大100倍;小數(shù)點向右移動三位,原來的數(shù)就擴大1000倍……
2. 小數(shù)點向左移動一位,原來的數(shù)就縮小10倍;小數(shù)點向左移動兩位,原來的數(shù)就縮小100倍;小數(shù)點向左移動三位,原來的數(shù)就縮小1000倍……
3. 小數(shù)點向左移或者向右移位數(shù)不夠時,要用“0"補足位。
。ㄋ模┓謹(shù)的基本性質(zhì)
分數(shù)的基本性質(zhì):分數(shù)的分子和分母都乘以或者除以相同的數(shù)(零除外),分數(shù)的大小不變。
(五)分數(shù)與除法的關(guān)系
1. 被除數(shù)÷除數(shù)= 被除數(shù)/除數(shù)
2. 因為零不能作除數(shù),所以分數(shù)的分母不能為零。
3. 被除數(shù) 相當(dāng)于分子,除數(shù)相當(dāng)于分母。
四 運算的意義
。ㄒ唬┱麛(shù)四則運算
1整數(shù)加法:
把兩個數(shù)合并成一個數(shù)的運算叫做加法。
在加法里,相加的數(shù)叫做加數(shù),加得的數(shù)叫做和。加數(shù)是部分數(shù),和是總數(shù)。
加數(shù)+加數(shù)=和 一個加數(shù)=和-另一個加數(shù)
2整數(shù)減法:
已知兩個加數(shù)的和與其中的一個加數(shù),求另一個加數(shù)的運算叫做減法。
在減法里,已知的和叫做被減數(shù),已知的加數(shù)叫做減數(shù),未知的加數(shù)叫做差。被減數(shù)是總數(shù),減數(shù)和差分別是部分數(shù)。
加法和減法互為逆運算。
3整數(shù)乘法:
求幾個相同加數(shù)的和的簡便運算叫做乘法。
在乘法里,相同的加數(shù)和相同加數(shù)的個數(shù)都叫做因數(shù)。相同加數(shù)的和叫做積。
在乘法里,0和任何數(shù)相乘都得0. 1和任何數(shù)相乘都的任何數(shù)。
一個因數(shù)× 一個因數(shù) =積 一個因數(shù)=積÷另一個因數(shù)
4 整數(shù)除法:
已知兩個因數(shù)的積與其中一個因數(shù),求另一個因數(shù)的運算叫做除法。
在除法里,已知的積叫做被除數(shù),已知的一個因數(shù)叫做除數(shù),所求的因數(shù)叫做商。
乘法和除法互為逆運算。
在除法里,0不能做除數(shù)。因為0和任何數(shù)相乘都得0,所以任何一個數(shù)除以0,均得不到一個確定的商。
被除數(shù)÷除數(shù)=商 除數(shù)=被除數(shù)÷商 被除數(shù)=商×除數(shù)
。ǘ┬(shù)四則運算
1. 小數(shù)加法:
小數(shù)加法的意義與整數(shù)加法的意義相同。是把兩個數(shù)合并成一個數(shù)的運算。
2. 小數(shù)減法:
小數(shù)減法的意義與整數(shù)減法的意義相同。已知兩個加數(shù)的和與其中的一個加數(shù),求另一個加數(shù)的運算.
3. 小數(shù)乘法:
小數(shù)乘整數(shù)的意義和整數(shù)乘法的意義相同,就是求幾個相同加數(shù)和的簡便運算;一個數(shù)乘純小數(shù)的意義是求這個數(shù)的十分之幾、百分之幾、千分之幾……是多少。
4. 小數(shù)除法:
小數(shù)除法的意義與整數(shù)除法的意義相同,就是已知兩個因數(shù)的積與其中一個因數(shù),求另一個因數(shù)的運算。
5. 乘方:
求幾個相同因數(shù)的積的運算叫做乘方。例如 3 × 3 =32
。ㄈ┓謹(shù)四則運算
1. 分數(shù)加法:
分數(shù)加法的意義與整數(shù)加法的意義相同。 是把兩個數(shù)合并成一個數(shù)的運算。
2. 分數(shù)減法:
分數(shù)減法的意義與整數(shù)減法的意義相同。已知兩個加數(shù)的和與其中的一個加數(shù),求另一個加數(shù)的運算。
3. 分數(shù)乘法:
分數(shù)乘法的意義與整數(shù)乘法的意義相同,就是求幾個相同加數(shù)和的簡便運算。
4. 乘積是1的兩個數(shù)叫做互為倒數(shù)。
5. 分數(shù)除法:
分數(shù)除法的意義與整數(shù)除法的意義相同。就是已知兩個因數(shù)的積與其中一個因數(shù),求另一個因數(shù)的運算。
。ㄋ模┻\算定律
1. 加法交換律:
兩個數(shù)相加,交換加數(shù)的位置,它們的和不變,即a+b=b+a 。
2. 加法結(jié)合律:
三個數(shù)相加,先把前兩個數(shù)相加,再加上第三個數(shù);或者先把后兩個數(shù)相加,再和第一個數(shù)相加它們的和不變,即(a+b)+c=a+(b+c) 。
3. 乘法交換律:
兩個數(shù)相乘,交換因數(shù)的位置它們的積不變,即a×b=b×a。
4. 乘法結(jié)合律:
三個數(shù)相乘,先把前兩個數(shù)相乘,再乘以第三個數(shù);或者先把后兩個數(shù)相乘,再和第一個數(shù)相乘,它們的積不變,即(a×b)×c=a×(b×c) 。
5. 乘法分配律:
兩個數(shù)的和與一個數(shù)相乘,可以把兩個加數(shù)分別與這個數(shù)相乘再把兩個積相加,即(a+b)×c=a×c+b×c 。
6. 減法的性質(zhì):
從一個數(shù)里連續(xù)減去幾個數(shù),可以從這個數(shù)里減去所有減數(shù)的和,差不變,即a-b-c=a-(b+c) 。
。ㄎ澹┻\算法則
1. 整數(shù)加法計算法則:
相同數(shù)位對齊,從低位加起,哪一位上的數(shù)相加滿十,就向前一位進一。
2. 整數(shù)減法計算法則:
相同數(shù)位對齊,從低位加起,哪一位上的數(shù)不夠減,就從它的前一位退一作十,和本位上的數(shù)合并在一起,再減。
3. 整數(shù)乘法計算法則:
先用一個因數(shù)每一位上的數(shù)分別去乘另一個因數(shù)各個數(shù)位上的數(shù),用因數(shù)哪一位上的數(shù)去乘,乘得的數(shù)的末尾就對齊哪一位,然后把各次乘得的數(shù)加起來。
4. 整數(shù)除法計算法則:
先從被除數(shù)的高位除起,除數(shù)是幾位數(shù),就看被除數(shù)的前幾位; 如果不夠除,就多看一位,除到被除數(shù)的哪一位,商就寫在哪一位的上面。如果哪一位上不夠商1,要補“0”占位。每次除得的余數(shù)要小于除數(shù)。
5. 小數(shù)乘法法則:
先按照整數(shù)乘法的計算法則算出積,再看因數(shù)中共有幾位小數(shù),就從積的右邊起數(shù)出幾位,點上小數(shù)點;如果位數(shù)不夠,就用“0”補足。
6. 除數(shù)是整數(shù)的小數(shù)除法計算法則:
先按照整數(shù)除法的法則去除,商的小數(shù)點要和被除數(shù)的小數(shù)點對齊;如果除到被除數(shù)的末尾仍有余數(shù),就在余數(shù)后面添“0”,再繼續(xù)除。
7. 除數(shù)是小數(shù)的除法計算法則:
先移動除數(shù)的小數(shù)點,使它變成整數(shù),除數(shù)的小數(shù)點也向右移動幾位(位數(shù)不夠的補“0”),然后按照除數(shù)是整數(shù)的除法法則進行計算。
8. 同分母分數(shù)加減法計算方法:
同分母分數(shù)相加減,只把分子相加減,分母不變。
9. 異分母分數(shù)加減法計算方法:
先通分,然后按照同分母分數(shù)加減法的的法則進行計算。
10. 帶分數(shù)加減法的計算方法:
整數(shù)部分和分數(shù)部分分別相加減,再把所得的數(shù)合并起來。
11. 分數(shù)乘法的計算法則:
分數(shù)乘整數(shù),用分數(shù)的分子和整數(shù)相乘的積作分子,分母不變;分數(shù)乘分數(shù),用分子相乘的積作分子,分母相乘的積作分母。
12. 分數(shù)除法的計算法則:
甲數(shù)除以乙數(shù)(0除外),等于甲數(shù)乘乙數(shù)的倒數(shù)。
。 運算順序
1. 小數(shù)四則運算的運算順序和整數(shù)四則運算順序相同。
2. 分數(shù)四則運算的運算順序和整數(shù)四則運算順序相同。
3. 沒有括號的混合運算:
同級運算從左往右依次運算;兩級運算 先算乘、除法,后算加減法。
4. 有括號的混合運算:
先算小括號里面的,再算中括號里面的,最后算括號外面的。
5. 第一級運算:
加法和減法叫做第一級運算。
6. 第二級運算:
乘法和除法叫做第二級運算。
五 應(yīng)用
。ㄒ唬┱麛(shù)和小數(shù)的應(yīng)用
1 簡單應(yīng)用題
(1) 簡單應(yīng)用題:只含有一種基本數(shù)量關(guān)系,或用一步運算解答的應(yīng)用題,通常叫做簡單應(yīng)用題。
。2) 解題步驟:
a 審題理解題意:了解應(yīng)用題的內(nèi)容,知道應(yīng)用題的條件和問題。讀題時,不丟字不添字邊讀邊思考,弄明白題中每句話的意思。也可以復(fù)述條件和問題,幫助理解題意。
b選擇算法和列式計算:這是解答應(yīng)用題的中心工作。從題目中告訴什么,要求什么著手,逐步根據(jù)所給的條件和問題,聯(lián)系四則運算的含義,分析數(shù)量關(guān)系,確定算法,進行解答并標明正確的單位名稱。
C檢驗:就是根據(jù)應(yīng)用題的條件和問題進行檢查看所列算式和計算過程是否正確,是否符合題意。如果發(fā)現(xiàn)錯誤,馬上改正。
2 復(fù)合應(yīng)用題
。1)有兩個或兩個以上的基本數(shù)量關(guān)系組成的,用兩步或兩步以上運算解答的應(yīng)用題,通常叫做復(fù)合應(yīng)用題。
。2)含有三個已知條件的兩步計算的應(yīng)用題。
求比兩個數(shù)的和多(少)幾個數(shù)的應(yīng)用題。
比較兩數(shù)差與倍數(shù)關(guān)系的應(yīng)用題。
。3)含有兩個已知條件的兩步計算的應(yīng)用題。
已知兩數(shù)相差多少(或倍數(shù)關(guān)系)與其中一個數(shù),求兩個數(shù)的和(或差)。
已知兩數(shù)之和與其中一個數(shù),求兩個數(shù)相差多少(或倍數(shù)關(guān)系)。
(4)解答連乘連除應(yīng)用題。
。5)解答三步計算的應(yīng)用題。
。6)解答小數(shù)計算的應(yīng)用題:小數(shù)計算的加法、減法、乘法和除法的應(yīng)用題,他們的數(shù)量關(guān)系、結(jié)構(gòu)、和解題方式都與正式應(yīng)用題基本相同,只是在已知數(shù)或未知數(shù)中間含有小數(shù)。
d答案:根據(jù)計算的結(jié)果,先口答,逐步過渡到筆答。
( 3 ) 解答加法應(yīng)用題:
a求總數(shù)的應(yīng)用題:已知甲數(shù)是多少,乙數(shù)是多少,求甲乙兩數(shù)的和是多少。
b求比一個數(shù)多幾的數(shù)應(yīng)用題:已知甲數(shù)是多少和乙數(shù)比甲數(shù)多多少,求乙數(shù)是多少。
(4 ) 解答減法應(yīng)用題:
a求剩余的應(yīng)用題:從已知數(shù)中去掉一部分,求剩下的部分。
-b求兩個數(shù)相差的多少的應(yīng)用題:已知甲乙兩數(shù)各是多少,求甲數(shù)比乙數(shù)多多少,或乙數(shù)比甲數(shù)少多少。
c求比一個數(shù)少幾的數(shù)的應(yīng)用題:已知甲數(shù)是多少,乙數(shù)比甲數(shù)少多少,求乙數(shù)是多少。
(5 ) 解答乘法應(yīng)用題:
a求相同加數(shù)和的應(yīng)用題:已知相同的加數(shù)和相同加數(shù)的個數(shù),求總數(shù)。
b求一個數(shù)的幾倍是多少的應(yīng)用題:已知一個數(shù)是多少,另一個數(shù)是它的幾倍,求另一個數(shù)是多少。
( 6) 解答除法應(yīng)用題:
a把一個數(shù)平均分成幾份,求每一份是多少的應(yīng)用題:已知一個數(shù)和把這個數(shù)平均分成幾份的,求每一份是多少。
b求一個數(shù)里包含幾個另一個數(shù)的應(yīng)用題:已知一個數(shù)和每份是多少,求可以分成幾份。
C 求一個數(shù)是另一個數(shù)的的幾倍的應(yīng)用題:已知甲數(shù)乙數(shù)各是多少,求較大數(shù)是較小數(shù)的幾倍。
d已知一個數(shù)的幾倍是多少,求這個數(shù)的應(yīng)用題。
(7)常見的數(shù)量關(guān)系:
總價= 單價×數(shù)量
路程= 速度×?xí)r間
工作總量=工作時間×工效
總產(chǎn)量=單產(chǎn)量×數(shù)量
3、典型應(yīng)用題
具有獨特的結(jié)構(gòu)特征的和特定的解題規(guī)律的復(fù)合應(yīng)用題,通常叫做典型應(yīng)用題。
。1)平均數(shù)問題:平均數(shù)是等分除法的發(fā)展。
解題關(guān)鍵:在于確定總數(shù)量和與之相對應(yīng)的總份數(shù)。
算術(shù)平均數(shù):已知幾個不相等的同類量和與之相對應(yīng)的份數(shù),求平均每份是多少。數(shù)量關(guān)系式:數(shù)量之和÷數(shù)量的個數(shù)=算術(shù)平均數(shù)。
加權(quán)平均數(shù):已知兩個以上若干份的平均數(shù),求總平均數(shù)是多少。
數(shù)量關(guān)系式 (部分平均數(shù)×權(quán)數(shù))的總和÷(權(quán)數(shù)的和)=加權(quán)平均數(shù)。
差額平均數(shù):是把各個大于或小于標準數(shù)的部分之和被總份數(shù)均分,求的是標準數(shù)與各數(shù)相差之和的平均數(shù)。
數(shù)量關(guān)系式:(大數(shù)-小數(shù))÷2=小數(shù)應(yīng)得數(shù) 最大數(shù)與各數(shù)之差的和÷總份數(shù)=最大數(shù)應(yīng)給數(shù) 最大數(shù)與個數(shù)之差的和÷總份數(shù)=最小數(shù)應(yīng)得數(shù)。
例:一輛汽車以每小時100 千米的速度從甲地開往乙地,又以每小時60 千米的速度從乙地開往甲地。求這輛車的平均速度。
分析:求汽車的平均速度同樣可以利用公式。此題可以把甲地到乙地的路程設(shè)為“ 1 ”,則汽車行駛的總路程為“ 2 ”,從甲地到乙地的速度為 100 ,所用的時間為 ,汽車從乙地到甲地速度為60 千米,所用的時間是 ,汽車共行的時間為 + = , 汽車的平均速度為 2 ÷ =75 (千米)
。2) 歸一問題:已知相互關(guān)聯(lián)的兩個量,其中一種量改變,另一種量也隨之而改變,其變化的規(guī)律是相同的,這種問題稱之為歸一問題。
根據(jù)求“單一量”的步驟的多少,歸一問題可以分為一次歸一問題,兩次歸一問題。
根據(jù)球癡單一量之后,解題采用乘法還是除法,歸一問題可以分為正歸一問題,反歸一問題。
一次歸一問題,用一步運算就能求出“單一量”的歸一問題。又稱“單歸一!
兩次歸一問題,用兩步運算就能求出“單一量”的歸一問題。又稱“雙歸一!
正歸一問題:用等分除法求出“單一量”之后,再用乘法計算結(jié)果的歸一問題。
反歸一問題:用等分除法求出“單一量”之后,再用除法計算結(jié)果的歸一問題。
解題關(guān)鍵:從已知的一組對應(yīng)量中用等分除法求出一份的數(shù)量(單一量),然后以它為標準,根據(jù)題目的要求算出結(jié)果。
數(shù)量關(guān)系式:單一量×份數(shù)=總數(shù)量(正歸一)
總數(shù)量÷單一量=份數(shù)(反歸一)
例 一個織布工人,在七月份織布4774 米, 照這樣計算,織布6930 米,需要多少天?
分析:必須先求出平均每天織布多少米,就是單一量。 693 0 ÷( 477 4 ÷ 31 ) =45 (天)
(3)歸總問題:是已知單位數(shù)量和計量單位數(shù)量的個數(shù),以及不同的單位數(shù)量(或單位數(shù)量的個數(shù)),通過求總數(shù)量求得單位數(shù)量的個數(shù)(或單位數(shù)量)。
特點:兩種相關(guān)聯(lián)的量,其中一種量變化,另一種量也跟著變化,不過變化的規(guī)律相反,和反比例算法彼此相通。
數(shù)量關(guān)系式:單位數(shù)量×單位個數(shù)÷另一個單位數(shù)量 = 另一個單位數(shù)量 單位數(shù)量×單位個數(shù)÷另一個單位數(shù)量= 另一個單位數(shù)量。
例 修一條水渠,原計劃每天修800 米, 6 天修完。實際 4 天修完,每天修了多少米?
分析:因為要求出每天修的長度,就必須先求出水渠的長度。所以也把這類應(yīng)用題叫做“歸總問題”。不同之處是“歸一”先求出單一量,再求總量,歸總問題是先求出總量,再求單一量。 80 0 × 6 ÷ 4=1200 (米)
。4) 和差問題:已知大小兩個數(shù)的和,以及他們的差,求這兩個數(shù)各是多少的應(yīng)用題叫做和差問題。
解題關(guān)鍵:是把大小兩個數(shù)的和轉(zhuǎn)化成兩個大數(shù)的和(或兩個小數(shù)的和),然后再求另一個數(shù)。
解題規(guī)律:(和+差)÷2 = 大數(shù) 大數(shù)-差=小數(shù)
。ê停睿2=小數(shù) 和-小數(shù)= 大數(shù)
例 某加工廠甲班和乙班共有工人 94 人,因工作需要臨時從乙班調(diào) 46 人到甲班工作,這時乙班比甲班人數(shù)少 12 人,求原來甲班和乙班各有多少人?
分析:從乙班調(diào) 46 人到甲班,對于總數(shù)沒有變化,現(xiàn)在把乙數(shù)轉(zhuǎn)化成 2 個乙班,即 9 4 - 12 ,由此得到現(xiàn)在的乙班是( 9 4 - 12 )÷ 2=41 (人),乙班在調(diào)出 46 人之前應(yīng)該為 41+46=87 (人),甲班為 9 4 - 87=7 (人)
。5)和倍問題:已知兩個數(shù)的和及它們之間的倍數(shù) 關(guān)系,求兩個數(shù)各是多少的應(yīng)用題,叫做和倍問題。
解題關(guān)鍵:找準標準數(shù)(即1倍數(shù))一般說來,題中說是“誰”的幾倍,把誰就確定為標準數(shù)。求出倍數(shù)和之后,再求出標準的數(shù)量是多少。根據(jù)另一個數(shù)(也可能是幾個數(shù))與標準數(shù)的倍數(shù)關(guān)系,再去求另一個數(shù)(或幾個數(shù))的數(shù)量。
解題規(guī)律:和÷倍數(shù)和=標準數(shù) 標準數(shù)×倍數(shù)=另一個數(shù)
例:汽車運輸場有大小貨車 115 輛,大貨車比小貨車的 5 倍多 7 輛,運輸場有大貨車和小汽車各有多少輛?
分析:大貨車比小貨車的 5 倍還多 7 輛,這 7 輛也在總數(shù) 115 輛內(nèi),為了使總數(shù)與( 5+1 )倍對應(yīng),總車輛數(shù)應(yīng)( 115-7 )輛 。
列式為( 115-7 )÷( 5+1 ) =18 (輛), 18 × 5+7=97 (輛)
。6)差倍問題:已知兩個數(shù)的差,及兩個數(shù)的倍數(shù)關(guān)系,求兩個數(shù)各是多少的應(yīng)用題。
解題規(guī)律:兩個數(shù)的差÷(倍數(shù)-1 )= 標準數(shù) 標準數(shù)×倍數(shù)=另一個數(shù)。
例 甲乙兩根繩子,甲繩長63 米,乙繩長29 米,兩根繩剪去同樣的長度,結(jié)果甲所剩的長度是乙繩 長的 3 倍,甲乙兩繩所剩長度各多少米? 各減去多少米?
分析:兩根繩子剪去相同的一段,長度差沒變,甲繩所剩的長度是乙繩的 3 倍,實比乙繩多( 3-1 )倍,以乙繩的長度為標準數(shù)。列式( 63-29 )÷( 3-1 ) =17 (米)…乙繩剩下的長度, 17 × 3=51 (米)…甲繩剩下的長度, 29-17=12 (米)…剪去的長度。
。7)行程問題:關(guān)于走路、行車等問題,一般都是計算路程、時間、速度,叫做行程問題。解答這類問題首先要搞清楚速度、時間、路程、方向、杜速度和、速度差等概念,了解他們之間的關(guān)系,再根據(jù)這類問題的規(guī)律解答。
解題關(guān)鍵及規(guī)律:
同時同地相背而行:路程=速度和×?xí)r間。
同時相向而行:相遇時間=速度和×?xí)r間
同時同向而行(速度慢的在前,快的在后):追及時間=路程速度差。
同時同地同向而行(速度慢的在后,快的在前):路程=速度差×?xí)r間。
例 甲在乙的后面28 千米,兩人同時同向而行,甲每小時行16 千米,乙每小時行9 千米,甲幾小時追上乙?
分析:甲每小時比乙多行( 16-9 )千米,也就是甲每小時可以追近乙( 16-9 )千米,這是速度差。
已知甲在乙的后面28 千米(追擊路程),28 千米里包含著幾個( 16-9 )千米,也就是追擊所需要的時間。列式 2 8 ÷ ( 16-9 ) =4 (小時)
。8)流水問題:一般是研究船在“流水”中航行的問題。它是行程問題中比較特殊的一種類型,它也是一種和差問題。它的特點主要是考慮水速在逆行和順行中的不同作用。
船速:船在靜水中航行的速度。
水速:水流動的速度。
順水速度:船順流航行的速度。
逆水速度:船逆流航行的速度。
順速=船速+水速
逆速=船速-水速
解題關(guān)鍵:因為順流速度是船速與水速的和,逆流速度是船速與水速的差,所以流水問題當(dāng)作和差問題解答。 解題時要以水流為線索。
解題規(guī)律:船行速度=(順水速度+ 逆流速度)÷2
流水速度=(順流速度逆流速度)÷2
路程=順流速度× 順流航行所需時間
路程=逆流速度×逆流航行所需時間
例 一只輪船從甲地開往乙地順水而行,每小時行28 千米,到乙地后,又逆水 航行,回到甲地。逆水比順水多行 2 小時,已知水速每小時4 千米。求甲乙兩地相距多少千米?
分析:此題必須先知道順水的速度和順水所需要的時間,或者逆水速度和逆水的時間。已知順水速度和水流 速度,因此不難算出逆水的速度,但順水所用的時間,逆水所用的時間不知道,只知道順水比逆水少用 2 小時,抓住這一點,就可以就能算出順水從甲地到乙地的所用的時間,這樣就能算出甲乙兩地的路程。列式為 284 × 2=20 (千米) 2 0 × 2 =40 (千米) 40 ÷( 4 × 2 ) =5 (小時) 28 × 5=140 (千米)。
(9) 還原問題:已知某未知數(shù),經(jīng)過一定的四則運算后所得的結(jié)果,求這個未知數(shù)的應(yīng)用題,我們叫做還原問題。
解題關(guān)鍵:要弄清每一步變化與未知數(shù)的關(guān)系。
解題規(guī)律:從最后結(jié)果 出發(fā),采用與原題中相反的運算(逆運算)方法,逐步推導(dǎo)出原數(shù)。
根據(jù)原題的運算順序列出數(shù)量關(guān)系,然后采用逆運算的方法計算推導(dǎo)出原數(shù)。
解答還原問題時注意觀察運算的順序。若需要先算加減法,后算乘除法時別忘記寫括號。
例 某小學(xué)三年級四個班共有學(xué)生 168 人,如果四班調(diào) 3 人到三班,三班調(diào) 6 人到二班,二班調(diào) 6 人到一班,一班調(diào) 2 人到四班,則四個班的人數(shù)相等,四個班原有學(xué)生多少人?
分析:當(dāng)四個班人數(shù)相等時,應(yīng)為 168 ÷ 4 ,以四班為例,它調(diào)給三班 3 人,又從一班調(diào)入 2 人,所以四班原有的人數(shù)減去 3 再加上 2 等于平均數(shù)。四班原有人數(shù)列式為 168 ÷ 4-2+3=43 (人)
一班原有人數(shù)列式為 168 ÷ 4-6+2=38 (人);二班原有人數(shù)列式為 168 ÷ 4-6+6=42 (人) 三班原有人數(shù)列式為 168 ÷ 4-3+6=45 (人)。
。10)植樹問題:這類應(yīng)用題是以“植樹”為內(nèi)容。凡是研究總路程、株距、段數(shù)、棵樹四種數(shù)量關(guān)系的應(yīng)用題,叫做植樹問題。
解題關(guān)鍵:解答植樹問題首先要判斷地形,分清是否封閉圖形,從而確定是沿線段植樹還是沿周長植樹,然后按基本公式進行計算。
解題規(guī)律:沿線段植樹
棵樹=段數(shù)+1 棵樹=總路程÷株距+1
株距=總路程÷(棵樹-1) 總路程=株距×(棵樹-1)
沿周長植樹
棵樹=總路程÷株距
株距=總路程÷棵樹
總路程=株距×棵樹
例 沿公路一旁埋電線桿 301 根,每相鄰的兩根的間距是50 米。后來全部改裝,只埋了201 根。求改裝后每相鄰兩根的間距。
分析:本題是沿線段埋電線桿,要把電線桿的根數(shù)減掉一。列式為 50 ×( 301-1 )÷( 201-1 ) =75 (米)
。11 )盈虧問題:是在等分除法的基礎(chǔ)上發(fā)展起來的。 他的特點是把一定數(shù)量的物品,平均分配給一定數(shù)量的人,在兩次分配中,一次有余,一次不足(或兩次都有余),或兩次都不足),已知所余和不足的數(shù)量,求物品適量和參加分配人數(shù)的問題,叫做盈虧問題。
解題關(guān)鍵:盈虧問題的解法要點是先求兩次分配中分配者沒份所得物品數(shù)量的差,再求兩次分配中各次共分物品的差(也稱總差額),用前一個差去除后一個差,就得到分配者的數(shù),進而再求得物品數(shù)。
解題規(guī)律:總差額÷每人差額=人數(shù)
總差額的求法可以分為以下四種情況:
第一次多余,第二次不足,總差額=多余+ 不足
第一次正好,第二次多余或不足 ,總差額=多余或不足
第一次多余,第二次也多余,總差額=大多余-小多余
第一次不足,第二次也不足, 總差額= 大不足-小不足
例 參加美術(shù)小組的同學(xué),每個人分的相同的支數(shù)的色筆,如果小組 10 人,則多 25 支,如果小組有 12 人,色筆多余 5 支。求每人 分得幾支?共有多少支色鉛筆?
分析:每個同學(xué)分到的色筆相等。這個活動小組有 12 人,比 10 人多 2 人,而色筆多出了( 25-5 ) =20 支 , 2 個人多出 20 支,一個人分得 10 支。列式為( 25-5 )÷( 12-10 ) =10 (支) 10 × 12+5=125 (支)。
(12)年齡問題:將差為一定值的兩個數(shù)作為題中的一個條件,這種應(yīng)用題被稱為“年齡問題”。
解題關(guān)鍵:年齡問題與和差、和倍、 差倍問題類似,主要特點是隨著時間的變化,年歲不斷增長,但大小兩個不同年齡的差是不會改變的,因此,年齡問題是一種“差不變”的問題,解題時,要善于利用差不變的特點。
例 父親 48 歲,兒子 21 歲。問幾年前父親的年齡是兒子的 4 倍?
分析:父子的年齡差為 48-21=27 (歲)。由于幾年前父親年齡是兒子的 4 倍,可知父子年齡的倍數(shù)差是( 4-1 )倍。這樣可以算出幾年前父子的年齡,從而可以求出幾年前父親的年齡是兒子的 4 倍。列式為: 21( 48-21 )÷( 4-1 ) =12 (年)
。13)雞兔問題:已知“雞兔”的總頭數(shù)和總腿數(shù)。求“雞”和“兔”各多少只的一類應(yīng)用題。通常稱為“雞兔問題”又稱雞兔同籠問題
解題關(guān)鍵:解答雞兔問題一般采用假設(shè)法,假設(shè)全是一種動物(如全是“雞”或全是“兔”,然后根據(jù)出現(xiàn)的腿數(shù)差,可推算出某一種的頭數(shù)。
解題規(guī)律:(總腿數(shù)-雞腿數(shù)×總頭數(shù))÷一只雞兔腿數(shù)的差=兔子只數(shù)
兔子只數(shù)=(總腿數(shù)-2×總頭數(shù))÷2
如果假設(shè)全是兔子,可以有下面的式子:
雞的只數(shù)=(4×總頭數(shù)-總腿數(shù))÷2
兔的頭數(shù)=總頭數(shù)-雞的只數(shù)
例 雞兔同籠共 50 個頭, 170 條腿。問雞兔各有多少只?
兔子只數(shù) ( 170-2 × 50 )÷ 2 =35 (只)
雞的只數(shù) 50-35=15 (只)
-
。ǘ┓謹(shù)和百分數(shù)的應(yīng)用
1 分數(shù)加減法應(yīng)用題:
分數(shù)加減法的應(yīng)用題與整數(shù)加減法的應(yīng)用題的結(jié)構(gòu)、數(shù)量關(guān)系和解題方法基本相同,所不同的只是在已知數(shù)或未知數(shù)中含有分數(shù)。
2分數(shù)乘法應(yīng)用題:
是指已知一個數(shù),求它的幾分之幾是多少的應(yīng)用題。
特征:已知單位“1”的量和分率,求與分率所對應(yīng)的實際數(shù)量。
解題關(guān)鍵:準確判斷單位“1”的量。找準要求問題所對應(yīng)的分率,然后根據(jù)一個數(shù)乘分數(shù)的意義正確列式。
3 分數(shù)除法應(yīng)用題:
求一個數(shù)是另一個數(shù)的幾分之幾(或百分之幾)是多少。
特征:已知一個數(shù)和另一個數(shù),求一個數(shù)是另一個數(shù)的幾分之幾或百分之幾!耙粋數(shù)”是比較量,“另一個數(shù)”是標準量。求分率或百分率,也就是求他們的倍數(shù)關(guān)系。
解題關(guān)鍵:從問題入手,搞清把誰看作標準的數(shù)也就是把誰看作了“單位一”,誰和單位一的量作比較,誰就作被除數(shù)。
甲是乙的幾分之幾(百分之幾):甲是比較量,乙是標準量,用甲除以乙。
甲比乙多(或少)幾分之幾(百分之幾):甲減乙比乙多(或少幾分之幾)或(百分之幾)。關(guān)系式(甲數(shù)減乙數(shù))/乙數(shù)或(甲數(shù)減乙數(shù))/甲數(shù) 。
已知一個數(shù)的幾分之幾(或百分之幾 ) ,求這個數(shù)。
特征:已知一個實際數(shù)量和它相對應(yīng)的分率,求單位“1”的量。
解題關(guān)鍵:準確判斷單位“1”的量把單位“1”的量看成x根據(jù)分數(shù)乘法的意義列方程,或者根據(jù)分數(shù)除法的意義列算式,但必須找準和分率相對應(yīng)的已知實際
數(shù)量。
4 出勤率
發(fā)芽率=發(fā)芽種子數(shù)/試驗種子數(shù)×100%
小麥的出粉率= 面粉的重量/小麥的重量×100%
產(chǎn)品的合格率=合格的產(chǎn)品數(shù)/產(chǎn)品總數(shù)×100%
職工的出勤率=實際出勤人數(shù)/應(yīng)出勤人數(shù)×100%
5 工程問題:
是分數(shù)應(yīng)用題的特例,它與整數(shù)的工作問題有著密切的聯(lián)系。它是探討工作總量、工作效率和工作時間三個數(shù)量之間相互關(guān)系的一種應(yīng)用題。
解題關(guān)鍵:把工作總量看作單位“1”,工作效率就是工作時間的倒數(shù),然后根據(jù)題目的具體情況,靈活運用公式。
數(shù)量關(guān)系式:
工作總量=工作效率×工作時間
工作效率=工作總量÷工作時間
工作時間=工作總量÷工作效率
工作總量÷工作效率和=合作時間
6 納稅
納稅就是把根據(jù)國家各種稅法的有關(guān)規(guī)定,按照一定的比率把集體或個人收入的一部分繳納給國家。
繳納的稅款叫應(yīng)納稅款。
應(yīng)納稅額與各種收入的(銷售額、營業(yè)額、應(yīng)納稅所得額 ……)的比率叫做稅率。
* 利息
存入銀行的錢叫做本金。
取款時銀行多支付的錢叫做利息。
利息與本金的比值叫做利率。
利息=本金×利率×?xí)r間
-第二章 度量衡
一、 長度
(一) 什么是長度
長度是一維空間的度量。
(二) 長度常用單位
* 公里(km) * 米(m) * 分米(dm) * 厘米(cm) * 毫米(mm) * 微米(um)
(三) 單位之間的換算
* 1毫米 =1000微米 * 1厘米 =10 毫米 * 1分米 =10 厘米 *1米=1000 毫米 *1千米=1000 米
二、 面積
。ㄒ唬┦裁词敲娣e
面積,就是物體所占平面的大小。對立體物體的表面的多少的測量一般稱表面積。
。ǘ┏S玫拿娣e單位
* 平方毫米 * 平方厘米 * 平方分米 * 平方米 * 平方千米
。ㄈ┟娣e單位的換算
* 1平方厘米 =100 平方毫米 * 1平方分米=100平方厘米 * 1平方米 =100 平方分米
* 1公傾 =10000 平方米 * 1平方公里 =100 公頃
三、 體積和容積
。ㄒ唬┦裁词求w積、容積
體積,就是物體所占空間的大小。
容積,箱子、油桶、倉庫等所能容納物體的體積,通常叫做它們的容積。
。ǘ┏S脝挝
1 體積單位
* 立方米 * 立方分米 * 立方厘米
2 容積單位 * 升 * 毫升
(三)單位換算
1 體積單位
* 1立方米=1000立方分米
* 1立方分米=1000立方厘米
2 容積單位
*1升=1000毫升
*1升=1立方米
* 1毫升=1立方厘米
四、 質(zhì)量
。ㄒ唬┦裁词琴|(zhì)量
質(zhì)量,就是表示表示物體有多重。
。ǘ┏S脝挝
* 噸 t * 千克 kg * 克 g
(三)常用換算
* 一噸=1000千克
*1千克=1000克
五、 時間
。ㄒ唬┦裁词菚r間
是指有起點和終點的一段時間
。ǘ┏S脝挝
世紀、 年 、 月 、 日 、 時 、 分、 秒
(三)單位換算
* 1世紀=100年
* 1年=365天 平年
* 一年=366天 閏年
* 一、三、五、七、八、十、十二是大月 大月有31 天
* 四、六、九、十一是小月小月 小月有30天
* 平年2月有28天 閏年2月有29天
* 1天= 24小時
* 1小時=60分
* 一分=60秒
六 貨幣
(一)什么是貨幣
貨幣是充當(dāng)一切商品的等價物的特殊商品。貨幣是價值的一般代表,可以購買任何別的商品。
(二)常用單位
* 元 * 角 * 分
。ㄈ﹩挝粨Q算
* 1元=10角
* 1角=10分
-第三章 代數(shù)初步知識
一、用字母表示數(shù)
1 用字母表示數(shù)的意義和作用
* 用字母表示數(shù),可以把數(shù)量關(guān)系簡明的表達出來,同時也可以表示運算的結(jié)果。
2用字母表示常見的數(shù)量關(guān)系、運算定律和性質(zhì)、幾何形體的計算公式
。1)常見的數(shù)量關(guān)系
路程用s表示,速度v用表示,時間用t表示,三者之間的關(guān)系:
s=vt
v=s/t
t=s/v
總價用a表示,單價用b表示,數(shù)量用c表示,三者之間的關(guān)系:
a=bc
b=a/c
c=a/b
。2)運算定律和性質(zhì)
加法交換律:a+b=b+a
加法結(jié)合律:(a+b)+c=a+(b+c)
乘法交換律:ab=ba
乘法結(jié)合律:(ab)c=a(bc)
乘法分配律:(a+b)c=ac+bc
減法的性質(zhì):a-(b+c) =a-b-c
。3)用字母表示幾何形體的公式
長方形的長用a表示,寬用b表示,周長用c表示,面積用s表示。
c=2(a+b)
s=ab
正方形的邊長a用表示,周長用c表示,面積用s表示。
c=4a
s=a
平行四邊形的底a用表示,高用h表示,面積用s表示。
s=ah
三角形的底用a表示,高用h表示,面積用s表示。
s=ah/2
梯形的上底用a表示,下底b用表示,高用h表示,中位線用m表示,面積用s表示。
s=(a+b)h/2
s=mh
圓的半徑用r表示,直徑用d表示,周長用c表示,面積用s表示。
c=∏d=2∏r
s=∏ r
扇形的半徑用r表示,n表示圓心角的度數(shù),面積用s表示。
s=∏ nr/360
長方體的長用a表示,寬用b表示,高用h表示,表面積用s表示,體積用v表示。
v=sh
s=2(ab+ah+bh)
v=abh
正方體的棱長用a表示,底面周長c用表示,底面積用s表示, 體積用v表示.
s=6a
v=a
圓柱的高用h表示,底面周長用c表示,底面積用s表示, 體積用v表示.
s側(cè)=ch
s表=s側(cè)+2s底
v=sh
圓錐的高用h表示,底面積用s表示, 體積用v表示.
v=sh/3
3 用字母表示數(shù)的寫法
數(shù)字和字母、字母和字母相乘時,乘號可以記作“.”,或者省略不寫,數(shù)字要寫在字母的前面。 當(dāng)“1”與任何字母相乘時,“1”省略不寫。
在一個問題中,同一個字母表示同一個量,不同的量用不同的字母表示。
用含有字母的式子表示問題的答案時,除數(shù)一般寫成分母,如果式子中有加號或者減號,要先用括號把含字母的式子括起來,再在括號后面寫上單位的名稱。
4將數(shù)值代入式子求值
* 把具體的數(shù)代入式子求值時,要注意書寫格式:先寫出字母等于幾,然后寫出原式,再把數(shù)代入式子求值。字母表示的是數(shù),后面不寫單位名稱。
* 同一個式子,式子中所含字母取不同的數(shù)值,那么所求出的式子的值也不相同。
二、簡易方程
(一)方程和方程的解
1方程:含有未知數(shù)的等式叫做方程。
注意方程是等式,又含有未知數(shù),兩者缺一不可。
方程和算術(shù)式不同。算術(shù)式是一個式子,它由運算符號和已知數(shù)組成,它表示未知數(shù)。方程是一個等式,在方程里的未知數(shù)可以參加運算,并且只有當(dāng)未知數(shù)為特定的數(shù)值時 ,方程才成立 。
2 方程的解:使方程左右兩邊相等的未知數(shù)的值,叫做方程的解。
三、解方程
解方程,求方程的解的過程叫做解方程。
四、列方程解應(yīng)用題
1 列方程解應(yīng)用題的意義
* 用方程式去解答應(yīng)用題求得應(yīng)用題的未知量的方法。
2 列方程解答應(yīng)用題的步驟
* 弄清題意,確定未知數(shù)并用x表示;
* 找出題中的數(shù)量之間的相等關(guān)系;
* 列方程,解方程;
* 檢查或驗算,寫出答案。
3列方程解應(yīng)用題的方法
* 綜合法:先把應(yīng)用題中已知數(shù)(量)和所設(shè)未知數(shù)(量)列成有關(guān)的代數(shù)式,再找出它們之間的等量關(guān)系,進而列出方程。這是從部分到整體的一種 思維過程,其思考方向是從已知到未知。
* 分析法:先找出等量關(guān)系,再根據(jù)具體建立等量關(guān)系的需要,把應(yīng)用題中已知數(shù)(量)和所設(shè)的未知數(shù)(量)列成有關(guān)的代數(shù)式進而列出方程。這是從整體到部分的一種思維過程,其思考方向是從未知到已知。
4列方程解應(yīng)用題的范圍
小學(xué)范圍內(nèi)常用方程解的應(yīng)用題:
a一般應(yīng)用題;
b和倍、差倍問題;
c幾何形體的周長、面積、體積計算;
d 分數(shù)、百分數(shù)應(yīng)用題;
e 比和比例應(yīng)用題。
五 比和比例
1比的意義和性質(zhì)
。1) 比的意義
兩個數(shù)相除又叫做兩個數(shù)的比。
“:”是比號,讀作“比”。比號前面的數(shù)叫做比的前項,比號后面的數(shù)叫做比的后項。比的前項除以后項所得的商,叫做比值。
同除法比較,比的前項相當(dāng)于被除數(shù),后項相當(dāng)于除數(shù),比值相當(dāng)于商。
比值通常用分數(shù)表示,也可以用小數(shù)表示,有時也可能是整數(shù)。
比的后項不能是零。
根據(jù)分數(shù)與除法的關(guān)系,可知比的前項相當(dāng)于分子,后項相當(dāng)于分母,比值相當(dāng)于分數(shù)值。
。2)比的性質(zhì)
比的前項和后項同時乘上或者除以相同的數(shù)(0除外),比值不變,這叫做比的基本性質(zhì)。
。3) 求比值和化簡比
求比值的方法:用比的前項除以后項,它的結(jié)果是一個數(shù)值可以是整數(shù),也可以是小數(shù)或分數(shù)。
根據(jù)比的基本性質(zhì)可以把比化成最簡單的整數(shù)比。它的結(jié)果必須是一個最簡比,即前、后項是互質(zhì)的數(shù)。
(4)比例尺
圖上距離:實際距離=比例尺
要求會求比例尺;已知圖上距離和比例尺求實際距離;已知實際距離和比例尺求圖上距離。
線段比例尺:在圖上附有一條注有數(shù)目的線段,用來表示和地面上相對應(yīng)的實際距離。
(5)按比例分配
在農(nóng)業(yè)生產(chǎn)和日常生活中,常常需要把一個數(shù)量按照一定的比來進行分配。這種分配的方法通常叫做按比例分配。
方法:首先求出各部分占總量的幾分之幾,然后求出總數(shù)的幾分之幾是多少。
2 比例的意義和性質(zhì)
。1) 比例的意義
表示兩個比相等的式子叫做比例。
組成比例的四個數(shù),叫做比例的項。
兩端的兩項叫做外項,中間的兩項叫做內(nèi)項。
。2)比例的性質(zhì)
在比例里,兩個外項的積等于兩個兩個內(nèi)向的積。這叫做比例的基本性質(zhì)。
。3)解比例
根據(jù)比例的基本性質(zhì),如果已知比例中的任何三項,就可以求出這個數(shù)比例中的另外一個未知項。求比例中的未知項,叫做解比例。
3 正比例和反比例
(1) 成正比例的量
兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,他們的關(guān)系叫做正比例關(guān)系。
用字母表示y/x=k(一定)
。2)成反比例的量
兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的積一定,這兩種量就叫做成反比例的量,他們的關(guān)系叫做反比例關(guān)系。
用字母表示x×y=k(一定)
第四章 幾何的初步知識
一 線和角
。1)線
* 直線
直線沒有端點;長度無限;過一點可以畫無數(shù)條,過兩點只能畫一條直線。
* 射線
射線只有一個端點;長度無限。
* 線段
線段有兩個端點,它是直線的一部分;長度有限;兩點的連線中,線段為最短。
* 平行線
在同一平面內(nèi),不相交的兩條直線叫做平行線。
兩條平行線之間的垂線長度都相等。
* 垂線
兩條直線相交成直角時,這兩條直線叫做互相垂直,其中一條直線叫做另一條直線的垂線,相交的點叫做垂足。
從直線外一點到這條直線所畫的垂線的長叫做這點到直線的距離。
。2)角
。1)從一點引出兩條射線,所組成的圖形叫做角。這個點叫做角的頂點,這兩條射線叫做角的邊。
(2)角的分類
銳角:小于90°的角叫做銳角。
直角:等于90°的角叫做直角。
鈍角:大于90°而小于180°的角叫做鈍角。
平角:角的兩邊成一條直線,這時所組成的角叫做平角。平角180°。
周角:角的一邊旋轉(zhuǎn)一周,與另一邊重合。周角是360°。
二 平面圖形
1長方形
。1)特征
對邊相等,4個角都是直角的四邊形。有兩條對稱軸。
。2)計算公式
c=2(a+b)
s=ab
2正方形
。1)特征:
四條邊都相等,四個角都是直角的四邊形。有4條對稱軸。
(2)計算公式
c=4a
s=a
3三角形
。1)特征
由三條線段圍成的圖形。內(nèi)角和是180度。三角形具有穩(wěn)定性。三角形有三條高。
。2)計算公式
s=ah/2
。3) 分類
按角分
銳角三角形 :三個角都是銳角。
直角三角形 :有一個角是直角。等腰三角形的兩個銳角各為45度,它有一條對稱軸。
鈍角三角形:有一個角是鈍角。
按邊分
不等邊三角形:三條邊長度不相等。
等腰三角形:有兩條邊長度相等;兩個底角相等;有一條對稱軸。
等邊三角形:三條邊長度都相等;三個內(nèi)角都是60度;有三條對稱軸。
4平行四邊形
。1) 特征
兩組對邊分別平行的四邊形。
相對的邊平行且相等。對角相等,相鄰的兩個角的度數(shù)之和為180度。平行四邊形容易變形。
。2) 計算公式
s=ah
5 梯形
。1)特征
只有一組對邊平行的四邊形。
中位線等于上下底和的一半。
等腰梯形有一條對稱軸。
。2) 公式
s=(a+b)h/2=mh
6 圓
(1) 圓的認識
平面上的一種曲線圖形。
圓中心的一點叫做圓心。一般用字母o表示。
半徑:連接圓心和圓上任意一點的線段叫做半徑。一般用r表示。
在同一個圓里,有無數(shù)條半徑,每條半徑的長度都相等。
通過圓心并且兩端都在圓上的線段叫做直徑。一般用d表示。
同一個圓里有無數(shù)條直徑,所有的直徑都相等。
同一個圓里,直徑等于兩個半徑的長度,即d=2r。
圓的大小由半徑?jīng)Q定。 圓有無數(shù)條對稱軸。
。2)圓的畫法
把圓規(guī)的兩腳分開,定好兩腳間的距離(即半徑);
把有針尖的一只腳固定在一點(即圓心)上;
把裝有鉛筆尖的一只腳旋轉(zhuǎn)一周,就畫出一個圓。
。3) 圓的周長
圍成圓的曲線的長叫做圓的周長。
把圓的周長和直徑的比值叫做圓周率。用字母∏表示。
。4) 圓的面積
圓所占平面的大小叫做圓的面積。
。5)計算公式
d=2r
r=d/2
c=∏d
c=2∏r
s=∏r
7扇形
。1) 扇形的認識
一條弧和經(jīng)過這條弧兩端的兩條半徑所圍成的圖形叫做扇形。
圓上AB兩點之間的部分叫做弧,讀作“弧AB”。
頂點在圓心的角叫做圓心角。
在同一個圓中,扇形的大小與這個扇形的圓心角的大小有關(guān)。
扇形有一條對稱軸。
(2) 計算公式
s=n∏r/360
8環(huán)形
(1) 特征
由兩個半徑不相等的同心圓相減而成,有無數(shù)條對稱軸。
(2) 計算公式
s=∏(R-r)
9軸對稱圖形
(1) 特征
如果一個圖形沿著一條直線對折,兩側(cè)的圖形能夠完全重合,這個圖形就是軸對稱圖形。折痕所在的這條直線叫做對稱軸。
正方形有4條對稱軸, 長方形有2條對稱軸。
等腰三角形有2條對稱軸,等邊三角形有3條對稱軸。
等腰梯形有一條對稱軸,圓有無數(shù)條對稱軸。
菱形有4條對稱軸,扇形有一條對稱軸。
三 立體圖形
。ㄒ唬╅L方體
1 特征
六個面都是長方形(有時有兩個相對的面是正方形)。
相對的面面積相等,12條棱相對的4條棱長度相等。
有8個頂點。
相交于一個頂點的三條棱的長度分別叫做長、寬、高。
兩個面相交的邊叫做棱。
三條棱相交的點叫做頂點。
把長方體放在桌面上,最多只能看到三個面。
長方體或者正方體6個面的總面積,叫做它的表面積。
2 計算公式
s=2(ab+ah+bh)
V=sh
V=abh
。ǘ┱襟w
1 特征
六個面都是正方形
六個面的面積相等
12條棱,棱長都相等
有8個頂點
正方體可以看作特殊的長方體
2 計算公式
S表=6a
v=a
。ㄈ﹫A柱
1圓柱的認識
圓柱的上下兩個面叫做底面。
圓柱有一個曲面叫做側(cè)面。
圓柱兩個底面之間的距離叫做高 。
進一法:實際中,使用的材料都要比計算的結(jié)果多一些 ,因此,要保留數(shù)的時候,省略的位上的是4或者比4小,都要向前一位進1。這種取近似值的方法叫做進一法。
2計算公式
s側(cè)=ch
s表=s側(cè)+s底×2
v=sh/3
。ㄋ模﹫A錐
1 圓錐的認識
圓錐的底面是個圓,圓錐的側(cè)面是個曲面。
從圓錐的頂點到底面圓心的距離是圓錐的高。
測量圓錐的高:先把圓錐的底面放平,用一塊平板水平地放在圓錐的頂點上面,豎直地量出平板和底面之間的距離。
把圓錐的側(cè)面展開得到一個扇形。 2計算公式
v= sh/3
。ㄎ澹┣
1 認識
球的表面是一個曲面,這個曲面叫做球面。
球和圓類似,也有一個球心,用O表示。
從球心到球面上任意一點的線段叫做球的半徑,用r表示,每條半徑都相等。
通過球心并且兩端都在球面上的線段,叫做球的直徑,用d表示,每條直徑都相等,直徑的長度等于半徑的2倍,即d=2r。
2 計算公式
- d=2r
-
-第五章 簡單的統(tǒng)計
一 統(tǒng)計表
。ㄒ唬┮饬x
* 把統(tǒng)計數(shù)據(jù)填寫在一定格式的表格內(nèi),用來反映情況、說明問題,這樣的表格就叫做統(tǒng)計表。
。ǘ┙M成部分
* 一般分為表格外和表格內(nèi)兩部分。表格外部分包括標的名稱,單位說明和制表日期;表格內(nèi)部包括表頭、橫標目、縱標目和數(shù)據(jù)四個方面。
。ㄈ┓N類
* 單式統(tǒng)計表:只含有一個項目的統(tǒng)計表。
* 復(fù)式統(tǒng)計表:含有兩個或兩個以上統(tǒng)計項目的統(tǒng)計表。
* 百分數(shù)統(tǒng)計表:不僅表明各統(tǒng)計項目的具體數(shù)量,而且表明比較量相當(dāng)于標準量的百分比的統(tǒng)計表。
。ㄋ模┲谱鞑襟E
1搜集數(shù)據(jù)
2整理數(shù)據(jù):
要根據(jù)制表的目的和統(tǒng)計的內(nèi)容,對數(shù)據(jù)進行分類。
3設(shè)計草表:
要根據(jù)統(tǒng)計的目的和內(nèi)容設(shè)計分欄格內(nèi)容、分欄格畫法,規(guī)定橫欄、豎欄各需幾格,每格長度。
4 正式制表:
把核對過的數(shù)據(jù)填入表中,并根據(jù)制表要求,用簡單、明確的語言寫上統(tǒng)計表的名稱和制表日期。
二 統(tǒng)計圖
。ㄒ唬┮饬x
* 用點線面積等來表示相關(guān)的量之間的數(shù)量關(guān)系的圖形叫做統(tǒng)計圖。
。ǘ┓诸
1 條形統(tǒng)計圖
用一個單位長度表示一定的數(shù)量,根據(jù)數(shù)量的多少畫成長短不同的直條,然后把這些直線按照一定的順序排列起來。
優(yōu)點:很容易看出各種數(shù)量的多少。
注意:畫條形統(tǒng)計圖時,直條的寬窄必須相同。
取一個單位長度表示數(shù)量的多少要根據(jù)具體情況而確定;
復(fù)式條形統(tǒng)計圖中表示不同項目的直條,要用不同的線條或顏色區(qū)別開,并在制圖日期下面注明圖例。
制作條形統(tǒng)計圖的一般步驟:
。1)根據(jù)圖紙的大小,畫出兩條互相垂直的射線。
。2)在水平射線上,適當(dāng)分配條形的位置,確定直線的寬度和間隔。
。3)在與水平射線垂直的深線上根據(jù)數(shù)據(jù)大小的具體情況,確定單位長度表示多少。
(4)按照數(shù)據(jù)的大小畫出長短不同的直條,并注明數(shù)量。
2 折線統(tǒng)計圖
用一個單位長度表示一定的數(shù)量,根據(jù)數(shù)量的多少描出各點,然后把各點用線段順次連接起來。
優(yōu)點:不但可以表示數(shù)量的多少,而且能夠清楚地表示出數(shù)量增減變化的情況。
注意:折線統(tǒng)計圖的橫軸表示不同的年份、月份等時間時,不同時間之間的距離要根據(jù)年份或月份的間隔來確定。
制作折線統(tǒng)計圖的一般步驟:
。1)根據(jù)圖紙的大小,畫出兩條互相垂直的射線。
。2)在水平射線上,適當(dāng)分配折線的位置,確定直線的寬度和間隔。
。3)在與水平射線垂直的深線上根據(jù)數(shù)據(jù)大小的具體情況,確定單位長度表示多少。
。4)按照數(shù)據(jù)的大小描出各點,再用線段順次連接起來,并注明數(shù)量。
3扇形統(tǒng)計圖
用整個圓的面積表示總數(shù),用扇形面積表示各部分所占總數(shù)的百分數(shù)。
優(yōu)點:很清楚地表示出各部分同總數(shù)之間的關(guān)系。
制扇形統(tǒng)計圖的一般步驟:
。1)先算出各部分數(shù)量占總量的百分之幾。
。2)再算出表示各部分數(shù)量的扇形的圓心角度數(shù)。
。3)取適當(dāng)?shù)陌霃疆嬕粋圓,并按照上面算出的圓心角的度數(shù),在圓里畫出各個扇形。
。4)在每個扇形中標明所表示的各部分數(shù)量名稱和所占的百分數(shù),并用不同顏色或條紋把各個扇形區(qū)別開。
【六年級數(shù)學(xué)總復(fù)習(xí)知識點歸納】相關(guān)文章:
初中數(shù)學(xué)總復(fù)習(xí)圓知識點總結(jié)12-16
數(shù)學(xué)總復(fù)習(xí)教學(xué)反思04-05
初中數(shù)學(xué)總復(fù)習(xí)教案07-20
數(shù)學(xué)總復(fù)習(xí)教學(xué)反思04-05
總復(fù)習(xí)必修一化學(xué)知識點總結(jié)01-27
數(shù)學(xué)總復(fù)習(xí)教案設(shè)計06-01